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CHAPTER 1

Characteristic Polynomials

As always, V is a finite dimensional vector space with field of
scalars F. But we do not assume that V is an inner product space.

1. The Characteristic Polynomial of a Linear Map

We begin with a fundamental definition.

Definition. Let T ∈ L(V ) be a linear map. The characteristic
polynomial of T is

PT (z) = det(zI − T ).

We begin by showing that PT (z) may be computed using any matrix
associated to T .

Proposition 1. Let {vi} be a basis for V , and let

A = M
(
T, {vi}

)
∈ Mat(n,F)

be the matrix for T associated to the chosen basis. Then

PT (z) = det(zI − A).

In particular, we can compute PT (z) using the matrix for T associated
to any basis.

Proof. We proved that if S ∈ L(V ) is any linear map, then the de-
terminant of the matrix B = M

(
S, {vi}

)
doesn’t depend on the choice

of basis. That’s what allows us to define det(S). In case you’ve forgot-
ten, the proof uses the fact that if we choose some other basis {wi},
then the associated matrix C = M

(
S, {wi}

)
satisfies C = G−1BG for

some invertible matrix G, so

det(C) = det(G−1BG) = det(G−1) det(B) det(G)

=
1

det(G)
det(B) det(G) = det(B).

We now need merely observe that

M
(
zI − T, {vi}

)
= zM

(
I, {vi}

)
−M

(
T, {vi}

)
= zI − A,

so by definition, det(zI − T ) = det(zI − A), and it doesn’t matter what
basis we use to compute A. �
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6 1. CHARACTERISTIC POLYNOMIALS

Example 2. Let T ∈ L(R2) be given by

T (x, y) = (x+ 2y, 3x+ 4y).

Then the matrix of T for the standard basis of R2 is

A =

(
1 2
3 4

)
.

So the characteristic polynomial of T is

PT (z) = det(zI − A) = det

((
z 0
0 z

)
−
(
1 2
3 4

))
= det

(
z − 1 −2
−3 z − 4

)
= (z − 1)(z − 4)− 6

= z2 − 5z − 2.

Proposition 3. Let T ∈ L(V ). Then the roots of the characteristic
polynomial PT (z) in C are exactly the eigenvalues of T .

Proof. We know that the eigenvalues of T are precisely the num-
bers λ ∈ C for which λI − T is not invertible. And we also proved that
a linear map S is not invertible if and only if det(S) = 0. Hence the
eigenvalues of T are the numbers λ ∈ C such that det(λI − T ) = 0,
which are exactly the roots of PT (z). �

2. Jordan Blocks

We know that if V has a basis of eigenvectors for a linear map
T ∈ L(V ), then the matrix of T for that basis is diagonal. Thus
if {v1, . . . ,vn} is a basis for V and if

Tvi = λivi for 1 ≤ i ≤ n,

then

M
(
T, {vi}

)
=


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0

...
. . .

...
0 0 0 · · · λn

 .

Unfortunately, not every linear transformation has a basis of eigenvec-
tors. Our goal in the next two sections is to find bases that are almost
as good.
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Example 4. Consider the linear map T ∈ L(F2) given by the
formula

T (x1, x2) = (x1 + x2, x2).

The matrix of T for the standard basis of F2 is ( 1 1
0 1 ), so the character-

istic polynomial of T is

det(zI − T ) = det

(
z − 1 −1
0 z − 1

)
= (z − 1)2,

so Proposition 3 says that the only eigenvalue of T is λ = 1. But one
easily checks that the only vectors satisfying Tv = v are multiples
of (1, 0), so F2 does not have a basis consisting of eigenvectors for T .

Generalizing Example 4, we are led to look at matrices of the fol-
lowing form.

Definition. The Jordan matrix (or Jordan block) of dimension m
and eigenvalue λ is the m-by-m matrix

Jm(λ) =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0

...
. . . . . .

...
0 0 0 · · · λ 1
0 0 0 0 · · · λ


Thus Jm(λ) is an m-by-m matrix with λ’s on its main diagonal and
with 1’s just above the main diagonal, and all other entries are 0.

Proposition 5. Let Jm(λ) be a Jordan matrix. The only eigen-
value of Jm(λ) is λ, and the only eigenvectors of Jm(λ) are multiples
of the standard basis vector e1.

Proof. Let J = Jm(λ). The matrix J is upper triangular, so its
characteristic polynomial is

PJ(z) = det(zI − J) = (z − λ)m.

Proposition 3 tells us that λ is the only eigenvalue of J . Next suppose
that Jv = λv, so

(J − λI)v = 0.
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But looking at the matrix J − λI, we see that

(J − λI)v =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

...
. . . . . .

...
0 0 0 · · · 0 1
0 0 0 0 · · · 0





x1

x2

x3
...

xm−1

xm

 =



x2

x3

x4
...
xm

0

 .

Hence (J − λI)v = 0 if and only if

x2 = x3 = · · · = xm = 0,

which is just another way of saying that v is a multiple of e1. �

We note that the application of J = Jm(λ) to the standard basis
vectors of Fm exhibits a sort of shift effect,

Je1 = λe1
Je2 = e1 + λe2
Je3 = e2 + λe3
...

. . .
Jem = em−1 + λem

It is often convenient to write a Jordan block as

J = λI +N with N =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

...
. . . . . .

...
0 0 0 · · · 0 1
0 0 0 0 · · · 0

 . (1)

In other words, J is the sum of a multiple of the identity matrix and
a matrix N that has 1’s just above the diagonal, and 0’s everywhere
else. When we compute the powers of the matrix N , we find something
surprising.

Proposition 6. Let N be the m-by-m matrix described in (1).
Then

Nm = 0.

Proof. The effect of N on the list e1, e2, . . . , em of standard basis
vectors for Fm is to shift the list to the right, deleting em and putting
a zero vector in front. In other words,

Ne1 = 0, Ne2 = e1, Ne3 = e2, Ne4 = e3, . . . Nem = em−1.
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What happens if we apply N again? The list shifts again, yielding

N2e1 = 0, N2e2 = 0, N2e3 = e1, N2e4 = e2, . . . N2em = em−2.

Applying N again, the list shifts yet one step further. So if we apply N
a total of m times, all of the ei are shifted out of the list, and we’re
just left with zero vectors,

Nme1 = 0, Nme2 = 0, Nme3 = 0, Nme4 = 0, . . . Nmem = 0.

This shows thatNm sends all of the basis vectors e1, . . . , em to 0, soNm

is the zero matrix. �

There is a name for matrices (or linear maps) that have the property
described in Proposition 6.

Definition. A linear map T ∈ L(V ) is said to be nilpotent if there
is some integer j ≥ 1 such that T j = 0. Similarly, a square matrix A
is said to be nilpotent if there is some integer j ≥ 1 such that Aj = 0.

3. Jordan Normal Form

We can now define matrices that are “almost, but not necessarily
entirely, diagonal.”

Definition. A matrix is in Jordan Normal Form if it looks like

A =


J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0

...
. . .

...
0 0 0 · · · Jr

 ,

where each Ji is a Jordan block. Thus Ji is an mi-by-mi Jordan block
with eigenvalue λi,

Ji =



λi 1 0 0 · · · 0
0 λi 1 0 · · · 0
0 0 λi 1 · · · 0

...
. . . . . .

...
0 0 0 · · · λi 1
0 0 0 0 · · · λi

 .
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Example 7. The 6-by-6 matrix

A =


3 1 0 0 0 0
0 3 0 0 0 0
0 0 5 0 0 0
0 0 0 5 1 0
0 0 0 0 5 1
0 0 0 0 0 5

 ,

consists of three Jordan blocks. The first is a 2-by-2 Jordan block with
eigenvalue 3, the second is a 1-by-1 Jordan block with eigenvalue 5,
and the third is a 3-by-3 Jordan block with eigenvalue 5. Thus

A =

J1 0 0
0 J2 0
0 0 J3

 with J1 =

(
3 1
0 3

)
, J2 =

(
5
)
, J3 =

5 1 0
0 5 1
0 0 5

 .

Note that different blocks need not have different eigenvalues.

As we have seen, not every linear transformation T can be diago-
nalized. But we can come close in the sense that we can always find a
basis that puts T into Jordan normal form, as described in the following
important result.

Theorem 8. (Jordan Normal Form Theorem) Let V be a vector
space over C, and let T ∈ L(V ) be a linear transformation. Then there
is a basis {vi} for V so that the matrix M

(
T, {vi}

)
is in Jordan normal

form.

Proof. We won’t have time in class to prove this theorem, but you
can find a proof in the book if you’re interested. You may also someday
see it proven in a more advanced mathematics course as a special case
of a general theorem on finitely generated modules over principal ideal
domains. �

4. The Cayley-Hamilton Theorem

We are now ready to state and prove a useful theorem about linear
maps. The proof uses the Jordan Normal Form Theorem (Theorem 8).

Theorem 9. (Cayley-Hamilton Theorem) Let T ∈ L(V ) and let
PT (z) be its characteristic polynomial. Then PT (T ) = 0.

Example 10. Before proving the Cayley-Hamilton Theorem, we
illustrate it using the linear map T in Example 2. That map had
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associated matrix A = ( 1 2
3 4 ) and characteristic polynomial PT (z) =

z2 − 5z − 2. We compute

PT (A) = A2 − 5A− 2I

=

(
1 2
3 4

)2

− 5

(
1 2
3 4

)
− 2

(
1 0
0 1

)
=

(
7 10
15 22

)
−
(
5 10
15 20

)
−
(
2 0
0 2

)
=

(
0 0
0 0

)
.

Since the matrix of PT (T ) is PT (A), this shows that PT (T ) = 0.

Proof of the Cayley-Hamilton Theorem (Theorem 9).
We give the proof in the case that F = C.1 The Jordan Normal Form
Theorem (Theorem 8) says that there is a basis {vi} for V such that
the matrix A = M(T, {vi}) of T is in Jordan normal form,

A =


J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0

...
. . .

...
0 0 0 · · · Jr

 .

Here Ji is an mi-by-mi Jordan block with eigenvalue λi,

Ji =



λi 1 0 0 · · · 0
0 λi 1 0 · · · 0
0 0 λi 1 · · · 0

...
. . . . . .

...
0 0 0 · · · λi 1
0 0 0 0 · · · λi

 .

In particular, the matrix A is upper triangular, so the matrix zI − A
is also upper triangular. This allows us to easily compute the charac-
teristic polynomial

PT (z) = det(zI − A) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λr)
mr .

What happens when we substitute z = A into the polynomial

(z − λ1)
m1(z − λ2)

m2 · · · (z − λr)
mr?

1If F = R, one may “extend scalars” and treat V as if it were a complex vector
space, but we haven’t discussed how this process works, so we’ll be content to just
work with F = C.
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Let’s consider the first factor (A− λ1I)
m1 . It looks like

(A− λ1I)
m1

=


J1 − λ1I 0 0 · · · 0

0 J2 − λ1I 0 · · · 0
0 0 J3 − λ1I · · · 0

...
. . .

...
0 0 0 · · · Jr − λ1I


m1

=


(J1 − λ1I)

m1 0 0 · · · 0
0 (J2 − λ1I)

m1 0 · · · 0
0 0 (J3 − λ1I)

m1 · · · 0
...

. . .
...

0 0 0 · · · (Jr − λ1I)
m1



=


0 0 0 · · · 0
0 (J2 − λ1I)

m1 0 · · · 0
0 0 (J3 − λ1I)

m1 · · · 0
...

. . .
...

0 0 0 · · · (Jr − λ1I)
m1

 ,

where the 0 in the upper left corner is there because Proposition 6 tells
us that (J1 − λ1I)

m1 = 0.
Similarly,

(A− λ2I)
m2 =


(J1 − λ2I)

m2 0 0 · · · 0
0 0 0 · · · 0
0 0 (J3 − λ2I)

m2 · · · 0
...

. . .
...

0 0 0 · · · (Jr − λ2I)
m2

 ,

(notice the 0 in place of (J2 − λ2I)
m2), and so on until we get to

(A− λrI)
mr =


(J1 − λrI)

mr 0 0 · · · 0
0 (J2 − λrI)

mr 0 · · · 0
0 0 (J3 − λrI)

mr · · · 0
...

. . .
...

0 0 0 · · · 0

 .

If we multiply them together, we get the following product, where
we write a ∗ to indicate a possibly non-zero block. (If you want to be
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precise, you can say that each ∗ looks like (Ji−λk)
mk for some i and k.)

PT (A) = (A− λ1)
m1(A− λ2)

m2 · · · (A− λr)
mr

=


0 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0

...
. . .

...
0 0 0 · · · ∗

×


∗ 0 0 · · · 0
0 0 0 · · · 0
0 0 ∗ · · · 0

...
. . .

...
0 0 0 · · · ∗



×


∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 0 · · · 0

...
. . .

...
0 0 0 · · · ∗

× · · · ×


∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0

...
. . .

...
0 0 0 · · · 0



=


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

...
. . .

...
0 0 0 · · · 0

 .

This proves that PT (A) is the zero matrix. Hence

M
(
PT (T ), {vi}

)
= PT

(
M
(
T, {vi}

))
= PT (A) = 0.

Thus the matrix associated to PT (T ) is the zero matrix, so PT (T ) is
the zero linear map. This concludes the proof of the Cayley-Hamilton
Theorem. �

Exercises for Chapter 1

Problem # C.1. Let T ∈ L(V ), and suppose that v1, . . . ,vn is a basis of
eigenvectors for T , say

Tv1 = λ1v1, Tv2 = λ2v2, . . . Tvn = λnvn.

Some of the eigenvalues might be the same, so let

µ1, µ2, . . . , µk

be a list of the distinct eigenvalues in the set {λ1, λ2, . . . , λn}. Let F (z) be
the polynomial

F (z) = (z − µ1)(z − µ2) . . . (z − µk).

Prove that F (T ) = 0.
This shows that for some linear maps T , there may be a non-zero polyno-

mial F (z) with F (T ) = 0 whose degree is smaller than the degree of PT (z).
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Problem # C.2. Let B be the matrix

B =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cn−1

 .

Prove that

det(zI −B) = zn + cn−1z
n−1 + · · ·+ c1z + c0.

This exercise shows that every monic polynomial is the characteristic poly-
nomial of some matrix. The matrix B is often called the companion matrix
to the polynomial.

Problem # C.3. We have seen that the set of linear maps L(V ) is a vector
space. Let T ∈ L(V ), and for each k = 1, 2, 3, . . ., let

Uk = Span(I, T, T 2, . . . , T k) ⊂ L(V ).

So Uk is a subspace of L(V ), and clearly dim(Uk) ≤ k + 1, since it has a
spanning set consisting of k + 1 vectors. Prove that

dim(Uk) ≤ dim(V ) for all k.

Problem # C.4. If T ∈ L(V ) is a nilpotent, prove that 0 is the only
eigenvalue of T .

Problem # C.5. Let n = dim(V ) and let T ∈ L(V ) be a nilpotent linear
map. Prove that Tn = 0. (By definition, the fact that T is nilpotent means
that T j = 0 for some j. This exercise asks you to prove that it suffices to
take j = n.)

Problem # C.6. Let J = Jm(λ) be a Jordan block matrix, and let em =
(0, 0, . . . , 0, 1) be the last vector in the standard basis for Fm. Prove that{

em, Jem, J2em, . . . , Jm−1em
}

is a basis for Fm.



CHAPTER 2

Linear Recursions

A linear recursion is a sequence of numbers

a1, a2, a3, a4, . . .

in which each successive entry in the sequence is created by taking
a linear combination of the previous few entries. A good intuition is
to view an as representing the value of some quantity at time n. For
example, an could be the population of a city in year n, or the amount of
money in circulation in year n, or the amount of CO2 in the atmosphere
in year n. In many situations, one can create a model in which an is
determined (at least approximately) by a linear function of the values
in the previous two or three or four years.

1. What is a Linear Recursion?

We start with a formal definition.

Definition. Let

L(x1, . . . , xd) = c1x1 + c2x2 + · · ·+ cdxd

be a linear function with coefficients c1, . . . , cd ∈ F, and let a1, . . . , ad ∈
F be some initial values. The linear recursion generated by the linear
function L and the chosen initial values is the list of numbers

a1, a2, a3, a4, . . .

created by setting each successive an equal to L evaluated at the pre-
vious d entries in the sequence. Thus in terms of formulas,

ad+1 = L(ad, ad−1, . . . , a2, a1),

ad+2 = L(ad+1, ad, . . . , a3, a2),

ad+3 = L(ad+2, ad+1, . . . , a4, a3),

and so on. So in general,

an = L(an−1, an−2, . . . , an−d+1, an−d)

= c1an−1 + c2an−2 + · · ·+ cdan−d.

15
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Example 11. The most famous linear recursion is undoubtedly the
Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . . (2)

It is generated by the following initial values and linear function:

F1 = 1, F2 = 1, L(x1, x2) = x1 + x2.

Thus after the first two terms, the subsequent terms are generated
using the familiar formula

Fn = Fn−1 + Fn−2 for n = 3, 4, 5, . . ..

Fibonacci described the sequence that now bears his name when posed
a question about rabbit population growth!

One of our goals is to find explicit formulas for the nth term of a
linear recursion, and to use these explicit formulas to estimate how
fast an grows.

2. An Example: The Fibonacci Sequence

In this section we work out in detail an explicit formula and esti-
mated growth rate for the Fibonacci sequence

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for n = 3, 4, 5, . . ..

The first ten terms of the Fibonacci sequence (2) don’t look that large,
but don’t be fooled. The value of Fn grows very rapidly as n increases.
For example,

F100 = 354224848179261915075 ≈ 3.54 · 1020.

The key to analyzing linear recursions is to reformulate them in
terms of linear transformations. For the Fibonacci sequence, we look
at the matrix

A =

(
1 1
1 0

)
.

If we apply A to a vector v = (x1, x2) ∈ F2, we get

Av =

(
1 1
1 0

)(
x1

x2

)
=

(
x1 + x2

x1

)
.

Notice that useful x1 + x2 in the lower left corner of Av. If we take
the coordinates of v to be consecutive Fibonacci numbers, then we find
that (

1 1
1 0

)(
Fn−1

Fn−2

)
=

(
Fn−1 + Fn−2

Fn−1

)
=

(
Fn

Fn−1

)
.
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And if we apply the matrix A again, then we get(
1 1
1 0

)2(
Fn−1

Fn−2

)
=

(
1 1
1 0

)(
Fn

Fn−1

)
=

(
Fn+1

Fn

)
.

And so on.
In general, if we start with v = (1, 0), we obtain the formula(

Fn+1

Fn

)
=

(
1 1
1 0

)n(
1
0

)
= An

(
1
0

)
. (3)

In some sense, this gives a formula for Fn, but it’s only useful if we
have some convenient way of computing An = ( 1 1

1 0 )
n when n is large.

If A were a diagonal matrix, then it would be easy to compute An.
In order to turn A into a diagonal matrix, we look for a basis of F2

that consists of eigenvectors of A. This is easy to do. The eigenvalues
of A are the roots of

det(zI − A) = det

(
z − 1 −1
−1 z

)
= z2 − z − 1,

which are the numbers

α =
1 +

√
5

2
and β =

1−
√
5

2
.

A little bit of algebra yields eigenvectors

v1 =

(
α
1

)
and v2 =

(
β
1

)
satisfying Av1 = αv1 and Av2 = βv2.

So if we form the matrix B whose columns are v1 and v2, then

B =

(
α β
1 1

)
satisfies AB = B

(
α 0
0 β

)
.

In other words, if we let ∆ be the diagonal matrix

∆ =

(
α 0
0 β

)
, then we get A = B∆B−1.

It is now easy to compute An, since powers of a diagonal matrix
are easy to compute. Here’s what we get:

An = (B∆B−1)n

= (B∆B−1)(B∆B−1)(B∆B−1) · · · (B∆B−1)︸ ︷︷ ︸
n copies of B−1∆B

= B∆nB−1 since the B−1B products cancel. (4)
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We also have

∆n =

(
αn 0
0 βn

)
and B−1 =

(
1

α−β
−β
α−β

−1
α−β

α
α−β

)
=

(
1√
5

1−
√
5

2
√
5

−1√
5

1+
√
5

2
√
5

)
. (5)

We use these formula to derive a beautiful closed formula for the nth Fi-
bonacci number.(

Fn+1

Fn

)
= An

(
1
0

)
from (3),

= B∆nB−1

(
1
0

)
from (4),

=

(
α β
1 1

)(
αn 0
0 βn

)( 1√
5

1−
√
5

2
√
5

−1√
5

1+
√
5

2
√
5

)(
1
0

)
from (5),

=

(
α β
1 1

)(
αn 0
0 βn

)( 1√
5

−1√
5

)
matrix multiplication,

=

(
α β
1 1

)( 1√
5
αn

− 1√
5
βn

)
matrix multiplication,

=

( 1√
5
(αn+1 − βn+1)
1√
5
(αn − βn)

)
matrix multiplication.

Equating the bottom entries of these vectors gives an explicit closed
expression for the nth Fibonacci number,

Fn =
αn − βn

√
5

=
1√
5

[(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n]
. (6)

This famous formula is known as Binet’s Formula, although it had been
discovered by others long before Binet found it.

We can use Binet’s formula to measure how fast the Fibonacci se-
quence grows. Notice that

1 +
√
5

2
= 1.618 . . . and

1−
√
5

2
= −0.618 . . . .

Since
∣∣∣1−√

5
2

∣∣∣ < 1, we see that
(

1−
√
5

2

)n
→ 0 very rapidly as n → ∞.

So for large values of n we have

Fn =

(
1 +

√
5

2

)n

+ (something very tiny).
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Hence

Fn ≈

(
1 +

√
5

2

)n

≈ 1.61803398875n ≈ 100.209n.

So Fn has roughly 0.209n digits. Let’s check. We saw earlier that
F100 ≈ 3.54 · 1020 has 21 digits, while 0.209 × 100 = 20.9, which is a
pretty good estimate. And F100000 will have more than 20, 000 digits,
so we probably don’t want to try to write it down exactly!

3. The Matrix Associated to a Linear Recursion

In Section 2 we described the Fibonacci sequence in terms of the
powers of matrix. We now generalize this construction to arbitrary
linear recursions. We let

a1, a2, a3, . . .

be a linear recursion generated by the linear function

L(x1, . . . , xd) = c1x1 + c2x2 + · · ·+ cdxd.

We associate to L the d-by-d matrix

AL =


c1 c2 · · · cd−1 cd
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . .
...

0 · · · 0 1 0

 . (7)

Example 12. The recursion

an = 4an−1 − 6an−2 + 4an−3

is generated by the linear form

L(x1, x2, x3) = 4x1 − 6x2 + 4x3.

The associated matrix is

AL =

4 −6 4
1 0 0
0 1 0

 . (8)

With this notation, the recursion satisfied by the an gives a matrix
equation

an+d

an+d−1
...

an+1

 =


c1 c2 · · · cd−1 cd
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . .
...

0 · · · 0 1 0



an+d−1

an+d−2
...

an

 . (9)



20 2. LINEAR RECURSIONS

To ease notation, we define vectors

vn =


an+d−1

an+d−2
...
...
an

 ,

which allows us to write the matrix formula (9) in the succint form

vn+1 = ALvn. (10)

Using (10) repeatedly, we find that

vn = ALvn−1 = A2
Lvn−2 = A3

Lvn−3 = · · · = An−1
L v1.

The coordinates of the vector v1 are the initial values of the recursion,
while the coordinates of vn are later terms in the recursion. Thus in
order to compute the recursion, we need to compute the powers An

L of
the matrix AL.

The first step is to compute the characteristic polynomial.

Proposition 13. The characteristic polynomial of the matrix L is
the polynomial

fL(z) = zd − c1z
d−1 − · · · − cd−1z − cd.

In other words,

fL(z) = det(zI − AL) = det


z − c1 −c2 · · · −cd−1 −cd
−1 z 0 · · · 0
0 −1 z · · · 0
...

. . . . . .
...

0 · · · 0 −1 z

 .

Proof. Expanding det(zI −AL) down the first column, there are
only two terms, so we find that

det(zI − AL)

= (z − c1) det


z 0 · · · 0
−1 z · · · 0

. . . . . .
...

0 0 −1 z

+det


−c2 · · · −cd−1 −cd
−1 z · · · 0
...

. . . . . .
...

0 0 −1 z

 .

The first matrix is lower triangular, so its determinant is just zd−1. The
second matrix looks very much like our original matrix, with a non-
zero top row, z’s on the digaonal, and −1’s just below the diagonal. So



4. DIAGONALIZABLE LINEAR RECURSIONS 21

expanding the second matrix along it’s first column, we get

det(zI − AL) = (z − c1)z
d−1 − c2z

d−2 + det

∗ · · · ∗
...

. . .
...

∗ · · · ∗

 ,

where the new remaining matrix again has non-zero top row, z’s on
the digaonal, and −1’s just below the diagonal. More precisely, the
top row now consists of −c3,−c4, . . . ,−cd. Continuing in this fashion,
we find that

det(zI − AL) = (z − c1)z
d−1 − c2z

d−2 − · · · − cd−1z − cd = fL(z).

This concludes the proof of Proposition 13. �

4. Diagonalizable Linear Recursions

The procedure that we used to find a closed formula for the Fi-
bonacci sequence in Section 2 was helped by the fact that the associ-
ated matrix ( 1 1

1 0 ) is diagonalizable. In this section we consider general
linear recursions whose matrices are diagonalizable. Later in Section 6
we use Jordan normal form to handle the non-diagonalizable case.

Let

a1, a2, a3, . . .

be a linear recursion generated by the linear function

L(x1, . . . , xd) = c1x1 + c2x2 + · · ·+ cdxd

and initial values a1, a2, . . . , ad, and let AL be the associated matrix (7).
For the rest of this section we make the following assumption:

The matrix AL has a basis of eigenvec-
tors v1, . . . ,vd ∈ Cd satisfying ALvi = λivi.

We let BL be the matrix whose columns are the eigenvectors v1, . . . ,vd

and ∆L the diagonal matrix with entries λ1, . . . , λd,

BL = (v1 v2 · · · vd) and ∆L =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λd

 .

Then

AL = BL∆LB
−1
L ,
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so we can easily compute power of AL via the formula

An
L = BL∆

n
LB

−1
L with ∆L =


λn
1 0 · · · 0
0 λn

2 · · · 0
...

. . .
...

0 0 · · · λn
d

 .

Finally, we obtain a formula for an, similar to Binet’s formula (6), by
observing that

an = last coordinate of vn

= last coordinate of An−1
L v1

= last coordinate of BL∆
n−1
L B−1

L v1

(11)

Example 14. We continue with the recursion from Example 12
given by

an = 4an−1 − 6an−2 + 4an−3. (12)

We also take initial values

a1 = a2 = a3 = 1.

We compute the first few terms using (12),

1, 1, 1, 2, 6, 16, 36, 72, 136, 256, 496, 992, 2016, . . . .

We can compute the characteristic polynomial of the associated ma-
trix AL directly, or we can use Proposition 13. In any case, we find
that

fL(z) = z3 − 4z2 + 6z − 4 = (z − 2)(z − 1− i)(z − 1 + i),

so the three eigenvalues

λ1 = 2, λ2 = 1 + i, λ3 = 1− i

are distinct. We know that this means that the associated eigenvectors
form a basis for C3. After a little bit of work, we find eigenvectors

v1 =

4
2
1

 , v2 =

 2i
1 + i
1

 , v3 =

−2i
1− i
1

 .

We next form the matrices

BL =

4 2i −2i
2 1 + i 1− i
1 1 1

 and ∆L =

2 0 0
0 1 + i 0
0 0 1− i

 .
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We also need to compute the inverse matrix

B−1
L =


1
2

−1 1

−1
4
+ 1

4
i 1

2
− i i

−1
4
− 1

4
i 1

2
+ i −i

 .

Finally, we are ready to use (11) to compute

an = last coordinate of BL∆
n−1
L B−1

L v1.

So we need to compute the last coordinate of the product

4 2i −2i

2 1 + i 1− i
1 1 1

2n−1 0 0

0 (1 + i)n−1 0
0 0 (1− i)n−1




1
2

−1 1

− 1
4
+ 1

4
i 1

2
− i i

− 1
4
− 1

4
i 1

2
+ i −i


1

1
1

 .

After doing some algebra, we find that

an =
1

4
· 2n + 1

4
· (1 + i)n +

1

4
· (1− i)n.

Further, since |1 ± i| =
√
2 < 2, we see that the 2n term dominates

when n gets big, so in particular,

lim
n→∞

an
2n

=
1

4
.

5. Powers of Jordan Block Matrices

In order to deal with general linear recursions whose associated ma-
trix is not diagonalizable, we need to figure out how to compute powers
of matrices that are in Jordan block form. We start by using Proposi-
tion 6 and the binomial theorem to write down a simple expression for
the powers of a single Jordan block.

Proposition 15. Let J = λI+N be an m-by-m Jordan block with
eigenvalue λ. Then for all k ≥ 0 we have

Jk = (λI +N)k =
m−1∑
i=0

(
k

i

)
λk−iN i.

Note that the sum only has m terms, no matter how large k becomes.
You are probably familiar with the binomial coefficient(

k

i

)
=

k!

i!(k − i)!
.

(If i = 0, by convention we set
(
k
0

)
= 1.)
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Proof. The binomial theorem says that

(λI +N)k =
k∑

i=0

(
k

i

)
λk−iN i.

(We are using the fact that the matrices λI and N commute with each
other, which is obvious since the identity matrix commutes with every
other matrix.) The sum that we get from the binomial theorem runs
from i = 0 to i = k, but Proposition 6 says that N i = 0 when i ≥ m,
so only the terms with i < m may be nonzero. �

Example 16. The matrix Jk is upper triangular. We illustrate
with m = 4,

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


k

= λkI + kλk−1N +

(
k

2

)
λk−2N2 +

(
k

3

)
λk−3N3

=


λk kλk−1

(
k
2

)
λk−2

(
k
3

)
λk−3

0 λk kλk−1
(
k
2

)
λk−2

0 0 λk kλk−1

0 0 0 λk

 .

We leave it to the reader to check these statements.

6. Closed Formulas for General Linear Recursions

*** To Be Completed ***

Exercises for Chapter 2

Problem # C.7. In 1202 Leonardo of Pisa (also known as Leonardo Fi-
bonacci) published his Liber Abbaci, a highly influential book of practical
mathematics. In this book Leonardo posed the following Rabbit Problem.

In the first month, start with a pair of baby rabbits. One
month later they have grown up. The following month the
pair of grown rabbits produce a pair of babies, so now we
have one pair of grown rabbits and one pair of baby rabbits.
Each month thereafter, each pair of grown rabbits produces
a new pair of babies, and every pair of baby rabbits grows
up. How many pairs of rabbits will there be at the end of
one year?
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Show that the number of rabbits after nmonths is given by the nth Fibonacci
number, and compute the answer to Fibonacci’s problem. Notice that even
this simple model for population growth yields a population that grows
exponentially.

Problem # C.8. Use Binet’s formula (6) to prove that the Fibonacci se-
quence satisfies the following formulas.
(a) Fn+1Fn−1 − F 2

n = (−1)n.

(b) F 2
n + F 2

n−1 = F2n−1.

(c) FnFn−1 + FnFn+1 = F2n.

(d)
k∑

n=1

Fn = Fk+2 − 1.

(e)

k∑
n=1

F 2
n = FkFk+1.

(f) Prove that at least one of the numbers 5F 2
n +4 and 5F 2

n − 4 is a perfect
square.

Problem # C.9. Find a closed form solution for each of the following
linear recursions.
(a) a1 = 1, a2 = 3, an = an−1+an−2. This is called the Lucas sequence.
(b) a1 = 1, a2 = 5, an = 4an−1 + 5an−2. What happens if instead we
start with a1 = 1 and a2 = 1?
(c) a1 = 6, a2 = −14, an = 6an−1 − 25an−2.

Problem # C.10. Suppose that a1, a2, a3, . . . is a linear recursion associ-
ated to a non-zero linear function

L(x1, . . . , xd) = c1x1 + c2x2 + · · ·+ cdxd,

let

F (z) = zd − c1z
d−1 − · · · − cd−1z − cd

be the associated polynomial, and suppose that F (z) factors over C as

F (z) = (z − λ1)(z − λ2) · · · (z − λd).

Suppose further that

|λ1| > |λ2| > |λ3| > · · · > |λd|.

(a) Prove that the limit

lim
n→∞

|an|1/n (13)

exists and is equal to one of the numbers |λ1|, |λ2|, . . . , |λd|.
(b) Why doesn’t the limit (13) have to equal |λ1|. Give an example with d =
2 where the limit (13) is equal to |λ2|.
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(c) What might go wrong if |λ1| = |λ2|? For example, consider the linear
recursion

a1 = 6, a2 = −14, an = 6an−1 − 25an−2.

Does the limit limn→∞ |an|1/n even exist? (This is hard.)

Problem # C.11. (a) Compute the following binomial coefficients:

(i)

(
5

2

)
. (ii)

(
8

3

)
. (iii)

(
100

98

)
.

(Hint: You should be able to do (iii) with paper and pencil in less than
10 seconds.)
(b) Using the definition

(
n
k

)
= n!

k!(n−k)! , prove the identity(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

(c) Use (b) and induction to prove that

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

This is called the binomial theorem.
(d) Prove the following identity (this one is harder):

n∑
k=0

(
n

k

)2

=

(
2n

n

)
.


