Name: _____

Honors Linear Algebra — Math 540 — Silverman — First Hour Exam — Thurs Feb 20, 2020

INSTRUCTIONS—Read Carefully

- Time: 50 minutes
- There are 4 problems.
- Write your name **legibly** at the top of the page.
- No calculators or other electronic devices are allowed. (You won't need them.)
- Show all your work. Partial credit will be given for substantial progress towards the solution. No credit will be given for answers with no explanation.

Problem	Value	Points
1	12	
2	12	
3	14	
4	12	
Total	50	

Problem 1. (12 points) Let V be vector space over \mathbb{F} . Complete the following **definitions**:

(a) The vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \in V$ are linearly independent if...

(b) The vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \in V$ span V if...

(c) The vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \in V$ are a *basis* of V if...

(d) Let U and W be subspaces of V. The sum U + W is the subspace...

(e) The vector space V is finite dimensional if...

(f) If the vector space V is finite dimensional, then its *dimension* is...

Solution.

(a) The vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ are *linearly independent* if the only way to get $c_1 \boldsymbol{v}_1 + \cdots + c_n \boldsymbol{v}_n = \boldsymbol{0}$ is to take $c_1 = \cdots = c_n = 0$.

(b) The vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ span V if every vector in V is a linear combination of $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$. In other words, given any $\boldsymbol{v} \in V$, there are scalars $c_1, \ldots, c_n \in \mathbb{F}$ so that $\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_n \boldsymbol{v}_n$.

(c) The vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ are a *basis* of V if they are linearly independent and span V. Equivalently (modulo a small result proven in class), if every vector $\boldsymbol{v} \in V$ can be written as a linear combination $\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_n \boldsymbol{v}_n$ in exactly one way.

(d) The sum U + W is the subspace

 $U+W = \{ \boldsymbol{u} + \boldsymbol{w} : \boldsymbol{u} \in U \text{ and } \boldsymbol{w} \in W \}.$

(e) The vector space V is *finite dimensional* if it has a finite spanning set.

(f) If the vector space V is finite dimensional, then its *dimension* is the number of vectors in a basis for V. (We proved that every basis has the same number of vectors.)

Problem 2. (12 points) Let V be a vector space. Let v_1, \ldots, v_m be a list of linearly independent vectors in V, and let u_1, \ldots, u_n be another list of linearly independent vectors in V. Suppose further that

$$\operatorname{Span}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m)\cap\operatorname{Span}(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n)=\{\mathbf{0}\}.$$

Prove that

 $oldsymbol{v}_1,\ldots,oldsymbol{v}_m,oldsymbol{u}_1,\ldots,oldsymbol{u}_n$

is a linearly independent list of vectors.

Solution. Suppose that there are scalars $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{F}$ such that

 $a_1 \boldsymbol{v}_1 + \dots + a_m \boldsymbol{v}_m + b_1 \boldsymbol{u}_1 + \dots + b_n \boldsymbol{u}_n = \boldsymbol{0}.$ Math 540 First Hour Exam Thurs Feb 20, 2020 Goal: Show that all of the scalars are zero. We can rewrite the above equation as

$$a_1 \boldsymbol{v}_1 + \cdots + a_m \boldsymbol{v}_m = -b_1 \boldsymbol{u}_1 - \cdots - b_n \boldsymbol{u}_n.$$

The vector

$$a_1 \boldsymbol{v}_1 + \cdots + a_m \boldsymbol{v}_m$$
 is in $\operatorname{Span}(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n)$

by the definition of the span of a list of vectors. Similarly, the vector

 $-b_1 \boldsymbol{u}_1 - \cdots - b_n \boldsymbol{u}_n$ is in Span $(\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n)$.

Since these two vectors are equal, they are in the intersection

 $\operatorname{Span}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m)\cap \operatorname{Span}(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n).$

But we are given that this intersection consists of only the zero vector. Therefore

$$a_1 \boldsymbol{v}_1 + \cdots + a_m \boldsymbol{v}_m = -b_1 \boldsymbol{u}_1 - \cdots - b_n \boldsymbol{u}_n = \boldsymbol{0}$$

Now the linear independence of v_1, \ldots, v_m , which we are also given, implies by definition that $a_1 = \cdots = a_m = 0$, and similarly, the linear independence of u_1, \ldots, u_n implies that $b_1 = \cdots = b_n = 0$. This completes the proof that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a linearly independent list of vectors.

Problem 3. (14 points) Let $\mathcal{P}_2(\mathbb{F})$ be the vector space of polynomials of degree at most 2 with coefficients in \mathbb{F} , and let

$$U = \{ p(x) \in \mathcal{P}_2(\mathbb{F}) : p(1) = p(-1) = 0 \}.$$

(a) Prove that U is a subspace of $\mathcal{P}_2(\mathbb{F})$.

(b) Fill in the boxes:

$$\dim \mathcal{P}_2(\mathbb{F}) = \boxed{\qquad} \dim U = \boxed{\qquad}.$$

Justify your answers by giving a basis for $\mathcal{P}_2(\mathbb{F})$ and a basis for U.

Solution. (a) Let $p(x) \in U$ and $q(x) \in U$, and let $c \in \mathbb{F}$. Then

$$(p+q)(1) = p(1) + q(1) = 0 + 0 = 0$$
 and
 $(cp)(1) = c(p(1)) = c \cdot 0 = 0,$

and similarly,

$$(p+q)(-1) = p(-1) + q(-1) = 0 + 0 = 0$$
 and
 $(cp)(-1) = c(p(-1)) = c \cdot 0 = 0.$

Therefore $p(x) + q(x) \in U$ and $cp(x) \in U$, which shows that U is a subspace. Math 540

(b)

dim
$$\mathcal{P}_2(\mathbb{F}) = 3$$
 and dim $U = 1$.

The elements of $\mathcal{P}_2(\mathbb{F})$ have the form

$$ax^2 + bx + c$$
 with $a, b, c \in \mathbb{F}$,

so $[x^2, x, 1]$ is a basis for $\mathcal{P}_2(\mathbb{F})]$. A polynomial $p(x) = ax^2 + bx + c$ is in U if and only if p(1) = 0 and

$$p(-1) = 0$$
, so if and only if

$$a+b+c=0$$
 and $a-b+c=0$.

Subtracting these equations give 2b = 0, so b = 0. Then we also need a + c = 0, so c = -a. Hence U consists of the polynomials

$$ax^2 - a$$
 with $a \in \mathbb{F}$

In other words, U is the set of scalar multiples of $x^2 - 1$, so

$$\{x^2 - 1\}$$
 is a basis for U.

(We're taking \mathbb{F} to be \mathbb{R} or \mathbb{C} , as usual. But if you take \mathbb{F} to be the field $\{0,1\}$ containing only two elements, which we discussed briefly, then the answer to this problem changes, and in fact U has dimension 2, with basis $\{x^2 + 1, x + 1\}$.)

Problem 4. (12 points) Let V be a vector space, and let U and W be subspaces of V. Suppose that

$$\dim(V) = 6$$
 and $\dim(U) = \dim(W) = 4$.

Prove that there exist two linearly independent vectors $v_1, v_2 \in U \cap W$.

Solution. We use the dimension formula

$$\dim(U) + \dim(W) = \dim(U + W) + \dim(U \cap W).$$

From this we can compute

$$\dim(U \cap W) = \dim(U) + \dim(W) - \dim(U + W)$$

= 8 - dim(U + W) (since dim(U) = dim(W) = 4)
$$\geq 8 - \dim(V)$$
 (since U + W $\subseteq V$)
$$\geq 8 - 6$$
 (since dim(V) = 6)
= 2.

We have proved that $\dim(U \cap W) \ge 2$, so in particular a basis for $U \cap W$ contains at least 2 vectors. Since the vectors in a basis are linearly independent, this shows that $U \cap W$ contains (at least) 2 linearly independent vectors.

Math 540

```
First Hour Exam Thu
```

Thurs Feb 20, 2020