Principal Theorems of Vector Analysis
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’Notation and Deﬁnitions‘
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’Fundamental Theorem of Calculus for Line Integrals‘

Let ¢ : [a,b] — R® be a path. Then
5 ds = 1(e) - fle(a).

’Green’s Theorem\
Let D be a region in the plane, and let C' be the curve which forms
its boundary. Also let F(z,y) = P(z,y)t + Q(z,y)j be a vector field.
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| Stokes’ Theorem |
Let S be an oriented surface, and let S be the oriented boundary of .S.
Then

/ (VXF)-dS = F ds.

‘ Gauss’ Divergence Theorem‘

Let € be a solid region in space, and let 02 be the oriented surface
that bounds €2. Then

//Q(V-F)dV: //mF-dS.




