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Chapter 1

Number Theory — Lecture #1

1.1 What is Number Theory?
Number theory is the study of the set of positive whole numbers

1, 2, 3, 4, 5, 6, 7, . . . ,

which are often called the set of natural numbers. We will especially want to study
the relationships between different sorts of numbers. Since ancient times, people
have separated the natural numbers into a variety of different types. Here are some
familiar and not-so-familiar examples:

odd 1, 3, 5, 7, 9, 11, . . .
even 2, 4, 6, 8, 10, . . .
square 1, 4, 9, 16, 25, 36, . . .
cube 1, 8, 27, 64, 125, . . .
prime 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
composite 4, 6, 8, 9, 10, 12, 14, 15, 16, . . .
1 (modulo 4) 1, 5, 9, 13, 17, 21, 25, . . .
3 (modulo 4) 3, 7, 11, 15, 19, 23, 27, . . .
triangular 1, 3, 6, 10, 15, 21, . . .
perfect 6, 28, 496, . . .
Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, . . .

Many of these types of numbers are undoubtedly already known to you. Others,
such as the “modulo 4” numbers, may not be familiar. A number is said to be con-
gruent to 1 (modulo 4) if it leaves a remainder of 1 when divided by 4, and similarly
for the 3 (modulo 4) numbers. A number is called triangular if that number of peb-
bles can be arranged in a triangle, with one pebble at the top, two pebbles in the next
row, and so on. The Fibonacci numbers are created by starting with 1 and 1. Then,
to get the next number in the list, just add the previous two. Finally, a number is
perfect if the sum of all its divisors, other than itself, adds back up to the original
number. Thus, the numbers dividing 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. Similarly,
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2 1. Number Theory — Lecture #1

the divisors of 28 are 1, 2, 4, 7, and 14, and

1 + 2 + 4 + 7 + 14 = 28.

We will encounter many of these types of numbers in our excursion through the
Theory of Numbers.

Some Typical Number Theoretic Questions
The main goal of number theory is to discover interesting and unexpected relation-
ships between different sorts of numbers and to prove that these relationships are
true. In this section we describe a few typical number theoretic problems, some of
which we will eventually solve, some of which have known solutions too difficult for
us to include, and some of which remain unsolved to this day.

Sums of Squares I. Can the sum of two squares be a square? The answer is clearly
“YES”; for example 32 + 42 = 52 and 52 + 122 = 132. These are examples
of Pythagorean triples. We will describe all Pythagorean triples in Chapter 2.

Sums of Higher Powers. Can the sum of two cubes be a cube? Can the sum of two
fourth powers be a fourth power? In general, can the sum of two nth powers
be an nth power? The answer is “NO.” This famous problem, called Fermat’s
Last Theorem, was first posed by Pierre de Fermat in the seventeenth century,
but was not completely solved until 1994 by Andrew Wiles. Wiles’s proof
uses sophisticated mathematical techniques far beyond what we will be able
to cover.

Infinitude of Primes. A prime number is a number p whose only factors are 1
and p.

• Are there infinitely many prime numbers?

• Are there infinitely many primes that are 1 modulo 4 numbers?

• Are there infinitely many primes that are 3 modulo 4 numbers?

The answer to all these questions is “YES.” We will prove some of these facts
in Chapter 6, as well as stating a much more general result proved by Lejeune
Dirichlet in 1837.

Sums of Squares II. Which numbers are sums of two squares? It often turns out
that questions of this sort are easier to answer first for primes, so we ask which
(odd) prime numbers are a sum of two squares. For example,

3 = NO, 5 = 12 + 22, 7 = NO, 11 = NO,
13 = 22 + 32, 17 = 12 + 42, 19 = NO, 23 = NO,
29 = 22 + 52, 31 = NO, 37 = 12 + 62, . . .

Do you see a pattern? Possibly not, since this is only a short list, but a longer
list leads to the conjecture that p is a sum of two squares if it is congruent to 1
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1.1. What is Number Theory? 3

(modulo 4). In other words, p is a sum of two squares if it leaves a remain-
der of 1 when divided by 4, and it is not a sum of two squares if it leaves a
remainder of 3.

Number Shapes. The square numbers are the numbers 1, 4, 9, 16, . . . that can
be arranged in the shape of a square. The triangular numbers are the num-
bers 1, 3, 6, 10, . . . that can be arranged in the shape of a triangle. The first
few triangular and square numbers are illustrated in Figure 1.1.

• • •
• • • • • •

• • • • • •
• • • •

1 + 2 = 3 1 + 2 + 3 = 6 1 + 2 + 3 + 4 = 10
Triangular numbers

• • • • • • • • •
• • • • • • • • •

• • • • • • •
• • • •

22 = 4 32 = 9 42 = 16
Square numbers

Figure 1.1: Numbers That Form Interesting Shapes

A natural question to ask is whether there are any triangular numbers that are
also square numbers (other than 1). The answer is “YES,” the smallest example
being

36 = 62 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

So we might ask whether there are more examples and, if so, are there infinitely
many? To search for examples, the following formula is helpful:

1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n+ 1)

2
. (1.1)

There is an amusing anecdote associated with this formula. One day when
the young Carl Friedrich Gauss (1777–1855) was in grade school, his
teacher became so incensed with the class that he set them the task of
adding up all the numbers from 1 to 100. As Gauss’s classmates duti-
fully began to add, Gauss walked up to the teacher and presented the
answer, 5050. The story goes that the teacher was neither impressed nor
amused, but there’s no record of what the next make-work assignment was!

Here is an easy geometric way to verify Gauss’s formula, which might be the
way that he discovered it himself. The idea is to take two triangles consisting
of 1 + 2 + · · ·+ n pebbles and fit them together with one additional diagonal
of n+ 1 pebbles. Figure 1.2 illustrates this idea for n = 6.
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4 1. Number Theory — Lecture #1
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(1 + 2 + 3 + 4 + 5 + 6) + 7 + (6 + 5 + 4 + 3 + 2 + 1) = 72

Figure 1.2: The Sum of the First n Integers

In Figure 1.2, we have marked the extra n+ 1 = 7 pebbles on the diagonal
with black dots. The resulting square has sides consisting of n+ 1 pebbles, so
in mathematical terms we obtain the formula

2(1 + 2 + 3 + · · ·+ n) + (n+ 1) = (n+ 1)2,

two triangles + diagonal = square.

Now we can subtract n + 1 from each side and divide by 2 to get Gauss’s
formula.

Twin Primes. In the list of primes it is sometimes true that consecutive odd numbers
are both prime. We have boxed these twin primes in the following list of primes
less than 100:

3 , 5 , 7 , 11 , 13 , 17 , 19 , 23, 29 , 31 , 37

41 , 43 , 47, 53, 59 , 61 , 67, 71 , 73 , 79, 83, 89, 97.

Are there infinitely many twin primes? That is, are there infinitely many prime
numbers p such that p+2 is also a prime? At present, no one knows the answer
to this question.

Primes of the Form N2 + 1. If we list the numbers of the form N2 + 1 taking
N = 1, 2, 3, . . ., we find that some of them are prime. Of course, if N is
odd, then N2 + 1 is even, so it won’t be prime unless N = 1. So it’s really
only interesting to take even values of N . We’ve highlighted the primes in the
following list:
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1.2. Square Numbers and Triangle Numbers 5

22 + 1 = 5 42 + 1 = 17 62 + 1 = 37 82 + 1 = 65 = 5 · 13
102 + 1 = 101 122 + 1 = 145 = 5 · 29 142 + 1 = 197

162 + 1 = 257 182 + 1 = 325 = 52 · 13 202 + 1 = 401.

It looks like there are quite a few prime values, but if you take larger values
of N you will find that they become much rarer. So we ask whether there are
infinitely many primes of the formN2 + 1. Again, no one presently knows the
answer to this question.

We have now seen some of the types of questions that are studied in the Theory
of Numbers. How does one attempt to answer these questions? The answer is that
Number Theory is partly experimental and partly theoretical. The experimental part
normally comes first; it leads to questions and suggests ways to answer them. The
theoretical part follows; in this part one tries to devise an argument that gives a
conclusive answer to the questions. In summary, here are the steps to follow:

1. Accumulate data, usually numerical, but sometimes more abstract in nature.
2. Examine the data and try to find patterns and relationships.
3. Formulate conjectures (i.e., guesses) that explain the patterns and relation-

ships. These are frequently given by formulas.
4. Test your conjectures by collecting additional data and checking whether the

new information fits your conjectures.
5. Devise an argument (i.e., a proof) that your conjectures are correct.

All five steps are important in number theory and in mathematics. More gener-
ally, the scientific method always involves at least the first four steps. Be wary of
any purported “scientist” who claims to have “proved” something using only the
first three. Given any collection of data, it’s generally not too difficult to devise nu-
merous explanations. The true test of a scientific theory is its ability to predict the
outcome of experiments that have not yet taken place. In other words, a scientific
theory only becomes plausible when it has been tested against new data. This is true
of all real science. In mathematics one requires the further step of a proof, that is, a
logical sequence of assertions, starting from known facts and ending at the desired
statement.

1.2 Square Numbers and Triangle Numbers
Some numbers are “shapely” in that they can be laid out in some sort of regular
shape. For example, a square number n2 can be arranged in the shape of an n-by-
n square. Similarly, a triangular number is a number that can be arranged in the
shape of a triangle. Figure 1.1 on page 3 illustrates the first few triangular and square
numbers (other than 1). Triangular numbers are formed by adding
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6 1. Number Theory — Lecture #1

1 + 2 + 3 + · · ·+m

for different values of m, and we already found a formula for the mth triangular
number,

1 + 2 + 3 + · · ·+m =
m(m+ 1)

2
.

Here’s a list of the first few triangular and square numbers.

Triangular Numbers 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105

Square Numbers 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169

We earlier posed the problem of trying to

“Square the Triangle”

In other words,can we find square numbers that are also triangular numbers. Even
our short list reveals two examples, 1 (which isn’t very interesting) and 36. This
means that 36 pebbles can be arranged in the shape of a 6-by-6 square, and they can
also be arranged in the shape of a triangle with 8 rows. A further search reveals some
additional examples of square–triangular numbers, and we might ask how many there
are. How might we find all of them?

Triangular numbers look like m(m+ 1)/2 and square numbers look like n2, so
square–triangular numbers come from solutions to the equation

n2 =
m(m+ 1)

2

with positive integers n and m. If we multiply both sides by 8, we get

8n2 = 4m2 + 4m. (1.2)

Do you remember the process of “completing the square” that is used to derive the
quadratic formula? We’re going to use that on the right-hand side of our equation.
What number do we have to add to 4m2 + 4m to make it a perfect square? Well,
4m2 + 4m looks a lot like (2m+ 1)2, so adding 1 to both sides of (1.2) gives

8n2 + 1 = 4m2 + 4m+ 1 = (2m+ 1)2.

Since 8n2 = 2(2n)2, this suggests that we make the substitution

x = 2m+ 1 and y = 2n,

which gives the equation
2y2 + 1 = x2.

It is convenient to rearrange this into the form

x2 − 2y2 = 1. (1.3)
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1.2. Square Numbers and Triangle Numbers 7

To recapitulate, positive integer solutions (x, y) to the equation (1.3) give square–
triangular numbers by taking1

m =
x− 1

2
and n =

y

2
.

By trial and error we notice one solution, (x, y) = (3, 2), which gives the square–
triangular number 1 coming from (m,n) = (1, 1). With a little more experimenta-
tion, or using the fact that we know that 36 is square–triangular, we find another
solution (x, y) = (17, 12) corresponding to (m,n) = (8, 6). Using a computer,
we can search for more solutions by substituting y = 1, 2, 3, . . . and checking if
1 + 2y2 is a square. The next solution found is (x, y) = (99, 70), which gives us
a new square–triangular number with (m,n) = (49, 35). In other words, 1225 is a
square–triangular number, since

352 = 1225 = 1 + 2 + 3 + · · ·+ 48 + 49.

1.2.1 Solving x2 − 2y2 = 1 by Factorization [Supplement]
What tools can we use to solve the equation

x2 − 2y2 = 1?

Here is an idea based on factorization. Unfortunately, x2 − 2y2 does not factor if we
stay within the realm of whole numbers; but if we expand our horizons a little, it
does factor as

x2 − 2y2 =
(
x+ y

√
2
)(

x− y
√
2
)
.

For example, our solution (x, y) = (3, 2) can be written as

1 = 32 − 2 · 22 =
(
3 + 2

√
2
)(

3− 2
√
2
)
.

Now see what happens if we square the left-hand and right-hand sides of this
equation.

1 = 12 =
(
3 + 2

√
2
)2 (

3− 2
√
2
)2

=
(
17 + 12

√
2
)(

17− 12
√
2
)

= 172 − 2 · 122

So by “squaring” the solution (x, y) = (3, 2), we have constructed the next solution
(x, y) = (17, 12).

This process can be repeated to find more solutions. Thus, cubing the (x, y) =
(3, 2) solution gives

1Wait, you may object, if y is odd or x is even, then m or n won’t be an integer. However, it turns out
that this cannot happen, a fact that you will verify in Exercise 1.6.
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8 1. Number Theory — Lecture #1

1 = 13 =
(
3 + 2

√
2
)3 (

3− 2
√
2
)3

=
(
99 + 70

√
2
)(

99− 70
√
2
)

= 992 − 2 · 702,

and taking the fourth power gives

1 = 14 =
(
3 + 2

√
2
)4 (

3− 2
√
2
)4

=
(
577 + 408

√
2
)(

577− 408
√
2
)

= 5772 − 2 · 4082.

Notice that the fourth power gives us a new square–triangular number, (m,n) =
(288, 204). When doing computations of this sort, it’s not necessary to raise the
original solution to a large power. Instead, we can just multiply the original solution
by the current one to get the next one. Thus, to find the fifth-power solution, we
multiply the original solution 3 + 2

√
2 by the fourth-power solution 577 + 408

√
2.

This gives (
3 + 2

√
2
)(

577 + 408
√
2
)
= 3363 + 2378

√
2,

and from this we read off the fifth-power solution (x, y) = (3363, 2378). Continuing
in this fashion, we can construct a list of square–triangular numbers.

x y m =
x− 1

2
n =

y

2
n2 =

m(m+ 1)

2

3 2 1 1 1
17 12 8 6 36
99 70 49 35 1225

577 408 288 204 41616
3363 2378 1681 1189 1413721

19601 13860 9800 6930 48024900
114243 80782 57121 40391 1631432881
665857 470832 332928 235416 55420693056

As you see, these square–triangular numbers get quite large.
By raising 3 + 2

√
2 to higher and higher powers, we can find more and more

solutions to the equation
x2 − 2y2 = 1,

which gives us an inexhaustable supply of square–triangular numbers. We have
proven:

Theorem 1.1. There are infinitely many square–triangular numbers.
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1.2. Square Numbers and Triangle Numbers 9

This answers our original question, but raises a new question.2 Do we get all
square-triangular nubmers by taking powers of 3 + 2

√
2. The answer is yes.

Theorem 1.2 (Square–Triangular Number Theorem). (a) Every solution in positive
integers to the equation

x2 − 2y2 = 1

is obtained by raising 3 + 2
√
2 to powers. That is, the solutions (xk, yk) can all be

found by multiplying out

xk + yk
√
2 =

(
3 + 2

√
2
)k

for k = 1, 2, 3, . . . .

(b) Every square–triangular number n2 = 1
2m(m+ 1) is given by

m =
xk − 1

2
n =

yk
2

for k = 1, 2, 3, . . . ,

where the (xk, yk)’s are the solutions from (a).

Proof. Unforutnately, we won’t have time to do the proof, which is fairly intricate.
But if you’re interested, you can find a proof in most elementary nubmer theory
textbooks of a more general result for the equation x2 − Dy2 = 1, which is called
Pell’s equation.

1.2.2 How Big are Square-Triangular Numbers? [Supplement]
The Square–Triangular Number Theorem says that every solution (xk, yk) in posi-
tive integers to the equation

x2 − 2y2 = 1

can be obtained by multiplying out

xk + yk
√
2 =

(
3 + 2

√
2
)k

for k = 1, 2, 3, . . . .

The table at the beginning of this chapter makes it clear that the size of the solutions
grows very rapidly as k increases. We’d like to get a more precise idea of just how
large the kth solution is. To do this, we note that the preceding formula is still correct
if we replace

√
2 by −

√
2. In other words, it’s also true that

xk − yk
√
2 =

(
3− 2

√
2
)k

for k = 1, 2, 3, . . . .

Now if we add these two formulas together and divide by 2, we obtain a formula
for xk:

xk =

(
3 + 2

√
2
)k

+
(
3− 2

√
2
)k

2
.

2That’s a hallmark of good mathematics: Solving the original problems raises new, and often even
more interesting, problems to investigate!
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10 Exercises

Similarly, if we subtract the second formula from the first and divide by 2
√
2, we get

a formula for yk:

yk =

(
3 + 2

√
2
)k − (3− 2

√
2
)k

2
√
2

.

These formulas for xk and yk are useful because

3 + 2
√
2 ≈ 5.82843 and 3− 2

√
2 ≈ 0.17157.

The fact that 3 − 2
√
2 is less than 1 means that when we take a large power of

3− 2
√
2, we’ll get a very tiny number. For example,(

3− 2
√
2
)10
≈ 0.0000000221,

so

x10 ≈
(
3 + 2

√
2
)10

2
≈ 22619536.99999998895 and

y10 ≈
(
3 + 2

√
2
)10

2
√
2

≈ 15994428.000000007815.

But we know that x10 and y10 are integers, so the 10th solution is

(x10, y10) = (22619537, 15994428).

Using this we find that the 10th square–triangular number n2 = m(m+ 1)/2 is given
by

n = 7997214 and m = 11309768.

It’s also apparent from the formulas for xk and yk why the solutions grow so
rapidly, since

xk ≈
1

2
(5.82843)k and yk ≈

1

2
√
2
(5.82843)k.

Thus, each successive solution is more than five times as large as the previous one.
Mathematically, we say that the size of the solutions grows exponentially. Later we’ll
see a similar growth rate for the Fibonacci sequence.

Exercises
1.1. Try adding up the first few odd numbers and see if the numbers you get satisfy some sort
of pattern. Once you find the pattern, express it as a formula. Give a geometric verification
that your formula is correct.

1.2. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many such
“prime triplets”? That is, are there infinitely many prime numbers p such that p+ 2 and p+ 4
are also primes?
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Exercises 11

1.3. It is generally believed that infinitely many primes have the form N2 + 1, although no
one knows for sure.

(a) Do you think that there are infinitely many primes of the form N2 − 1?
(b) Do you think that there are infinitely many primes of the form N2 − 2?
(c) How about of the form N2 − 3? How about N2 − 4?
(d) Which values of a do you think give infinitely many primes of the form N2 − a?

1.4. The following two lines indicate another way to derive the formula for the sum of the
first n integers by rearranging the terms in the sum. Fill in the details.

1 + 2 + 3 + · · ·+ n = (1 + n) +
(
2 + (n− 1)

)
+
(
3 + (n− 2)

)
+ · · ·

= (1 + n) + (1 + n) + (1 + n) + · · · .

How many copies of n+1 are in there in the second line? You may need to consider the cases
of odd n and even n separately. If that’s not clear, first try writing it out explicitly for n = 6
and n = 7.

1.5. For each of the following statements, fill in the blank with an easy-to-check criterion:
(a) M is a triangular number if and only if is an odd square.
(b) N is an odd square if and only if is a triangular number.
(c) Prove that your criteria in (a) and (b) are correct.

1.6. Suppose that x and y are integers that satisfy the equation

x2 − 2y2 = 1.

Prove that x must be odd and that y must be even.

1.7. Find four solutions in positive integers to the equation

x2 − 5y2 = 1.

[Hint. Use trial and error to find a small solution (a, b) and then take powers of a+ b
√
5.]

1.8. (a) In this problem we investigate which numbers can be written as a sum of two trian-
gular numbers. It is convenient to allow 0 to be triangular number, so for example 3, 7,
and 20 are each sums of two triangular numbers, since

3 = 0 + 3, 7 = 1 + 6, and 20 = 10 + 10.

On the other hand, 19 is not a sum of two triangular numbers. Make a table of the
numbers from 1 to 30 and determine which of them can be written as a sum of two
triangular numbers

(b) Fill in the blank with a formula involvingB and then prove that your statement is correct:

B is a sum of two triangular numbers if and only if is a sum of two squares.

(c) Compile some data and make a conjecture about which numbers can be written as sums
of three triangular numbers?

1.9. A number n is called a pentagonal number if n pebbles can be arranged in the shape of
a (filled in) pentagon. The first four pentagonal numbers are 1, 5, 12, and 22, as illustrated in
Figure 1.3. You should visualize each pentagon as sitting inside the next larger pentagon. The
nth pentagonal number is formed using an outer pentagon whose sides have n pebbles.
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1 5 12 22

Figure 1.3: The First Four Pentagonal Numbers

(a) Draw a picture for the fifth pentagonal number.
(b) Figure out the pattern and find a simple formula for the nth pentagonal number.
(c) What is the 10th pentagonal number? What is the 100th pentagonal number?

1.10. (a) Bonus Problem: Let (xk, yk) for k = 0, 1, 2, 3, . . . be the solutions to x2−2y2 = 1
described in Theorem 1.2. Fill in the blanks with positive numbers such that the following
formulas are true. Then prove that the formulas are correct.

xk+1 = xk + yk and yk+1 = xk + yk.

(b) Fill in the blanks with positive numbers such that the following statement is true: If
(m,n) gives a square–triangular number, that is, if the pair (m,n) satisfies the formula
n2 = m(m+ 1)/2, then

(1 + m+ n, 1 + m+ n)

also gives a square–triangular number.
(c) If L is a square–triangular number, explain why 1 + 17L+ 6

√
L+ 8L2 is the next

largest square–triangular number.
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Chapter 2

Number Theory — Lecture #2

2.1 Pythagorean Triples
The Pythagorean Theorem, that formula loved (or loathed?) by all high school geom-
etry students, says that the sum of the squares of the sides of a right triangle equals
the square of the hypotenuse. In symbols,

a

b
c

a2 + b2 = c2

Figure 2.1: A Pythagorean Triangle

Since we’re interested in number theory, that is, the theory of the whole numbers,
we will ask whether there are any Pythagorean triangles all of whose sides are posi-
tive intgers. There are many such triangles, the most famous being 3, 4, and 5. Here
are the first few examples:

32 + 42 = 52 52 + 122 = 132 82 + 152 = 172 282 + 452 = 532

The study of these Pythagorean triples began long before the time of Pythago-
ras. There are Babylonian tablets that contain lists of parts of such triples, including
quite large ones, indicating that the Babylonians probably had a systematic method

Draft: January 2, 2020 13 c©2018, J. Silverman



14 2. Number Theory — Lecture #2

for producing them. Even more amazing is the fact that the Babylonians may have
used their lists of Pythagorean triples as primitive trigonometric tables. Pythagorean
triples were also used in ancient Egypt. For example, a rough-and-ready way to pro-
duce a right angle is to take a piece of string, mark it into 12 equal segments, tie it
into a loop, and hold it taut in the form of a 3-4-5 triangle, as illustrated in Figure 2.2.
This provides an inexpensive right angle tool for use on small construction projects,
such as marking property boundaries or building pyramids.

String pulled tautString with 12 knots

Figure 2.2: Using a knotted string to create a right triangle

The Babylonians and Egyptians had practical reasons for studying Pythagorean
triples. Do such practical reasons still exist? For this particular problem, the answer
is “probably not.” However, there is at least one good reason to study Pythagorean
triples, and it’s the same reason why it is worthwhile studying the art of Rembrandt
and the music of Beethoven. There is a beauty to the ways in which numbers interact
with one another, just as there is a beauty in the composition of a painting or a
symphony. To appreciate this beauty, one has to be willing to expend a certain amount
of mental energy. But the end result is well worth the effort. Our goal is to understand
and appreciate some truly beautiful mathematics, to learn how this mathematics was
discovered and proved, and maybe even to make some original contributions of our
own.

Enough blathering, you are undoubtedly thinking. Let’s get to the real stuff. Our
first naive question is whether there are infinitely many Pythagorean triples, that is,
triples of natural numbers (a, b, c) satisfying the equation a2 + b2 = c2. The answer
is “YES” for a very silly reason. If we take a Pythagorean triple (a, b, c) and multiply
it by some other number d, then we obtain a new Pythagorean triple (da, db, dc). This
is true because

(da)2 + (db)2 = d2(a2 + b2) = d2c2 = (dc)2.

Clearly these new Pythagorean triples are not very interesting. So we will concentrate
our attention on triples with no common factors. We will even give them a name:

A primitive Pythagorean triple (or PPT for short) is a triple of num-
bers (a, b, c) such that a, b, and c have no common factors1 and sat-
isfy

1A common factor of a, b, and c is a number d such that each of a, b, and c is a multiple of d . For
example, 3 is a common factor of 30, 42, and 105, since 30 = 3 · 10, 42 = 3 · 14, and 105 = 3 · 35, and
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2.1. Pythagorean Triples 15

a2 + b2 = c2.

Recall our checklist from the end of Section 1.1. The first step is to accumulate
some data. I used a computer to substitute in values for a and b and checked if a2 + b2

is a square. Here are some primitive Pythagorean triples that I found:

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25),
(20, 21, 29), (9, 40, 41), (12, 35, 37), (11, 60, 61),
(28, 45, 53), (33, 56, 65), (16, 63, 65).

A few conclusions can easily be drawn even from such a short list. For example, it
certainly looks like one of a and b is odd and the other even. It also seems that c is
always odd.

It’s not hard to prove that these conjectures are correct. First, if a and b are both
even, then c would also be even. This means that a, b, and c would have a common
factor of 2, so the triple would not be primitive. Next, suppose that a and b are
both odd, which means that c would have to be even. This means that there are
numbers x, y, and z such that

a = 2x+ 1, b = 2y + 1, and c = 2z.

We can substitute these into the equation a2 + b2 = c2 to get

(2x+ 1)2 + (2y + 1)2 = (2z)2,

4x2 + 4x+ 4y2 + 4y + 2 = 4z2.

Now divide by 2,
2x2 + 2x+ 2y2 + 2y + 1 = 2z2.

This last equation says that the odd number on the left is equal to the even number
on the right, which is impossible, so a and b cannot both be odd. Since we’ve also
checked that they cannot both be even and cannot both be odd, it must be true that
one is even and the other is odd. It’s then obvious from the equation a2 + b2 = c2

that c is also odd.
We can always switch a and b, so our problem now is to find all solutions in

natural numbers to the equation

a2 + b2 = c2 with

{
a odd,
b even,
a, b, c have no common factors.

The tools that we use are factorization and divisibility.
Our first observation is that if (a, b, c) is a primitive Pythagorean triple, then we

can factor

indeed it is their largest common factor. On the other hand, the numbers 10, 12, and 15 have no common
factor (other than 1). Since our current goal is to explore some interesting and beautiful number theory
without getting bogged down in formalities, we will use common factors and divisibility informally and
trust our intuition. Later we will return to these questions and develop the theory of divisibility more
carefully.
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16 2. Number Theory — Lecture #2

a2 = c2 − b2 = (c− b)(c+ b).

Here are a few examples from the list given earlier, where note that we always take a
to be odd and b to be even:

32 = 52 − 42 = (5− 4)(5 + 4) = 1 · 9,
152 = 172 − 82 = (17− 8)(17 + 8) = 9 · 25,
352 = 372 − 122 = (37− 12)(37 + 12) = 25 · 49,
332 = 652 − 562 = (65− 56)(65 + 56) = 9 · 121.

It looks like c−b and c+b are themselves always squares. We check this observation
with a couple more examples:

212 = 292 − 202 = (29− 20)(29 + 20) = 9 · 49,
632 = 652 − 162 = (65− 16)(65 + 16) = 49 · 81.

How can we prove that c− b and c+ b are squares? Another observation ap-
parent from our list of examples is that c− b and c+ b seem to have no common
factors. We can prove this last assertion as follows. Suppose that d is a common
factor of c− b and c+ b; that is, d divides both c− b and c+ b. Then d also divides

(c+ b) + (c− b) = 2c and (c+ b)− (c− b) = 2b.

Thus, d divides 2b and 2c. But b and c have no common factor because we are as-
suming that (a, b, c) is a primitive Pythagorean triple. So d must equal 1 or 2. But d
also divides (c− b)(c+ b) = a2, and a is odd, so d must be 1. In other words, the
only number dividing both c− b and c+ b is 1, so c− b and c+ b have no common
factor.

We now know that c− b and c+ b are positive integers having no common factor,
that their product is a square since (c− b)(c+ b) = a2. The only way that this can
happen is if c− b and c+ b are themselves squares.2 So we can write

c+ b = s2 and c− b = t2,

where s > t ≥ 1 are odd integers with no common factors. Solving these two
equations for b and c yields

c =
s2 + t2

2
and b =

s2 − t2

2
,

and then
a =

√
(c− b)(c+ b) =

√
t2 · s2 = st.

We have (almost) finished our first serious proof! The following theorem records
our accomplishment.

2This is intuitively clear if you consider the factorization of c− b and c+ b into primes, since the
primes in the factorization of c− b will be distinct from the primes in the factorization of c+ b. However,
the existence and uniqueness of the factorization into primes is by no means as obvious as it appears. Later
we will prove this unique factorization property.
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2.1. Pythagorean Triples 17

Theorem 2.1 (Pythagorean Triples Theorem). We can find every primitive Pythagorean
triple (a, b, c) with a odd and b even by using the formulas

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t ≥ 1 are chosen to be any odd integers with no common factors.

Why did we say that we have “almost” finished the proof? We have shown that if
(a, b, c) is a PPT with a odd, then there are odd integers s > t ≥ 1 with no common
factors so that a, b, and c are given by the stated formulas. But we still need to check
that these formulas always give a PPT. We first use a little bit of algebra to show that
the formulas give a Pythagorean triple. Thus

(st)2+

(
s2 − t2

2

)2

= s2t2+
s4 − 2s2t2 + t4

4
=
s4 + 2s2t2 + t4

4
=

(
s2 + t2

2

)2

.

We also need to check that st, s2−t2
2 , and s2+t2

2 have no common factors. This re-
quires a fact about prime numbers that we don’t yet know, so we postpone the proof
until later, where you will get to finish the argument in Exercise 4.3.

For example, taking t = 1 in Theorem 2.1 gives a triple
(
s, s

2−1
2 , s

2+1
2

)
whose b

and c entries differ by 1. This explains many of the examples that we listed. Table 2.1
gives all possible triples with s ≤ 9.

s t a = st b =
s2 − t2

2
c =

s2 + t2

2

3 1 3 4 5
5 1 5 12 13
7 1 7 24 25
9 1 9 40 41
5 3 15 8 17
7 3 21 20 29
7 5 35 12 37
9 5 45 28 53
9 7 63 16 65

Table 2.1: Primitive Pythagorean Triples with 9 ≥ s > t

A Notational Interlude
Mathematicians have created certain standard notation as a shorthand for various
quantities. We will keep our use of such notation to a minimum, but there are a
few symbols that are so commonly used and are so useful that it is worthwhile to
introduce them here. They are
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18 2. Number Theory — Lecture #2

N = the set of natural numbers = 1, 2, 3, 4, . . . ,

Z = the set of integers = . . .− 3,−2,−1, 0, 1, 2, 3, . . . ,
Q = the set of rational numbers (i.e., fractions).

In addition, mathematicians often use R to denote the real numbers and C for the
complex numbers, but we will not need these. Why were these letters chosen? The
choice of N, R, and C needs no explanation. The letter Z for the set of integers comes
from the German word “Zahlen,” which means numbers. Similarly, Q comes from
the German “Quotient” (which is the same as the English word). We will also use the
standard mathematical symbol ∈ to mean “is an element of the set.” So, for example,
a ∈ N means that a is a natural number, and x ∈ Q means that x is a rational number.

2.2 Pythagorean Triples and the Unit Circle
In the previous section we described all solutions to

a2 + b2 = c2

in whole numbers a, b, c. If we divide this equation by c2, we obtain

(a
c

)2
+

(
b

c

)2

= 1.

So the pair of rational numbers (a/c, b/c) is a solution to the equation

x2 + y2 = 1.

Everyone knows what the equation x2 + y2 = 1 looks like: It is a circle C
of radius 1 with center at (0, 0). We are going to use the geometry of the circle C
to find all the points on C whose xy-coordinates are rational numbers. Notice that
the circle has four obvious points with rational coordinates, (±1, 0) and (0,±1).
Suppose that we take any (rational) number m and look at the line L going through
the point (−1, 0) and having slope m, as illustrated in Figure 2.3. The line L is given
by the equation

L : y = m(x+ 1) (point–slope formula).

It is clear from the picture that the intersection C ∩ L consists of exactly two points,
and one of those points is (−1, 0). We want to find the other one.

To find the intersection of C and L, we need to solve the equations

x2 + y2 = 1 and y = m(x+ 1)

for x and y. Substituting the second equation into the first and simplifying, we need
to solve
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2.2. Pythagorean Triples and the Unit Circle 19

(−1, 0)

C = circle of radius 1

L = line with slope m

Figure 2.3: The Intersection of a Circle and a Line

x2 +
(
m(x+ 1)

)2
= 1

x2 +m2(x2 + 2x+ 1) = 1

(m2 + 1)x2 + 2m2x+ (m2 − 1) = 0.

This is just a quadratic equation, so we could use the quadratic formula to solve for x.
But there is a much easier way to find the solution. We know that x = −1 must be a
solution, since the point (−1, 0) is on both C and L. This means that we can divide
the quadratic polynomial by x+ 1 to find the other root:

(m2 + 1)x+ (m2 − 1)

x+ 1
)
(m2 + 1)x2 + 2m2x+ (m2 − 1) .

So the other root is the solution of (m2+1)x+(m2− 1) = 0, which means that

x =
1−m2

1 +m2
.

Then we substitute this value of x into the equation y = m(x+ 1) of the line L to
find the y-coordinate,

y = m(x+ 1) = m

(
1−m2

1 +m2
+ 1

)
=

2m

1 +m2
.

Thus, for every rational number m we get a solution in rational numbers(
1−m2

1 +m2
,

2m

1 +m2

)
to the equation x2 + y2 = 1.

On the other hand, if we have a solution (x1, y1) in rational numbers, then the
slope of the line through (x1, y1) and (−1, 0) will be a rational number. So by taking
all possible values for m, the process we have described will yield every solution to
x2 + y2 = 1 in rational numbers [except for (−1, 0), which corresponds to a vertical
line having slope “m =∞”]. We summarize our results in the following theorem.
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Theorem 2.2. Every point on the circle

x2 + y2 = 1

whose coordinates are rational numbers can be obtained from the formula

(x, y) =

(
1−m2

1 +m2
,

2m

1 +m2

)
by substituting in rational numbers for m.3

How is this formula for rational points on a circle related to our formula for
Pythagorean triples? If we write the rational number m as a fraction v/u, then our
formula becomes

(x, y) =

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)
,

and clearing denominators gives the Pythagorean triple

(a, b, c) = (u2 − v2, 2uv, u2 + v2).

This is another way of describing Pythagorean triples, although to describe only
the primitive ones would require some restrictions on u and v. You can relate this
description to the formula in Theorem 2.1 by setting

u =
s+ t

2
and v =

s− t
2

.

Exercises
2.1. (a) We showed that in any primitive Pythagorean triple (a, b, c), either a or b is even.

Use the same sort of argument to show that either a or b must be a multiple of 3.
(b) By examining the primitive Pythagorean triples in Table 2.1, make a guess about

when a, b, or c is a multiple of 5. Try to show that your guess is correct.

2.2. A nonzero integer d is said to divide an integer m if m = dk for some number k. Show
that if d divides both m and n, then d also divides m− n and m+ n.

2.3. For each of the following questions, begin by compiling some data; next examine the
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But
don’t worry if you can’t solve every part of this problem; some parts are quite difficult.)

(a) Which odd numbers a can appear in a primitive Pythagorean triple (a, b, c)?
(b) Which even numbers b can appear in a primitive Pythagorean triple (a, b, c)?
(c) Which numbers c can appear in a primitive Pythagorean triple (a, b, c)?

3We’ve cheated a little bit. In order to get the point (−1, 0), we need to take the limiting value as
m→∞
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2.4. Our list of examples includes the two primitive Pythagorean triples

332 + 562 = 652 and 162 + 632 = 652.

Find at least one more example of two primitive Pythagorean triples with the same value of c.
Can you find three primitive Pythagorean triples with the same c? Can you find more than
three?

2.5. We recall that the nth triangular number Tn is given by the formula

Tn = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

The first few triangular numbers are 1, 3, 6, and 10. In the list of the first few Pythagorean
triples (a, b, c), we find (3, 4, 5), (5, 12, 13), (7, 24, 25), and (9, 40, 41). Notice that in each
case, the value of b is four times a triangular number.

(a) Find a primitive Pythagorean triple (a, b, c) with b = 4T5. Do the same for b = 4T6 and
for b = 4T7.

(b) Do you think that for every triangular number Tn, there is a primitive Pythagorean
triple (a, b, c) with b = 4Tn? If you believe that this is true, then prove it. Otherwise,
find some triangular number for which it is not true.

2.6. If you look at a list of primitive Pythagorean triples such as Table 2.1, you will see many
triples in which c is 2 greater than a. For example, the triples

(3, 4, 5), (15, 8, 17), (35, 12, 37), and (63, 16, 65)

all have this property.
(a) Find two more primitive Pythagorean triples (a, b, c) having c = a+ 2.
(b) Find a primitive Pythagorean triple (a, b, c) having c = a+ 2 and c > 1000.
(c) Try to find a formula that describes all primitive Pythagorean triples (a, b, c) having

c = a+ 2.

2.7. For each primitive Pythagorean triple (a, b, c) in Table 2.1, compute the quantity 2c−2a.
Do these values seem to have some special form? Try to prove that your observation is true
for all primitive Pythagorean triples.

2.8. Letm and n be numbers that differ by 2, and write the sum 1
m
+ 1
n

as a fraction in lowest
terms. For example, 1

2
+ 1

4
= 3

4
and 1

3
+ 1

5
= 8

15
.

(a) Compute the next three examples.
(b) Examine the numerators and denominators of the fractions in (a) and compare them with

the Pythagorean triples in Table 2.1. Formulate a conjecture about such fractions.
(c) Prove that your conjecture is correct.

2.9. (a) Read about the Babylonian number system and write a short description, including
the symbols for the numbers 1 to 10 and the multiples of 10 from 20 to 50.

(b) Read about the Babylonian tablet called Plimpton 322 and write a brief report, including
its approximate date of origin.

(c) The second and third columns of Plimpton 322 give pairs of integers (a, c) having the
property that c2 − a2 is a perfect square. Convert some of these pairs from Babylonian
numbers to decimal numbers and compute the value of b so that (a, b, c) is a Pythagorean
triple.
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2.10. As we have just seen, we get every Pythagorean triple (a, b, c) with b even from the
formula

(a, b, c) = (u2 − v2, 2uv, u2 + v2)

by substituting in different integers for u and v. For example, (u, v) = (2, 1) gives the smallest
triple (3, 4, 5).

(a) If u and v have a common factor, explain why (a, b, c) will not be a primitive Pythagorean
triple.

(b) Find an example of integers u > v > 0 that do not have a common factor, yet the
Pythagorean triple (u2 − v2, 2uv, u2 + v2) is not primitive.

(c) Make a table of the Pythagorean triples that arise when you substitute in all values of u
and v with 1 ≤ v < u ≤ 10.

(d) Using your table from (c), find some simple conditions on u and v that ensure that the
Pythagorean triple (u2 − v2, 2uv, u2 + v2) is primitive.

(e) Prove that your conditions in (d) really work.

2.11. (a) Use the lines through the point (1, 1) to describe all the points on the circle

x2 + y2 = 2

whose coordinates are rational numbers.
(b) What goes wrong if you try to apply the same procedure to find all the points on the

circle x2 + y2 = 3 with rational coordinates?

2.12. Find a formula for all the points on the hyperbola

x2 − y2 = 1

whose coordinates are rational numbers. [Hint. Take the line through the point (−1, 0) having
rational slopem and find a formula in terms ofm for the second point where the line intersects
the hyperbola.]

2.13. The curve
y2 = x3 + 8

contains the points (1,−3) and (−7/4, 13/8). The line through these two points intersects the
curve in exactly one other point. Find this third point. Can you explain why the coordinates of
this third point are rational numbers?

2.14. In Section 1.2 we saw that square-triangular numbers have the form m2 = 1
2
(n2 + n),

and that we can find all of them by solving the equation

x2 − 2y2 = 1

and setting m = 1
2
(x− 1) and n = 1

2
y.

(a) The curve x2−2y2 = 1 includes the point (1, 0). Let L be the line through (1, 0) having
slope m. Find the other point where L intersects the curve.

(b) Suppose that you take m to equal m = v/u, where (u, v) is a solution to u2− 2v2 = 1.
Show that the other point that you found in (b) has integer coordinates. Further, changing
the signs of the coordinates if necessary, show that you get a solution to x2 − 2y2 = 1
in positive integers.

(c) Starting with the solution (3, 2) to x2 − 2y2 = 1, apply (b) and (c) repeatedly to find
several more solutions to x2 − 2y2 = 1. Then use those solutions to find additional
examples of square–triangular numbers.

(d) Prove that this procedure leads to infinitely many different square-triangular numbers.
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Chapter 3

Number Theory — Lecture #3

3.1 Divisibility and the Greatest Common Divisor
As we have already seen in our study of Pythagorean triples, the notions of divisi-
bility and factorizations are important tools in number theory. In this chapter we will
look at these ideas more closely.

Suppose that m and n are integers with m 6= 0. We say that m divides n if n is a
multiple of m, that is, if there is an integer k such that n = mk. If m divides n, we
write m|n. Similarly, if m does not divide n, then we write m - n. For example,

3|6 and 12|132, since 6 = 3 · 2 and 132 = 12 · 11.

The divisors of 6 are 1, 2, 3, and 6. On the other hand, 5 - 7, since no integer multiple
of 5 is equal to 7. A number that divides n is called a divisor of n.

If we are given two numbers, we can look for common divisors, that is, numbers
that divide both of them. For example, 4 is a common divisor of 12 and 20, since
4|12 and 4|20. Notice that 4 is the largest common divisor of 12 and 20. Similarly, 3
is a common divisor of 18 and 30, but it is not the largest, since 6 is also a com-
mon divisor. The largest common divisor of two numbers is an extremely important
quantity that will frequently appear during our number theoretic excursions.

The greatest common divisor of two numbers a and b (not both zero) is
the largest number that divides both of them. It is denoted by gcd(a, b).
If gcd(a, b) = 1, we say that a and b are relatively prime.

Two examples that we mentioned above are

gcd(12, 20) = 4 and gcd(18, 30) = 6.

Another example is
gcd(225, 120) = 15.
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We can check that this answer is correct by factoring 225 = 32 ·52 and 120 = 23 ·3·5,
but, in general, factoring a and b is not an efficient way to compute their greatest
common divisor.1

The most efficient method known for finding the greatest common divisors of
two numbers is called the Euclidean algorithm. It consists of doing a sequence
of divisions with remainder until the remainder is zero. We will illustrate with two
examples before describing the general method.

As our first example, we will compute gcd(36, 132). The first step is to divide 132
by 36, which gives a quotient of 3 and a remainder of 24. We write this as

132 = 3× 36 + 24.

The next step is to take 36 and divide it by the remainder 24 from the previous step.
This gives

36 = 1× 24 + 12.

Next we divide 24 by 12, and we find a remainder of 0,

24 = 2× 12 + 0.

The Euclidean algorithm says that as soon as you get a remainder of 0, the remainder
from the previous step is the greatest common divisor of the original two numbers.
So in this case we find that gcd(132, 36) = 12.

Let’s do a larger example. We will compute

gcd(1160718174, 316258250).

Our reason for doing a large example like this is to help convince you that the Eu-
clidean algorithm gives a far more efficient way to compute gcd’s than factorization.
We begin by dividing 1160718174 by 316258250, which gives 3 with a remainder
of 211943424. Next we take 316258250 and divide it by 211943424. This process
continues until we get a remainder of 0. The calculations are given in the following
table:

1160718174 = 3× 316258250 + 211943424
316258250 = 1× 211943424 + 104314826
211943424 = 2× 104314826 + 3313772
104314826 = 31× 3313772 + 1587894

3313772 = 2× 1587894 + 137984
1587894 = 11× 137984 + 70070
137984 = 1× 70070 + 67914
70070 = 1× 67914 + 2156
67914 = 31× 2156 + 1078 ← gcd
2156 = 2× 1078 + 0

Notice how at each step we divide a number A by a number B to get a quotient Q
and a remainder R. In other words,

1An even less efficient way to compute the greatest common divisor of a and b is the method taught to
my daughter by her fourth grade teacher, who recommended that the students make complete lists of all
the divisors of a and b and then pick out the largest number that appears on both lists!
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A = Q×B +R.

Then at the next step we replace our old A and B with the numbers B and R and
continue the process until we get a remainder of 0. At that point, the remainder R
from the previous step is the greatest common divisor of our original two numbers.
So the above calculation shows that

gcd(1160718174, 316258250) = 1078.

We can partly check our calculation (always a good idea) by verifying that 1078 is
indeed a common divisor. Thus

1160718174 = 1078× 1076733 and 316258250 = 1078× 293375.

There is one more practical matter to be mentioned before we undertake a theo-
retical analysis of the Euclidean algorithm. If we are givenA andB, how can we find
the quotient Q and the remainder R? Of course, you can always use long division,
but that can be time consuming and subject to arithmetic errors if A and B are large.
A pleasant alternative is to find a calculator or computer program that will automat-
ically compute Q and R for you. However, even if you are only equipped with an
inexpensive calculator, there is an easy three-step method to find Q and R.

Method to Compute Q and R on a Calculator So That A = B ×Q+R

1. Use the calculator to divide A by B. You get a number with decimals.
2. Discard all the digits to the right of the decimal point. This gives Q.
3. To find R, use the formula R = A−B ×Q.

For example, suppose that A = 12345 and B = 417. Then A/B = 29.6043 . . . , so
Q = 29 and R = 12345− 417 · 29 = 252.

We’re now ready to analyze the Euclidean algorithm. The general method looks
like

a = q1 × b + r1
b = q2 × r1 + r2
r1 = q3 × r2 + r3
r2 = q4 × r3 + r4

...
rn−3 = qn−1 × rn−2 + rn−1
rn−2 = qn × rn−1 + rn ← gcd

rn−1 = qn+1rn + 0

If we let r0 = b and r−1 = a, then every line looks like

ri−1 = qi+1 × ri + ri+1.

Why is the last nonzero remainder rn a common divisor of a and b? We start
from the bottom and work our way up. The last line rn−1 = qn+1rn shows that rn
divides rn−1. Then the previous line
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rn−2 = qn × rn−1 + rn

shows that rn divides rn−2, since it divides both rn−1 and rn. Now looking at the line
above that, we already know that rn divides both rn−1 and rn−2, so we find that rn
also divides rn−3. Moving up line by line, when we reach the second line we will
already know that rn divides r2 and r1. Then the second line b = q2 × r1 + r2 tells
us that rn divides b. Finally, we move up to the top line and use the fact that rn divides
both r1 and b to conclude that rn also divides a. This completes our verification that
the last nonzero remainder rn is a common divisor of a and b.

But why is rn the greatest common divisor of a and b? Suppose that d is any
common divisor of a and b. We will work our way back down the list of equations.
So from the first equation a = q1 × b+ r1 and the fact that d divides both a and b,
we see that d also divides r1. Then the second equation b = q2r1 + r2 shows us
that d must divide r2. Continuing down line by line, at each stage we will know
that d divides the previous two remainders ri−1 and ri, and then the current line
ri−1 = qi+1 × ri + ri+1 will tell us that d also divides the next remainder ri+1.
Eventually, we reach the penultimate line rn−2 = qn × rn−1 + rn, at which point
we conclude that d divides rn. So we have shown that if d is any common divisor
of a and b then d will divide rn. Therefore, rn must be the greatest common divisor
of a and b.

This completes our verification that the Euclidean algorithm actually computes
the greatest common divisor, a fact of sufficient importance to be officially recorded.

Theorem 3.1 (Euclidean Algorithm). To compute the greatest common divisor of
two numbers a and b, let r−1 = a, let r0 = b, and compute successive quotients and
remainders

ri−1 = qi+1 × ri + ri+1

for i = 0, 1, 2, . . . until some remainder rn+1 is 0. The last nonzero remainder rn is
then the greatest common divisor of a and b.

There remains the question of why the Euclidean algorithm always finishes. In
other words, we know that the last nonzero remainder will be the desired gcd, but
how do we know that we ever get a remainder that does equal 0? This is not a silly
question, since it is easy to give algorithms that do not terminate; and there are even
very simple algorithms for which it is not known whether or not they always termi-
nate. Fortunately, it is easy to see that the Euclidean algorithm always terminates.
The reason is simple. Each time we compute a quotient with remainder,

A = Q×B +R,

the remainder will be between 0 and B − 1. This is clear, since if R ≥ B, then we
can add one more onto the quotient Q and subtract B from R. So the successive
remainders in the Euclidean algorithm continually decrease:

b = r0 > r1 > r2 > r3 > · · · .
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But all the remainders are greater than or equal to 0, so we have a strictly decreas-
ing sequence of nonnegative integers. Eventually, we must reach a remainder that
equals 0; in fact, it is clear that we will reach a remainder of 0 in at most b steps.
Fortunately, the Euclidean algorithm is far more efficient than this. You will show
in the exercises that the number of steps in the Euclidean algorithm is at most seven
times the number of digits in b. So, on a computer, it is quite feasible to compute
gcd(a, b) when a and b have hundreds or even thousands of digits!

3.2 Linear Equations and Greatest Common Divisors
Given two whole numbers a and b, we are going to look at all the possible numbers
we can get by adding a multiple of a to a multiple of b. In other words, we will
consider all numbers obtained from the formula

ax+ by

when we substitute all possible integers for x and y. Note that we are going to allow
both positive and negative values for x and y. For example, we could take a = 42
and b = 30. Some of the values of ax+ by for this a and b are given in the following
table:

x = −3 x = −2 x = −1 x = 0 x = 1 x = 2 x = 3

y = −3 −216 −174 −132 −90 −48 −6 36
y = −2 −186 −144 −102 −60 −18 24 66
y = −1 −156 −114 −72 −30 12 54 96
y = 0 −126 −84 −42 0 42 84 126
y = 1 −96 −54 −12 30 72 114 156
y = 2 −66 −24 18 60 102 144 186
y = 3 −36 6 48 90 132 174 216

Table of Values of 42x+ 30y

Our first observation is that every entry in the table is divisible by 6. This is not
surprising, since both 42 and 30 are divisible by 6, so every number of the form
42x+ 30y = 6(7x+ 5y) is a multiple of 6. More generally, it is clear that every
number of the form ax+ by is divisible by gcd(a, b), since both a and b are divisible
by gcd(a, b).

A second observation, which is somewhat more surprising, is that the greatest
common divisor of 42 and 30, which is 6, actually appears in our table. Thus from
the table we see that

42 · (−2) + 30 · 3 = 6 = gcd(42, 30).

Further examples suggest the following conclusion:

The smallest positive value of
ax+ by

is equal to gcd(a, b).
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There are many ways to prove that this is true. We will take a constructive approach,
via the Euclidean algorithm, which has the advantage of giving a procedure for find-
ing the appropriate values of x and y. In other words, we are going to describe a
method of finding integers x and y that are solutions to the equation

ax+ by = gcd(a, b).

Since, as we have already observed, every number ax+ by is divisible by gcd(a, b),
it will follow that the smallest positive value of ax+ by is precisely gcd(a, b).

How might we solve the equation ax+ by = gcd(a, b)? If a and b are small, we
might be able to guess a solution. For example, the equation

10x+ 35y = 5

has the solution x = −3 and y = 1, and the equation

7x+ 11y = 1

has the solution x = −3 and y = 2. We also notice that there can be more than one
solution, since x = 8 and y = −5 is also a solution to 7x+ 11y = 1.

However, if a and b are large, neither guesswork nor trial and error is going to
be helpful. We are going to start by illustrating the Euclidean algorithm method for
solving ax + by = gcd(a, b) with a particular example. So we are going to try to
solve

22x+ 60y = gcd(22, 60).

The first step is to perform the Euclidean algorithm to compute the gcd. We find

60 = 2× 22 + 16
22 = 1× 16 + 6
16 = 2× 6 + 4
6 = 1× 4 + 2
4 = 2× 2 + 0

This shows that gcd(22, 60) = 2, a fact that is clear without recourse to the Eu-
clidean algorithm. However, the Euclidean algorithm computation is important be-
cause we’re going to use the intermediate quotients and remainders to solve the equa-
tion 22x+ 60y = 2. The first step is to rewrite the first equation as

16 = a− 2b, where we let a = 60 and b = 22.

We next substitute this value into the 16 appearing in the second equation. This gives
(remember that b = 22)

b = 1× 16 + 6 = 1× (a− 2b) + 6.

Rearranging this equation to isolate the remainder 6 yields

6 = b− (a− 2b) = −a+ 3b.
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Now substitute the values 16 and 6 into the next equation, 16 = 2× 6 + 4:

a− 2b = 16 = 2× 6 + 4 = 2(−a+ 3b) + 4.

Again we isolate the remainder 4, yielding

4 = (a− 2b)− 2(−a+ 3b) = 3a− 8b.

Finally, we use the equation 6 = 1× 4 + 2 to get

−a+ 3b = 6 = 1× 4 + 2 = 1× (3a− 8b) + 2.

Rearranging this equation gives the desired solution

−4a+ 11b = 2.

(We should check our solution: −4× 60 + 11× 22 = −240 + 242 = 2.)
We can summarize the above computation in the following efficient tabular form.

Note that the left-hand equations are the Euclidean algorithm, and the right-hand
equations compute the solution to ax+ by = gcd(a, b).

a = 2× b+ 16 16 = a− 2b
b = 1× 16 + 6 6 = b− 1× 16

= b− 1× (a− 2b)
= −a+ 3b

16 = 2× 6 + 4 4 = 16− 2× 6
= (a− 2b)− 2× (−a+ 3b)
= 3a− 8b

6 = 1× 4 + 2 2 = 6− 1× 4
= (−a+ 3b)− 1× (3a− 8b)
= −4a+ 11b

4 = 2× 2 + 0

Why does this method work? As the following table makes clear, we start with
the first two lines of the Euclidean algorithm, which involve the quantities a and b,
and work our way down.

a = q1b+ r1 r1 = a− q1b
b = q2r1 + r2 r2 = b− q2r1

= b− q2(a− q1b)
= −q2a+ (1 + q1q2)b

r1 = q3r2 + r3 r3 = r1 − q3r2
= (a− q1b)− q3

(
−q2a+ (1 + q1q2)b

)
= (1 + q2q3)a− (q1 + q3 + q1q2q3)b

...
...

As we move from line to line, we will continually be forming equations that look
like
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latest remainder = some multiple of a plus some multiple of b.

Eventually, we get down to the last nonzero remainder, which we know is equal to
gcd(a, b), and this gives the desired solution to the equation gcd(a, b) = ax+ by.

A larger example with a = 12453 and b = 2347 is given in tabular form in
Figure 3.1. As before, the left-hand side is the Euclidean algorithm and the right-
hand side solves ax + by = gcd(a, b). We see that gcd(12453, 2347) = 1 and that
the equation 12453x+ 2347y = 1 has the solution (x, y) = (304,−1613).

We now know that the equation

ax+ by = gcd(a, b)

always has a solution in integers x and y. The final topic we discuss in this section
is the question of how many solutions it has, and how to describe all the solutions.
Let’s start with the case that a and b are relatively prime, that is, gcd(a, b) = 1, and
suppose that (x1, y1) is a solution to the equation

ax+ by = 1.

We can create additional solutions by subtracting a multiple of b from x1 and adding
the same multiple of a onto y1. In other words, for any integer k we obtain a new
solution (x1+kb, y1−ka).2 We can check that this is indeed a solution by computing

a(x1 + kb) + b(y1 − ka) = ax1 + akb+ by1 − bka = ax1 + by1 = 1.

So, for example, if we start with the solution (−1, 2) to 5x+ 3y = 1, we obtain
new solutions (−1 + 3k, 2− 5k). Note that the integer k is allowed to be positive,
negative, or zero. Putting in particular values of k gives the solutions

. . . (−13, 22), (−10, 17), (−7, 12), (−4, 7), (−1, 2),
(2,−3), (5,−8), (8,−13), (11,−18) . . . .

Still looking at the case that gcd(a, b) = 1, we can show that this procedure gives
all possible solutions. Suppose that we are given two solutions (x1, y1) and (x2, y2)
to the equation ax+ by = 1. In other words,

ax1 + by1 = 1 and ax2 + by2 = 1.

We are going to multiply the first equation by y2, multiply the second equation by y1,
and subtract. This will eliminate b and, after a little bit of algebra, we are left with

ax1y2 − ax2y1 = y2 − y1.

Similarly, if we multiply the first equation by x2, multiply the second equation by x1,
and subtract, we find that

2Geometrically, we are starting from the known point (x1, y1) on the line ax+ by = 1 and using
the fact that the line has slope −a/b to find new points (x1 + t, y1 − (a/b)t). To get new points with
integer coordinates, we need to let t be a multiple of b. Substituting t = kb gives the new integer solution
(x1 + kb, y1 − ka).
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a = 5× b + 718 718 = a− 5b
b = 3× 718 + 193 193 = b− 3× 718

= b− 3× (a− 5b)
= −3a+ 16b

718 = 3× 193 + 139 139 = 718− 3× 193
= (a− 5b)− 3× (−3a+ 16b)
= 10a− 53b

193 = 1× 139 + 54 54 = 193− 139
= (−3a+ 16b)− (10a− 53b)
= −13a+ 69b

139 = 2× 54 + 31 31 = 139− 2× 54
= (10a− 53b)− 2× (−13a+ 69b)
= 36a− 191b

54 = 1× 31 + 23 23 = 54− 31
= −13a+ 69b− (36a− 191b)
= −49a+ 260b

31 = 1× 23 + 8 8 = 31− 23
= 36a− 191b− (−49a+ 260b)
= 85a− 451b

23 = 2× 8 + 7 7 = 23− 2× 8
= (−49a+ 260b)− 2× (85a− 451b)
= −219a+ 1162b

8 = 1× 7 + 1 1 = 8− 7
= 85a− 451b− (−219a+ 1162b)
= 304a− 1613b

7 = 7× 1 + 0

Figure 3.1: Solving ax+ by = gcd(a, b) for a = 12453 and b = 2347

bx2y1 − bx1y2 = x2 − x1.

So if we let k = x2y1 − x1y2, then we find that

x2 = x1 + kb and y2 = y1 − ka.

This means that the second solution (x2, y2) is obtained from the first solution
(x1, y1) by adding a multiple of b onto x1 and subtracting the same multiple of a
from y1. So every solution to ax+ by = 1 can be obtained from the initial solu-
tion (x1, y1) by substituting different values of k into (x1 + kb, y1 − ka).

What happens if gcd(a, b) > 1? To make the formulas look a little bit simpler,
we will let g = gcd(a, b). We know from the Euclidean algorithm method that there
is at least one solution (x1, y1) to the equation

ax+ by = g.

But g divides both a and b, so (x1, y1) is a solution to the simpler equation
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a

g
x+

b

g
y = 1.

Now our earlier work applies, so we know that every other solution can be obtained
by substituting values for k in the formula(

x1 + k · b
g
, y1 − k ·

a

g

)
.

This completes our description of the solutions to the equation ax + by = g, as
summarized in the following theorem.

Theorem 3.2 (Linear Equation Theorem). Let a and b be nonzero integers, and let
g = gcd(a, b). The equation

ax+ by = g

always has a solution (x1, y1) in integers, and this solution can be found by the
Euclidean algorithm method described earlier. Then every solution to the equation
can be obtained by substituting integers k into the formula(

x1 + k · b
g
, y1 − k ·

a

g

)
.

For example, we saw that the equation

60x+ 22y = gcd(60, 22) = 2

has the solution x = −4, y = 11. Then our Linear Equation Theorem says that every
solution is obtained from the formula

(−4 + 11k, 11− 30k) with k any integer.

In particular, if we want a solution with x positive, then we can take k = 1, which
gives the smallest such solution (x, y) = (7,−19).

In this chapter we have shown that the equation

ax+ by = gcd(a, b)

always has a solution. This fact is extremely important for both theoretical and prac-
tical reasons, and we will be using it repeatedly in our number theoretic investiga-
tions. For example, we will use this equation in our theoretical study of factorization
of numbers into primes. And solving the equation ax+ by = 1 is crucial in cryptog-
raphy, although we will unfortunately not have time to discuss this topic.

Exercises
3.1. Use the Euclidean algorithm to compute each of the following gcd’s.

(a) gcd(12345, 67890) (b) gcd(54321, 9876)
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3.2 (Computer Exercise). Write a program to compute the greatest common divisor gcd(a, b)
of two integers a and b. Your program should work even if one of a or b is zero. Make sure
that you don’t go into an infinite loop if a and b are both zero!

3.3. Let b = r0, r1, r2, . . . be the successive remainders in the Euclidean algorithm applied
to a and b. Show that after every two steps, the remainder is reduced by at least one half. In
other words, verify that

ri+2 <
1

2
ri for every i = 0, 1, 2, . . . .

Conclude that the Euclidean algorithm terminates in at most 2 log2(b) steps, where log2 is the
logarithm to the base 2. In particular, show that the number of steps is at most seven times the
number of digits in b. [Hint. What is the value of log2(10)?]

3.4. The “3n+ 1 algorithm” works as follows. Start with any number n. If n is even, divide
it by 2. If n is odd, replace it with 3n+ 1. Repeat. So, for example, if we start with 5, we get
the list of numbers

5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . ,

and if we start with 7, we get

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . . .

Notice that if we ever get to 1 the list just continues to repeat with 4, 2, 1’s. In general, one of
the following two possibilities will occur:3

(i) We may end up repeating some number a that appeared earlier in our list, in which case
the block of numbers between the two a’s will repeat indefinitely. In this case we say
that the algorithm terminates at the last nonrepeated value, and the number of distinct
entries in the list is called the length of the algorithm. For example, the algorithm
terminates at 1 for both 5 and 7. The length of the algorithm for 5 is 6, and the length
of the algorithm for 7 is 17.

(ii) We may never repeat the same number, in which case we say that the algorithm does
not terminate.

(a) Find the length and terminating value of the 3n+ 1 algorithm for each of the following
starting values of n:

(i) n = 21 (ii) n = 13 (iii) n = 31

(b) Do some further experimentation and try to decide whether the 3n+1 algorithm always
terminates and, if so, at what value(s) it terminates.

(c) Assuming that the algorithm terminates at 1, let L(n) be the length of the algorithm for
starting value n. For example, L(5) = 6 and L(7) = 17. Show that if n = 8k + 4 with
k ≥ 1, then L(n) = L(n+ 1). [Hint. What does the algorithm do to the starting values
8k + 4 and 8k + 5?]

(d) Show that if n = 128k + 28 then L(n) = L(n+ 1) = L(n+ 2).
(e) Find some other conditions, similar to those in (c) and (d), for which consecutive values

of n have the same length. (It might be helpful to begin by using the next exercise to
accumulate some data.)

3There is, of course, a third possibility. We may get tired of computing and just stop working, in which
case one might say that the algorithm terminates due to exhaustion of the computer!
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3.5 (Computer Exercise). Write a program to implement the 3n + 1 algorithm described in
the previous exercise. The user will input n and your program should return the length L(n)
and the terminating value T (n) of the 3n+ 1 algorithm. Use your program to create a table
giving the length and terminating value for all starting values 1 ≤ n ≤ 100.

3.6. (a) Find a solution in integers to the equation

12345x+ 67890y = gcd(12345, 67890).

(b) Find a solution in integers to the equation

54321x+ 9876y = gcd(54321, 9876).

3.7. Describe all integer solutions to each of the following equations.
(a) 105x+ 121y = 1

(b) 12345x+ 67890y = gcd(12345, 67890)

(c) 54321x+ 9876y = gcd(54321, 9876)

3.8 (Computer Exercise). The method for solving ax + by = gcd(a, b) described in this
chapter involves a considerable amount of manipulation and back substitution. This exercise
describes an alternative way to compute x and y that is especially easy to implement on a
computer.

(a) Show that the algorithm described in Figure 3.2 computes the greatest common divisor g
of the positive integers a and b, together with a solution (x, y) in integers to the equation
ax+ by = gcd(a, b).

(b) Implement the algorithm on a computer using the computer language of your choice.
(c) Use your program to compute g = gcd(a, b) and integer solutions to ax + by = g for

the following pairs (a, b).
(i) (19789, 23548) (ii) (31875, 8387) (iii) (22241739, 19848039)

(d) What happens to your program if b = 0? Fix the program so that it deals with this case
correctly.

(e) For later applications it is useful to have a solution with x > 0. Modify your program
so that it always returns a solution with x > 0. [Hint. If (x, y) is a solution, then so is
(x+ b, y − a).]

(1) Set x = 1, g = a, v = 0, and w = b.
(2) If w = 0 then set y = (g − ax)/b and return the values (g, x, y).
(3) Divide g by w with remainder, g = qw + t, with 0 ≤ t < w.
(4) Set s = x− qv.
(5) Set (x, g) = (v, w).
(6) Set (v, w) = (s, t).
(7) Go to Step (2).

Figure 3.2: Efficient algorithm to solve ax+ by = gcd(a, b)
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3.9. (a) Find integers x, y, and z that satisfy the equation

6x+ 15y + 20z = 1.

(b) Under what conditions on a, b, c is it true that the equation

ax+ by + cz = 1

has a solution? Describe a general method of finding a solution when one exists.
(c) Use your method from (b) to find a solution in integers to the equation

155x+ 341y + 385z = 1.

3.10. Suppose that gcd(a, b) = 1. Prove that for every integer c, the equation ax+ by = c
has a solution in integers x and y. [Hint. Find a solution to au + bv = 1 and multiply by c.]
Find a solution to 37x+ 47y = 103. Try to make x and y as small as possible.

3.11. Sometimes we are only interested in solutions to ax+ by = c using nonnegative values
for x and y.

(a) Explain why the equation 3x+ 5y = 4 has no solutions with x ≥ 0 and y ≥ 0.
(b) Make a list of some of the numbers of the form 3x+ 5y with x ≥ 0 and y ≥ 0. Make a

conjecture as to which values are not possible. Then prove that your conjecture is correct.
(c) For each of the following values of (a, b), find the largest number that is not of the form

ax+ by with x ≥ 0 and y ≥ 0.

(i) (a, b) = (3, 7) (ii) (a, b) = (5, 7) (iii) (a, b) = (4, 11).

(d) Let gcd(a, b) = 1. Using your results from (c), find a conjectural formula in terms of a
and b for the largest number that is not of the form ax+ by with x ≥ 0 and y ≥ 0?
Check your conjecture for at least two more values of (a, b).

(e) Prove that your conjectural formula in (d) is correct.
(f) Try to generalize this problem to sums of three terms ax+ by + cz with x ≥ 0, y ≥ 0,

and z ≥ 0. For example, what is the largest number that is not of the form 6x+ 10y + 15z
with nonnegative x, y, z?
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Chapter 4

Number Theory — Lecture #4

4.1 Primes and Divisibility
A prime number is a number p ≥ 2 whose only (positive) divisors are 1 and p.
Numbers m ≥ 2 that are not primes are called composite numbers. For example,

prime numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
composite numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, . . .

Prime numbers are characterized by the numbers by which they are divisible; that is,
they are defined by the property that they are only divisible by 1 and by themselves.
So it is not immediately clear that primes numbers should have special properties
that involve the numbers that they divide. Thus the following fact concerning prime
numbers is both nonobvious and important.1

Lemma 4.1. Let p be a prime number, and suppose that p divides the product ab.
Then either p divides a or p divides b (or p divides both a and b).2

Proof. We are given that p divides the product ab. If p divides a, we are done, so we
may as well assume that p does not divide a. Now consider what gcd(p, a) can be. It
divides p, so it is either 1 or p. It also divides a, so it isn’t p, since we have assumed
that p does not divide a. Thus, gcd(p, a) must equal 1.

Now we use the Linear Equation Theorem (Theorem 3.2) with the numbers p
and a. The Linear Equation Theorem says that we can find integers x and y that
solve the equation

px+ ay = 1.

[Note that we are using the fact that gcd(p, a) = 1.] Now multiply both sides of the
equation by b. This gives

1A lemma is a result that is used as a stepping stone for proving other results.
2You may say that this lemma is obvious if we look at the prime factorizations of a and b. However,

the fact that a number can be factored into a product of primes in exactly one way is itself a nonobvious
fact. We will discuss this further later in this chapter.
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pbx+ aby = b.

Certainly pbx is divisible by p, and also aby is divisible by p, since we know that p
divides ab. It follows that p divides the sum

pbx+ aby,

so p divides b. This completes the proof of the lemma.3

The lemma says that if a prime divides a product ab, it must divide one of the
factors. Notice that this is a special property of prime numbers; it is not true for com-
posite numbers. For example, 6 divides the product 15 · 14, but 6 divides neither 15
nor 14. It is not hard to extend the lemma to products with more than two factors.

Theorem 4.2 (Prime Divisibility Property). Let p be a prime number, and suppose
that p divides the product a1a2 · · · ar. Then p divides at least one of the fac-
tors a1, a2, . . . , ar.

Proof. If p divides a1, we’re done. If not, we apply the lemma to the product

a1(a2a3 · · · ar)

to conclude that pmust divide a2a3 · · · ar. In other words, we are applying the lemma
with a = a1 and b = a2a3 · · · ar. We know that p|ab, so if p - a, the lemma says
that p must divide b.

So now we know that p divides a2a3 · · · ar. If p divides a2, we’re done. If not, we
apply the lemma to the product a2(a3 · · · ar) to conclude that pmust divide a3 · · · ar.
Continuing in this fashion, we must eventually find some ai that is divisible by p.

Later in this chapter we are going to use the Prime Divisibility Property to prove
that every positive integer can be factored as a product of prime numbers in essen-
tially one way. Unfortunately, this important fact is so familiar to most readers that
they will question why it requires a proof. So before giving the proof, I want to try
to convince you that unique factorization into primes is far from being obvious. For
this purpose, I invite you to leave the familiar behind and enter the4

Even Number World
(popularly known as the “E-Zone”)

Imagine yourself in a world where the only numbers that are known are the even
numbers. So, in this world, the only numbers that exist are

3When we are proving a statement, we use a little box to indicate that we have completed the proof.
Some books instead use QED to indicate the end of a proof. The letters QED stand for the Latin phrase
Quod erat demonstrandum, which roughly means “that which was to be proved.” This in turn comes from
the Greek phrase ωπερ εδει δειξαι, which appears in Euclid’s Elements.

4Since this book is not a multimedia product, you’ll have to use your imagination to supply the appro-
priate Twilight Zone music.
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E = {. . . ,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, . . .}.

Notice that in the E-Zone we can add, subtract, and multiply numbers just as usual,
since the sum, difference, and product of even numbers are again even numbers. We
can also talk about divisibility. We say that a number m E-divides a number n if
there is a number k with n = mk. But remember that we’re now in the E-Zone,
so the word “number” means an even number. For example, 6 E-divides 12, since
12 = 6 · 2; but 6 does not E-divide 18, since there is no (even) number k satisfying
18 = 6k.

We can also talk about primes. We say that an (even) number p is an E-prime if
it is not divisible by any (even) numbers. (In the E-Zone, a number is not divisible
by itself!) For example, here are some E-primes:

2, 6, 10, 14, 18, 22, 26, 30.

Recall the lemma we proved above for ordinary numbers. We showed that if a
prime p divides a product ab then either p divides a or p divides b. Now move to
the E-Zone and consider the E-prime 6 and the numbers a = 10 and b = 18. The
number 6 E-divides ab = 180, since 180 = 6 · 30; but 6 E-divides neither 10 nor 18.
So our “obvious” lemma is not true here in the E-Zone!

There are other “self-evident facts” that are untrue in the E-Zone. For example,
consider the fact that every number can be factored as a product of primes in exactly
one way. (Of course, rearranging the order of the factors is not considered a different
factorization.) It’s not hard to show, even in the E-Zone, that every (even) number
can be written as a product of E-primes. But consider the following factorizations:

180 = 6 · 30 = 10 · 18.

Notice that all of the numbers 6, 30, 10, and 18 are E-primes. This means that 180
can be written as a product of E-primes in two fundamentally different ways! In fact,
there is even a third way to write it as a product of E-primes,

180 = 2 · 90.

We are going to leave the E-Zone now and return to the familiar world where
odd and even numbers live together in peace and harmony. But we hope that our
excursion into the E-Zone has convinced you that facts that seem obvious require a
healthy dose of skepticism. Especially, any “fact” that “must be true” because it is
very familiar or because it is frequently proclaimed to be true is a fact that needs the
most careful scrutiny.5

E-Zone Border Crossing—Welcome Back Home

5The principle that well-known and frequently asserted “facts” should be carefully scrutinized also
applies to endeavors far removed from mathematics. Politics and journalism come to mind, and the reader
will undoubtedly be able to add many others to the list.
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4.2 The Fundamental Theorem of Arithmetic
Everyone “knows” that a positive integer can be factored into a product of primes in
exactly one way. But our visit to the E-Zone provides convincing evidence that this
obvious assertion requires a careful proof.

Theorem 4.3 (The Fundamental Theorem of Arithmetic). Every integer n ≥ 2 can
be factored into a product of primes

n = p1p2 · · · pr

in exactly one way.

Before we commence the proof of the Fundamental Theorem of Arithmetic, a
few comments are in order. First, if n itself is prime, then we just write n = n and
consider this to be a product consisting of a single number. Second, when we write
n = p1p2 · · · pr, we do not mean that p1, p2, . . . , pr have to be different primes. For
example, we would write 300 = 2 · 2 · 3 · 5 · 5. Third, when we say that n can be
written as a product in exactly one way, we do not consider rearrangement of the
factors to be a new factorization. For example, 12 = 2 · 2 · 3 and 12 = 2 · 3 · 2 and
12 = 3 · 2 · 2, but all these are treated as the same factorization.

Proof. The Fundamental Theorem of Arithmetic really contains two assertions.

Assertion 1. The number n can be factored into a product of primes in some way.

Assertion 2. There is only one such factorization (aside from rearranging the fac-
tors).

We begin with Assertion 1. We are going to give a proof by induction. More
precisely, first we’ll verify the assertion for n = 2, and then for n = 3, and then for
n = 4, and so on. We begin by observing that 2 = 2 and 3 = 3 and 4 = 22, so each
of these numbers can be written as a product of primes. This verifies Assertion 1 for
n = 2, 3, 4. Now suppose that we’ve verified Assertion 1 for every n up to some
number, call it N . This means we know that every number n ≤ N can be factored
into a product of primes. Now we’ll check that the same is true of N + 1.

There are two possibilities. First, N + 1 may already be prime, in which case it
is its own factorization into primes. Second, N + 1 may be composite, which means
that it can be factored as N + 1 = n1n2 with 2 ≤ n1, n2 ≤ N . But we know
Assertion 1 is true for n1 and n2, since they are both less than or equal to N . This
means that both n1 and n2 can be written as a product of primes, say

n1 = p1p2 · · · pr and n2 = q1q2 · · · qs.

Multiplying these two products together gives

N + 1 = n1n2 = p1p2 · · · prq1q2 · · · qs,
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so N + 1 can be factored into a product of primes. This means that Assertion 1 is
true for N + 1.

To recapitulate, we have shown that if Assertion 1 is true for all numbers less
than or equal to N , then it is also true for N + 1. But we have checked it is true for
2, 3, and 4, so taking N = 4, we see that it is also true for 5. But then we can take
N = 5 to conclude that it is true for 6. Taking N = 6, we see that it is true for
N = 7, and so on. Since we can continue this process indefinitely, it follows that
Assertion 1 is true for every integer.

Next we tackle Assertion 2. It is possible to give an induction proof for this
assertion, too, but we will proceed more directly. Suppose that we are able to factor n
as a product of primes in two ways, say

n = p1p2p3p4 · · · pr = q1q2q3q4 · · · qs.

We need to check that the factorizations are the same, possibly after rearranging
the order of the factors. We first observe that p1|n, so p1|q1q2 · · · qs. The Prime
Divisibility Property proved earlier in this chapter tells us that p1 must divide (at
least) one of the qi’s, so if we rearrange the qi’s, we can arrange matters so that
p1|q1. But q1 is also a prime number, so its only divisors are 1 and q1. Therefore, we
must have p1 = q1.

Now we cancel p1 (which is the same as q1) from both sides of the equation. This
gives the equation

p2p3p4 · · · pr = q2q3q4 · · · qs.

Briefly repeating the same argument, we note that p2 divides the left-hand side of
this equation, so p2 divides the right-hand side, and hence by the Prime Divisibility
Property, p2 divides one of the qi’s. After rearranging the factors, we get p2|q2, and
then the fact that q2 is prime means that p2 = q2. This allows us to cancel p2 (which
equals q2) to obtain the new equation

p3p4 · · · pr = q3q4 · · · qs.

We can continue in this fashion until either all the pi’s or all the qi’s are gone.
But if all the pi’s are gone, then the left-hand side of the equation equals 1, so there
cannot be any qi’s left, either. Similarly, if the qi’s are all gone, then the pi’s must all
be gone. In other words, the number of pi’s must be the same as the number of qi’s.
To recapitulate, we have shown that if

n = p1p2p3p4 · · · pr = q1q2q3q4 · · · qs,

where all the pi’s and qi’s are primes, then r = s, and we can rearrange the qi’s so
that

p1 = q1 and p2 = q2 and p3 = q3 and . . . and pr = qs.

This completes the proof that there is only one way to write n as a product of primes.
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The Fundamental Theorem of Arithmetic says that every integer n ≥ 2 can be
written as a product of prime numbers. Suppose we are given a particular integer n.
As a practical matter, how can we write it as a product of primes? If n is fairly small
(for example, n = 180) we can factor it by inspection,

180 = 2 · 90 = 2 · 2 · 45 = 2 · 2 · 3 · 15 = 2 · 2 · 3 · 3 · 5.

If n is larger (for example, n = 9105293) it may be more difficult to find a
factorization. One method is to try dividing n by primes 2, 3, 5, 7, 11, . . . until we
find a divisor. For n = 9105293, we find after some work that the smallest prime
dividing n is 37. We factor out the 37,

9105293 = 37 · 246089,

and continue checking 37, 41, 43, . . . to find a prime that divides 246089. We find
that 43|246089, since 246089 = 43 ·5723. And so on until we factor 5723 = 59 ·97,
where we recognize that 59 and 97 are both primes. This gives the complete prime
factorization

9105293 = 37 · 43 · 59 · 97.

If n is not itself prime, then there must be a prime p ≤
√
n that divides n. To see

why this is true, we observe that if p is the smallest prime that divides n, then n = pm
with m ≥ p, and hence n = pm ≥ p2. Taking the square root of both sides yields√
n ≥ p. This gives the following foolproof method for writing any number n as a

product of primes:

To write n as a product of primes, try dividing it by every number (or
just every prime number) 2, 3, . . . that is less than or equal to

√
n. If you

find no numbers that divide n, then n itself is prime. Otherwise, the first
divisor that you find will be a prime p. Factor n = pm and repeat the
process with m.

This procedure, although fairly inefficient, works fine on a computer for numbers that
are moderately large, say up to 10 digits. But how about a number like n = 10128+1?
If n turns out to be prime, we won’t find out until we’ve checked

√
n ≈ 1064 possible

divisors. This is completely infeasible. If we could check 1,000,000,000 (that’s one
billion) possible divisors each second, it would still take approximately 3·1048 years!
This leads to the following two closely related questions:

Question 1. How can we tell if a given number n is prime or composite?

Question 2. If n is composite, how can we factor it into primes?

Although it might seem that these questions are the same, it turns out that Ques-
tion 1 is much easier to answer than Question 2. We will later see how to write down
large numbers that we know are composite, even though we will be unable to write
down any of their factors. In a similar fashion, we will be able to find very large
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prime numbers p and q such that, if we were to send someone the value of the prod-
uct n = pq, they would be unable to factor n to retrieve the numbers p and q. This
curious fact, that it is very easy to multiply two numbers but very difficult to factor
the product, lies at the heart of a remarkable application of number theory to the
creation of some of the very secure codes such as RSA that are used to protect your
internet transactions.

Exercises
4.1. Suppose that gcd(a, b) = 1, and suppose further that a divides the product bc. Show
that a must divide c. [Try to do this exercise by the same method that we used to prove
Lemma 4.1, rather than using the fundamental theorem of arithmetic.]

4.2. Suppose that gcd(a, b) = 1, and suppose further that a divides c and that b divides c.
Show that the product ab must divide c. [Try to do this exercise by the same method that we
used to prove Lemma 4.1, rather than using the fundamental theorem of arithmetic.]

4.3. Let s and t be odd integers with s > t ≥ 1 and gcd(s, t) = 1. Prove that the three
numbers

st,
s2 − t2

2
, and

s2 + t2

2
are pairwise relatively prime; that is, each pair of them is relatively prime. This fact was
needed to complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17).
[Hint. Assume that there is a common prime factor and use the fact (Lemma 4.1) that if a
prime divides a product, then it divides one of the factors.]

4.4. Give a proof by induction of each of the following formulas. [We mention that (a) is the
formula that we proved in Section 1.1 using a geometric argument and that (c) is the first n
terms of the geometric series.]

(a) 1 + 2 + 3 + ·+ n =
n(n+ 1)

2

(b) 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

(c) 1 + a+ a2 + a3 + · · ·+ an =
1− an+1

1− a (a 6= 1)

(d)
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

(n− 1)n
=
n− 1

n

4.5. This exercise asks you to continue the investigation of the E-Zone. Remember as you
work that for the purposes of this exercise, odd numbers do not exist!

(a) Describe all E-primes.
(b) Show that every even number can be factored as a product of E-primes. [Hint. Mimic

our proof of this fact for ordinary numbers.]
(c) We saw that 180 has three different factorizations as a product of E-primes. Find the

smallest number that has two different factorizations as a product of E-primes. Is 180
the smallest number with three factorizations? Find the smallest number with four fac-
torizations.

(d) The number 12 has only one factorization as a product of E-primes: 12 = 2 · 6. (As
usual, we consider 2 ·6 and 6 ·2 to be the same factorization.) Describe all even numbers
that have only one factorization as a product of E-primes.
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4.6. Welcome to M-World, where the only numbers that exist are positive integers that leave
a remainder of 1 when divided by 4. In other words, the only M-numbers that exist are

{1, 5, 9, 13, 17, 21, . . .}.

(Another description is that these are the numbers of the form 4t+ 1 for t = 0, 1, 2, . . ..) In
the M-World, we cannot add numbers, but we can multiply them, since if a and b both leave a
remainder of 1 when divided by 4 then so does their product. (Do you see why this is true?)

We say that m M-divides n if n = mk for some M-number k. And we say that n is an
M-prime if its only M-divisors are 1 and itself. (Of course, we don’t consider 1 itself to be an
M-prime.)

(a) Find the first six M-primes.
(b) Find an M-number n that has two different factorizations as a product of M-primes.

4.7. [Computer Exercise] In this exercise you are asked to write programs to factor a (positive)
integer n into a product of primes. (If n = 0, be sure to return an error message instead of
going into an infinite loop!) A convenient way to represent the factorization of n is as a 2× r
matrix. Thus, if

n = pk11 pk22 · · · p
kr
r ,

then store the factorization of n as the matrix(
p1 p2 · · · pr
k1 k2 · · · kr

)
.

(If your programming language doesn’t allow dynamic storage allocation, you’ll have to de-
cide ahead of time how many factors to allow.)

(a) Write a program to factor n by trying each possible factor d = 2, 3, 4, 5, 6, . . .. (This is
an extremely inefficient method but will serve as a warm-up exercise.)

(b) Modify your program by storing the values of the first 100 (or more) primes and first
removing these primes from n before looking for larger prime factors. You can speed up
your program when trying larger d’s as potential factors if you don’t bother checking d’s
that are even, or divisible by 3, or by 5. You can also increase efficiency by using the fact
that a number m is prime if it is not divisible by any number between 2 and

√
m. Use

your program to find the complete factorization of all numbers between 1,000,000 and
1,000,030.

(c) Write a subroutine that prints the factorization of n in a nice format. Optimally, the expo-
nents should appear as exponents; but if this is not possible, then print the factorization
of (say) n = 75460 = 22 · 5 · 73 · 11 as

2ˆ2 * 5 * 7ˆ3 * 11 .

(To make the output easier to read, don’t print exponents that equal 1.)
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Number Theory — Lecture #5

5.1 Congruences
Divisibility is a powerful tool in the theory of numbers. We have seen this amply
demonstrated in our work on Pythagorean triples, greatest common divisors, and
factorization into primes. In this chapter we will discuss the theory of congruences.
Congruences provide a convenient way to describe divisibility properties. In fact,
they are so convenient and natural that they make the theory of divisibility very
similar to the theory of equations.

We say that a is congruent to b modulo m, and we write

a ≡ b (mod m),

if m divides a− b. For example,

7 ≡ 2 (mod 5) and 47 ≡ 35 (mod 6),

since
5|(7− 2) and 6|(47− 35).

In particular, if a divided bym leaves a remainder of r, then a is congruent to r mod-
ulo m. Notice that the remainder satisfies 0 ≤ r < m, so every integer is congruent,
modulo m, to a number between 0 and m− 1.

The number m is called the modulus of the congruence. Congruences with the
same modulus behave in many ways like ordinary equations. Thus, if

a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then
a1 ± a2 ≡ b1 ± b2 (mod m) and a1a2 ≡ b1b2 (mod m).

Warning. It is not always possible to divide congruences. In other words, if
ac ≡ bc (mod m), it need not be true that a ≡ b (mod m). For example,
15 · 2 ≡ 20 · 2 (mod 10), but 15 6≡ 20 (mod 10). Even more distressing, it
is possible to have
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uv ≡ 0 (mod m) with u 6≡ 0 (mod m) and v 6≡ 0 (mod m).

Thus 6 · 4 ≡ 0 (mod 12), but 6 6≡ 0 (mod 12) and 4 6≡ 0 (mod 12). How-
ever, if gcd(c,m) = 1, then it is okay to cancel c from the congruence
ac ≡ bc (mod m). You will be asked to verify this as an exercise.

Congruences with unknowns can be solved in the same way that equations are
solved. For example, to solve the congruence

x+ 12 ≡ 5 (mod 8),

we subtract 12 from each side to get

x ≡ 5− 12 ≡ −7 (mod 8).

This solution is fine, or we can use the equivalent solution x ≡ 1 (mod 8). Notice
that −7 and 1 are the same modulo 8, since their difference is divisible by 8.

Here’s another example. To solve

4x ≡ 3 (mod 19),

we will multiply both sides by 5. This gives

20x ≡ 15 (mod 19).

But 20 ≡ 1 (mod 19), so 20x ≡ x (mod 19). Thus the solution is

x ≡ 15 (mod 19).

We can check our answer by substituting 15 into the original congruence. Is

4 · 15 ≡ 3 (mod 19)?

Yes, because 4 · 15− 3 = 57 = 3 · 19 is divisible by 19.
We solved this last congruence by a trick, but if all else fails, there’s always the

“climb every mountain” technique.1 To solve a congruence modulo m, we can just
try each value 0, 1, . . . ,m−1 for each variable. For example, to solve the congruence

x2 + 2x− 1 ≡ 0 (mod 7),

we just try x = 0, x = 1, . . . , x = 6. This leads to the two solutions x ≡ 2 (mod 7)
and x ≡ 3 (mod 7). Of course, there are other solutions, such as x ≡ 9 (mod 7).
But 9 and 2 are not really different solutions, since they are the same modulo 7. So
when we speak of “finding all the solutions to a congruence,” we normally mean that
we will find all incongruent solutions, that is, all solutions that are not congruent to
one another.

1Also known as the “ford every stream” technique for those who prefer wet feet to vertigo.
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We also observe that there are many congruences, such as x2 ≡ 3 (mod 10),
that have no solutions. This shouldn’t be too surprising. After all, there are ordinary
equations such as x2 = −1 that have no (real) solutions.

Our final task in this chapter is to solve congruences that look like

ax ≡ c (mod m).

Some congruences of this type have no solutions. For example, if

6x ≡ 15 (mod 514)

were to have a solution, then 514 would have to divide 6x− 15. But 6x− 15 is
always odd, so it cannot be divisible by the even number 514. Hence the congruence
6x ≡ 15 (mod 514) has no solutions.

Before giving the general theory, let’s try an example. We will solve the congru-
ence

18x ≡ 8 (mod 22).

This means we need to find a value of x with 22 dividing 18x− 8, so we have to find
a value of x with 18x− 8 = 22y for some y. In other words, we need to solve the
linear equation

18x− 22y = 8.

We know from Section 3.2 that we can solve the equation

18u− 22v = gcd(18, 22) = 2,

and indeed we easily find the solution u = 5 and v = 4. But we really want the
right-hand side to equal 8, so we multiply by 4 to get

18 · (5 · 4)− 22 · (4 · 4) = 8.

Thus, 18 · 20 ≡ 8 (mod 22), so x ≡ 20 (mod 22) is a solution to the original
congruence. We will soon see that this congruence has two different solutions mod-
ulo 22; the other one turns out to be x ≡ 9 (mod 22).

Suppose now that we are asked to solve an arbitrary congruence of the form

ax ≡ c (mod m).

We need to find an integer x such that m divides ax− c. The number m will divide
the number ax− c if we can find an integer y such that ax− c = my. Rearranging
this last equation slightly, we see that ax ≡ c (mod m) has a solution if, and only
if, the linear equation ax−my = c has a solution. This should look familiar; it is
precisely the sort of problem we solved in Section 3.2.

To make our formulas a bit neater, we will let g = gcd(a,m). Our first observa-
tion is that every number of the form ax − my is a multiple of g; so if g does not
divide c, then ax−my = c has no solutions and so ax ≡ c (mod m) also has no
solutions.
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Next suppose that g does divide c. We know from the Linear Equation Theorem
in Section 3.2 that there is always a solution to the equation

au+mv = g.

Suppose we find a solution u = u0, v = v0, either by trial and error or by using the
Euclidean algorithm method described in Section 3.2. Since we are assuming that g
divides c, we can multiply this equation by the integer c/g to obtain the equation

a
cu0
g

+m
cv0
g

= c.

This means that

x0 ≡
cu0
g

(mod m) is a solution to the congruence ax ≡ c (mod m).

Are there other solutions? Suppose that x1 is some other solution to the congru-
ence ax ≡ c (mod m). Then ax1 ≡ ax0 (mod m), so m divides ax1 − ax0. This
implies that

m

g
divides

a(x1 − x0)
g

,

and we know that m/g and a/g have no common factors, so m/g must divide
x1 − x0. In other words, there is some number k such that

x1 = x0 + k · m
g
.

But any two solutions that differ by a multiple of m are considered to be the
same, so there will be exactly g different solutions that are obtained by taking
k = 0, 1, . . . , g − 1.

This completes our analysis of the congruence ax ≡ c (mod m). We summarize
our findings in the following statement.

Theorem 5.1 (Linear Congruence Theorem). Let a, c, and m be integers with m ≥
1, and let g = gcd(a,m).
(a) If g - c, then the congruence ax ≡ c (mod m) has no solutions.
(b) If g|c, then the congruence ax ≡ c (mod m) has exactly g incongruent solu-

tions. To find the solutions, first find a solution (u0, v0) to the linear equation

au+mv = g.

(A method for solving this equation is described in Section 3.2.) Then x0 =
cu0/g is a solution to ax ≡ c (mod m), and a complete set of incongruent
solutions is given by

x ≡ x0 + k · m
g

(mod m) for k = 0, 1, 2, . . . , g − 1.
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For example, the congruence

943x ≡ 381 (mod 2576)

has no solutions, since gcd(943, 2576) = 23 does not divide 381. On the other hand,
the congruence

893x ≡ 266 (mod 2432)

has 19 solutions, since gcd(893, 2432) = 19 does divide 266. Notice that we are
able to determine the number of solutions without having computed any of them. To
actually find the solutions, we first solve

893u− 2432v = 19.

Using the methods from Section 3.2, we find the solution (u, v) = (79, 29). Multi-
plying by 266/19 = 14 gives the solution

(x, y) = (1106, 406) to the equation 893x− 2432y = 266.

Finally, the complete set of solutions to

893x ≡ 266 (mod 2432)

is obtained by starting with x ≡ 1106 (mod 2432) and adding multiples of the
quantity 2432/19 = 128. (Don’t forget that if the numbers go above 2432 we are
allowed to subtract 2432.) The 19 incongruent solutions are

1106, 1234, 1362, 1490, 1618, 1746, 1874, 2002, 2130, 2258,

2386, 82, 210, 338, 466, 594, 722, 850, 978.

Important Note. The most important case of the Linear Congruence Theorem is
when gcd(a,m) = 1. In this case, it says that the congruence

ax ≡ c (mod m) (∗)

has exactly one solution. We might even write the solution as a fraction

x ≡ c

a
(mod m),

but if we do, then we must remember that the symbol “ c
a (mod m)” is really only a

convenient shorthand for the solution to the congruence (∗).

5.2 Congruences, Powers,
and Fermat’s Little Theorem

Take a number a and consider its powers a, a2, a3, . . . modulo m. Is there any pat-
tern to these powers? We will start by looking at a prime modulus m = p, since the
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pattern is easier to spot. This is a common situation in the theory of numbers, espe-
cially when working with congruences. So whenever you’re faced with discovering
a congruence pattern, it’s usually a good idea to begin with a prime modulus.

For each of the primes p = 3, p = 5, and p = 7, we have listed integers a =
0, 1, 2, . . . and some of their powers modulo p. Before reading further, you should
stop, examine these tables, and try to formulate some conjectural patterns. Then test
your conjectures by creating a similar table for p = 11 and seeing if your patterns
are still true.

a a2 a3 a4

0 0 0 0
1 1 1 1
2 1 2 1

ak modulo 3

a a2 a3 a4 a5 a6

0 0 0 0 0 0
1 1 1 1 1 1
2 4 3 1 2 4
3 4 2 1 3 4
4 1 4 1 4 1

ak modulo 5

a a2 a3 a4 a5 a6 a7 a8

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 4 1 2 4 1 2 4
3 2 6 4 5 1 3 2
4 2 1 4 2 1 4 2
5 4 6 2 3 1 5 4
6 1 6 1 6 1 6 1

ak modulo 7

Many interesting patterns are visible in these tables. The one that we will be
concerned with in this chapter can be seen in the columns

a2 (mod 3), a4 (mod 5), and a6 (mod 7).

Every entry in these columns, aside from the top one, is equal to 1. Does this pattern
continue to hold for larger primes? You can check the table you made for p = 11,
and you will find that

110 ≡ 1 (mod 11), 210 ≡ 1 (mod 11), 310 ≡ 1 (mod 11) . . .

910 ≡ 1 (mod 11), and 1010 ≡ 1 (mod 11).

This leads us to make the following conjecture:

ap−1 ≡ 1 (mod p) for every integer 1 ≤ a < p.

Of course, we don’t really need to restrict a to be between 1 and p − 1. If a1
and a2 differ by a multiple of p, then their powers will be the same modulo p. So
the real condition on a is that it not be a multiple of p. This result was first stated
by Pierre de Fermat in a letter to Frénicle de Bessy dated 1640, but Fermat gave
no indication of his proof. The first known proof appears to be due to Gottfried
Leibniz.2

2Gottfried Leibniz (1646–1716) is best known as one of the discoverers of the calculus. He and Isaac
Newton worked out the main theorems of the calculus independently and at about the same time. The
German and English mathematical communities spent the next two centuries arguing over who deserved
priority. The current consensus is that both Leibniz and Newton should be given joint credit as the (inde-
pendent) discoverers of the calculus.
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Theorem 5.2 (Fermat’s Little Theorem). Let p be a prime number, and let a be any
number with a 6≡ 0 (mod p). Then

ap−1 ≡ 1 (mod p).

Before giving the proof of Fermat’s Little Theorem, we want to indicate its power
and show how it can be used to simplify computations. As a particular example,
consider the congruence

622 ≡ 1 (mod 23).

This says that the number 622 − 1 is a multiple of 23. If we wanted to check this
fact without using Fermat’s Little Theorem, we would have to multiply out 622, sub-
tract 1, and divide by 23. Here’s what we get:

622 − 1 = 23 · 5722682775750745.

Similarly, in order to verify directly that 73100 ≡ 1 (mod 101), we would have to
compute 73100 − 1. Unfortunately, 73100 − 1 has 187 digits! And notice that this
example only uses p = 101, which is a comparatively small prime. Fermat’s Little
Theorem thus describes a very surprising fact about extremely large numbers.

We can use Fermat’s Little Theorem to simplify computations. For example, in
order to compute 235 (mod 7), we can use the fact that 26 ≡ 1 (mod 7). So we
write 35 = 6 · 5 + 5 and use the law of exponents to compute

235 = 26·5+5 = (26)5 · 25 ≡ 15 · 25 ≡ 32 ≡ 4 (mod 7).

Similarly, suppose that we want to solve the congruence x103 ≡ 4 (mod 11).
Certainly, x 6≡ 0 (mod 11), so Fermat’s Little Theorem tells us that

x10 ≡ 1 (mod 11).

Raising both sides to the 10th power gives x100 ≡ 1 (mod 11), and then multiplying
by x3 gives x103 ≡ x3 (mod 11). So, to solve the original congruence, we just need
to solve x3 ≡ 4 (mod 11). This can be solved by trying successively x = 1, x = 2,
. . . . Thus,

x (mod 11) 0 1 2 3 4 5 6 7 8 9 10

x3 (mod 11) 0 1 8 5 9 4 7 2 6 3 10

So the congruence x103 ≡ 4 (mod 11) has the solution x ≡ 5 (mod 11).
We are now ready to prove Fermat’s Little Theorem. In order to illustrate the

method of proof, we will first prove that 36 ≡ 1 (mod 7). Of course, there is no
need to give a fancy proof of this fact, since 36 − 1 = 728 = 7 · 104. Nevertheless,
when attempting to understand a proof or when attempting to construct a proof, it is
often worthwhile using specific numbers. Of course, the idea is to devise a proof that
doesn’t really use the fact that we are considering specific numbers and then hope
that the proof can be made to work in general.
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To prove that 36 ≡ 1 (mod 7), we start with the numbers

1, 2, 3, 4, 5, 6,

multiply each of them by 3, and reduce modulo 7. The results are listed in the fol-
lowing table:

x (mod 7) 1 2 3 4 5 6

3x (mod 7) 3 6 2 5 1 4

Notice that each of the numbers 1, 2, 3, 4, 5, 6 reappears exactly once in the second
row. So if we multiply together all the numbers in the second row, we get the same
result as multiplying together all the numbers in the first row. Of course, we must
work modulo 7. Thus,

(3 · 1)(3 · 2)(3 · 3)(3 · 4)(3 · 5)(3 · 6)︸ ︷︷ ︸
numbers in second row

≡ 1 · 2 · 3 · 4 · 5 · 6︸ ︷︷ ︸
numbers in first row

(mod 7).

To save space, we use the standard symbol n! for the number n factorial, which is
the product of 1, 2, . . . , n. In other words,

n! = 1 · 2 · 3 · · · (n− 1) · n.

Factoring out the six factors of 3 on the left-hand side of our congruence gives

36 · 6! ≡ 6! (mod 7).

Notice that 6! is relatively prime to 7, so we can cancel the 6! from both sides. This
gives 36 ≡ 1 (mod 7), which is exactly Fermat’s Little Theorem.

We are now ready to prove Fermat’s Little Theorem in general. The key observa-
tion in our proof for 36 (mod 7) was that multiplication by 3 rearranged the numbers
1, 2, 3, 4, 5, 6 (mod 7). So first we are going to verify the following claim:

Lemma 5.3. Let p be a prime number and let a be a number with a 6≡ 0 (mod p).
Then the numbers

a, 2a, 3a, . . . , (p− 1)a (mod p)

are the same as the numbers

1, 2, 3, . . . , (p− 1) (mod p),

although they may be in a different order.

Proof. The list a, 2a, 3a, . . . , (p− 1)a contains p− 1 numbers, and clearly none of
them are divisible by p. Suppose that we take two numbers ja and ka in this list, and
suppose that they happen to be congruent,

ja ≡ ka (mod p).

Draft: January 2, 2020 c©2018, J. Silverman



5.2. Congruences, Powers, and Fermat’s Little Theorem 53

Then p | (j − k)a, so p | (j − k), since we are assuming that p does not divide a.
Notice that we are using the Prime Divisibility Property (Lemma 4.1), which says
that if a prime divides a product then it divides one of the factors. On the other hand,
we know that 1 ≤ j, k ≤ p − 1, so |j − k| < p − 1. There is only one number
with absolute value less than p − 1 that is divisible by p and that number is zero.
Hence, j = k. This shows that different multiples in the list a, 2a, 3a, . . . , (p − 1)a
are distinct modulo p.

So we now know that the list a, 2a, 3a, . . . , (p − 1)a contains p− 1 distinct
nonzero values modulo p. But there are only p− 1 distinct nonzero values mod-
ulo p, that is, the numbers 1, 2, 3, . . . , (p− 1). Hence, the list a, 2a, 3a, . . . , (p− 1)a
and the list 1, 2, 3, . . . , (p − 1) must contain the same numbers modulo p, although
the numbers may appear in a different order. This finishes the proof of the lemma.

Using the lemma, it is easy to finish the proof of Fermat’s Little Theorem. The
lemma says that the lists of numbers

a, 2a, 3a, . . . , (p− 1)a (mod p) and 1, 2, 3, . . . , (p− 1) (mod p)

are the same, so the product of the numbers in the first list is equal to the product of
the numbers in the second list:

a · (2a) · (3a) · · · ((p− 1)a) ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

Next we factor our p− 1 copies of a from the left-hand side to obtain

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Finally, we observe that (p − 1)! is relatively prime to p, so we may cancel it from
both sides to obtain

ap−1 ≡ 1 (mod p),

which completes the proof of Fermat’s Little Theorem.

Fermat’s Little Theorem can be used to show that a number is not a prime without
actually factoring it. For example, it turns out that3

21234566 ≡ 899557 (mod 1234567).

This means that 1234567 cannot be a prime, since if it were, Fermat’s Little Theorem
would tell us that 21234566 must be congruent to 1 modulo 1234567. Of course, the
number 1234567 is enough that it’s not hard to factor it explicitly as 1234567 =
127 · 9721. But consider the number

m = 10100 + 37.

When we compute 2m−1 (mod m), we get

3If you’re wondering how we computed 21234566 (mod 1234567), we mention that there’s a very
fast algorithm for computing powers of this sort. It goes by various names, including the “square-and-
multiply method.”
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2m−1 ≡ 36263603275458610624877601996335839108
36873253019151380128320824091124859463

579459059730070231844397 (mod m).

Again we deduce from Fermat’s Little Theorem that 10100+37 is not prime, but it is
not at all clear how to find a factor. A quick check on a desktop computer reveals no
prime factors less than 200,000. It is somewhat surprising that we can easily write
down numbers that we know are composite, yet for which we are unable to find any
factors.

Exercises
5.1. Suppose that a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m).

(a) Verify that a1 + a2 ≡ b1 + b2 (mod m) and that a1 − a2 ≡ b1 − b2 (mod m).
(b) Verify that a1a2 ≡ b1b2 (mod m).

5.2. Suppose that
ac ≡ bc (mod m)

and also assume that gcd(c,m) = 1. Prove that a ≡ b (mod m).

5.3. Find all incongruent solutions to each of the following congruences.
(a) 7x ≡ 3 (mod 15) (b) 6x ≡ 5 (mod 15)
(c) x2 ≡ 1 (mod 8) (d) x2 ≡ 2 (mod 7)
(e) x2 ≡ 3 (mod 7)

5.4. Prove that the following divisibility tests work.
(a) The number a is divisible by 4 if and only if its last two digits are divisible by 4.
(b) The number a is divisible by 8 if and only if its last three digits are divisible by 8.
(c) The number a is divisible by 3 if and only if the sum of its digits is divisible by 3.
(d) The number a is divisible by 9 if and only if the sum of its digits is divisible by 9.
(e) The number a is divisible by 11 if and only if the alternating sum of the digits of a is

divisible by 11. (If the digits of a are a1a2a3 . . . ad−1ad, the alternating sum means to
take a1 − a2 + a3 − · · · with alternating plus and minus signs.)

[Hint. For (a), reduce modulo 100, and similarly for (b). For (c), (d), and (e), write a as a sum
of multiples of powers of 10 and reduce modulo 3, 9, and 11.]

5.5. Find all incongruent solutions to each of the following linear congruences.
(a) 8x ≡ 6 (mod 14)

(b) 66x ≡ 100 (mod 121)

(c) 21x ≡ 14 (mod 91)

5.6. Determine the number of incongruent solutions for each of the following congruences.
You need not write down the actual solutions.

(a) 72x ≡ 47 (mod 200)

(b) 4183x ≡ 5781 (mod 15087)

(c) 1537x ≡ 2863 (mod 6731)
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5.7 (Computer Exercise). Write a program that solves the congruence

ax ≡ c (mod m).

[If gcd(a,m) does not divide c, return an error message and the value of gcd(a,m).] Test
your program by finding all of the solutions to the congruences in Exercise 5.6.

5.8 (Computer Exercise). Write a program that takes as input a positive integer m and a
polynomial f(X) having integer coefficients and produces as output all of the solutions to the
congruence

f(X) ≡ 0 (mod m).

(Don’t try to be fancy. Just substitute X = 0, 1, 2, . . .m − 1 and see which values are solu-
tions.) Test your program by taking the polynomial

f(X) = X11 + 21X7 − 8X3 + 8

and solving the congruence f(X) ≡ 0 (mod m) for each of the following values of m,

m ∈ {130, 137, 144, 151, 158, 165, 172}.

5.9. Use Fermat’s Little Theorem to perform the following tasks.
(a) Find a number 0 ≤ a < 73 with a ≡ 9794 (mod 73).
(b) Solve x86 ≡ 6 (mod 29).
(c) Solve x39 ≡ 3 (mod 13).

5.10. The quantity (p − 1)! (mod p) appeared in our proof of Fermat’s Little Theorem,
although we didn’t need to know its value.

(a) Compute (p − 1)! (mod p) for some small values of p, find a pattern, and make a
conjecture.

(b) Prove that your conjecture is correct. [Try to discover why (p − 1)! (mod p) has the
value it does for small values of p, and then generalize your observation to prove the
formula for all values of p.]

5.11. Exercise 5.10 asked you to determine the value of (p− 1)! (mod p) when p is a prime
number.

(a) Compute the value of (m−1)! (mod m) for some small values ofm that are not prime.
Do you find the same pattern as you found for primes?

(b) If you know the value of (n − 1)! (mod n), how can you use the value to definitely
distinguish whether n is prime or composite?

5.12. If p is a prime number and if a 6≡ 0 (mod p), then Fermat’s Little Theorem tells us
that ap−1 ≡ 1 (mod p).

(a) The congruence 71734250 ≡ 1660565 (mod 1734251) is true. Can you conclude that
1734251 is a composite number?

(b) The congruence 12964026 ≡ 15179 (mod 64027) is true. Can you conclude that 64027
is a composite number?

(c) The congruence 252632 ≡ 1 (mod 52633) is true. Can you conclude that 52633 is a
prime number?
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Chapter 6

Number Theory — Lecture #6

6.1 Prime Numbers

Prime numbers are the basic building blocks of number theory. That’s what the Fun-
damental Theorem of Arithmetic (Theorem 4.3) tells us. Every number is built up in
a unique fashion by multiplying together prime numbers. There are analogous situa-
tions in other areas of science, and without exception the discovery and description
of the building blocks has had a profound effect on its discipline. For example, the
field of chemistry was revolutionized by the discovery that every chemical is formed
from a few basic elements and by Mendeleev cataloging these elements into families
whose properties recur periodically. We will do something similar below when we
split the set of prime numbers into various subsets, for example, into the set con-
gruent to 1 modulo 4 and the set congruent to 3 modulo 4. Similarly, a tremendous
advance in physics occurred when scientists discovered that the atoms comprising
every element are made up of three basic particles, protons, neutrons, and electrons,1

and that the number of each determines the chemical and physical attributes of the
atom. For example, an atom made up of 92 protons and only 143 neutrons has prop-
erties that clearly distinguish it from its cousin with three additional neutrons.

The fact that prime numbers are basic building blocks is sufficient reason to study
their properties. Of course, this doesn’t imply that those properties will be interesting.
Studying how to conjugate irregular verbs is important when learning a language, but
that doesn’t make it very appealing. Luckily, the more one studies prime numbers,
the more interesting they become, and the more beautiful and surprising become the
relationships that one discovers. In this brief unit we will only have time to mention
a few of the many remarkable properties of prime numbers.

To begin with, let’s list the first few primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, . . . .

1This description of an atom is a simplification, but it is a fairly accurate portrayal of the original
atomic theories advanced in the early part of the twentieth century.
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What can we glean from this list? First, it looks like 2 is the only even prime. This
is true, of course. If n is even and larger than 2 then it factors as n = 2 · (n/2). This
makes 2 somewhat unusual among the set of primes, so people have been known to
say that

“2 is the oddest prime!”2

A more important observation from our list of primes is signified by the ellipsis (three
dots) appended at the end. This means that the list is not complete. For example, 67
and 71 are the next two primes. However, the real issue is whether the list ends
or whether it continues indefinitely. In other words, are there infinitely many prime
numbers? The answer is yes. We now give a beautiful proof that appeared in Euclid’s
Elements more than 2000 years ago.

Theorem 6.1 (Infinitely Many Primes Theorem). There are infinitely many prime
numbers.

Euclid’s Proof. Suppose that you have already compiled a (finite) list of primes. I
am going to show you how to find a new prime that isn’t in your list. Since you can
then add the new prime to the list and repeat the process, this will show that there
must be infinitely many primes.

So suppose we start with some list of primes p1, p2, . . . , pr. We multiply them
together and add 1, which gives the number

A = p1p2 · · · pr + 1.

IfA itself is prime, we’re done, sinceA is too large to be in the original list. But even
if A is not prime, it will certainly be divisible by some prime, since every number
can be written as a product of primes. Let q be some prime dividing A, for example,
the smallest one. I claim that q is not in the original list, so it will be the desired new
prime.

Why isn’t q in the original list? We know that q divides A, so

q divides p1p2 · · · pr + 1.

If q were to equal one of the pi’s, then it would have to divide 1, which is not possible.
This means that q is a new prime that may be added to our list. Repeating this process,
we can create a list of primes that is as long as we want. This shows that there must
be infinitely many prime numbers.

Euclid’s proof is very clever and beautiful. We will illustrate the ideas in Euclid’s
proof by using them to create a list of primes. We start with a list consisting of the
single prime {2}. Following Euclid, we compute A = 2 + 1 = 3. This A is already
prime, so we append it to our list. Now we have two primes, {2, 3}. Again using

2Naturally, I would never even consider repeating such a weak joke! Notice that this is one of those
jokes that is language specific. For example, it doesn’t work in French, since an odd number is impair,
while an odd person or event is étrange or bizarre.
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Euclid’s argument, we compute A = 2 · 3 + 1 = 7, and again A is prime and can
be added to the list. This gives three primes, {2, 3, 7}. Repeating the argument gives
A = 2 · 3 · 7 + 1 = 43, another prime! So now our list has four primes, {2, 3, 7, 43}.
Into the breach once more, we compute A = 2 · 3 · 7 · 43 + 1 = 1807. This time, A
is not prime, it factors as A = 13 · 139. We add 13 to our list, which now reads
{2, 3, 7, 43, 13}. One more time, we compute A = 2 · 3 · 7 · 43 · 13 + 1 = 23479.
ThisA also factors,A = 53 ·443. This gives the list {2, 3, 7, 43, 13, 53}, and we will
stop here. But in principle we could continue this process to produce a list of primes
of any specified length.

We now know that the list of primes continues without end, and we also ob-
served that 2 is the only even prime. Every odd number is congruent to either 1 or 3
modulo 4, so we might ask which primes are congruent to 1 modulo 4 and which are
congruent to 3 modulo 4. This separates the set of (odd) primes into two families, just
as the periodic table separates the elements into families having similar properties.
In the following list, we have boxed the primes congruent to 1 modulo 4:

3, 5 , 7, 11, 13 , 17 , 19, 23, 29 , 31, 37 , 41 , 43, 47, 53 , 59,

61 , 67, 71, 73 , 79, 83, 89 , 97 , 101 , . . . .

There doesn’t seem to be any obvious pattern, although there do seem to be plenty
of primes of each kind. Here’s a longer list.

p ≡ 1 (mod 4) 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,
113, 137, 149, 157, 173, 181, 193, 197, . . .

p ≡ 3 (mod 4) 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103,
107, 127, 131, 139, 151, 163, 167, 179, . . .

Is it possible that one of the lines in this list eventually stops, or are there infinitely
many primes in each family? It turns out that each line continues indefinitely. We
will use a variation of Euclid’s proof to show that there are infinitely many primes
congruent to 3 modulo 4. Later in Section 9.2.1 we will discuss the 1 modulo 4
primes.

Theorem 6.2 (Primes 3 (Mod 4) Theorem). There are infinitely many primes that
are congruent to 3 modulo 4.

Proof. We suppose that we have already compiled a (finite) list of primes, all of
which are congruent to 3 modulo 4. Our goal is to make the list longer by finding
a new 3 modulo 4 prime. Repeating this process gives a list of any desired length,
thereby proving that there are infinitely many primes congruent to 3 modulo 4.

Suppose that our initial list of primes congruent to 3 modulo 4 is

3, p1, p2, . . . , pr.

Consider the number
A = 4p1p2 · · · pr + 3.
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(Notice that we don’t include the prime 3 in the product.) We know that A can be
factored into a product of primes, say

A = q1q2 · · · qs.

I claim that among the primes q1, q2, . . . , qs at least one of them must be congru-
ent to 3 modulo 4. This is the key step in the proof. Why is it true? Well, if not,
then q1, q2, . . . , qs would all be congruent to 1 modulo 4, in which case their prod-
uct A would be congruent to 1 modulo 4. But you can see from its definition that A
is clearly congruent to 3 modulo 4. Hence, at least one of q1, q2, . . . , qs must be
congruent to 3 modulo 4, say qi ≡ 3 (mod 4).

My second claim is that qi is not in the original list. Why not? Well, we
know that qi divides A, while it is clear from the definition of A that none of
3, p1, p2, . . . , pr divides A. Thus, qi is not in our original list, so we may add it
to the list and repeat the process. In this way we can create as long a list as we want,
which shows that there must be infinitely many primes congruent to 3 modulo 4.

We can use the ideas in the proof of the Primes 3 (Mod 4) Theorem to create a
list of primes congruent to 3 modulo 4. We need to start with a list containing at least
one such prime, and remember that 3 is not allowed in our list. So we start with the
list consisting of the single prime {7}. We compute A = 4 · 7 + 3 = 31. This A
is itself prime, so it is a new 3 (mod 4) prime to add to our list. The list now reads
{7, 31}, so we compute A = 4 · 7 · 31 + 3 = 871. This A is not prime; it factors as
A = 13 · 67. The proof of the theorem tells us that at least one of the prime factors
will be congruent to 3 modulo 4. In this case, the prime 67 is 3 (mod 4), so we add
it to our list. Next we take {7, 31, 67}, computeA = 4 · 7 · 31 · 67 + 3 = 58159, and
factor it as A = 19 · 3061. This time it is the first factor 19 that is 3 (mod 4), so our
list becomes {7, 31, 67, 19}. We will repeat the process one more time. So

A = 4 · 7 · 31 · 67 · 19 + 3 = 1104967 = 179 · 6173,

which gives the prime 179 to add to the list, {7, 31, 67, 19, 179}.
Why won’t the same idea work for 1 (mod 4) primes? This is not an idle ques-

tion; it’s almost as important to understand the limitations of an argument as it
is to understand why the argument is valid. So suppose we try to create a list of
1 (mod 4) primes. If we start with the list {p1, p2, . . . , pr}, we can compute the
number A = 4p1p2 · · · pr + 1, factor it, and try to find a prime factor that is a
new 1 (mod 4) prime. What happens if we start with the list {5}? We compute
A = 4 · 5 + 1 = 21 = 3 · 7, and neither of the factors 3 or 7 is a 1 (mod 4) num-
ber. So we’re stuck. The problem is that it is possible to multiply two 3 (mod 4)
numbers, such as 3 and 7, and end up with a 1 (mod 4) number like A = 21. In
general, we cannot use the fact that A ≡ 1 (mod 4) to deduce that some prime fac-
tor of A is 1 (mod 4), and that’s why this proof won’t work for primes congruent
to 1 modulo 4.

There is no particular reason to consider only congruences modulo 4. For exam-
ple, every number is congruent to either 0, 1, 2, 3, or 4 modulo 5; and except for 5
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itself, every prime number is congruent to one of 1, 2, 3, or 4 modulo 5. (Why?)
So we can break up the set of prime numbers into four families, depending on their
congruence class modulo 5. Here’s a list of the first few numbers in each family:

p ≡ 1 (mod 5) 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241

p ≡ 2 (mod 5) 2, 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197

p ≡ 3 (mod 5) 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223

p ≡ 4 (mod 5) 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239

Again there seem to be lots of primes in each family, so we might guess that each
contains infinitely many prime numbers.

In general, if we fix a modulus m and a number a, when might we expect
there to be infinitely many primes congruent to a modulo m? There is one situ-
ation in which this cannot happen, that is if a and m have a common factor. For
example, suppose that p is a prime and that p ≡ 35 (mod 77). This means that
p = 35 + 77y = 7(5 + 11y), so the only possibility is p = 7, and even p = 7 doesn’t
work. Generally, if p is a prime satisfying p ≡ a (mod m), then gcd(a,m) divides p.
So either gcd(a,m) = 1 or else gcd(a,m) = p, which means there is at most one
possibility for p. Thus, it is really only interesting to ask about primes congruent
to a modulo m if we assume that gcd(a,m) = 1. A famous theorem of Dirichlet
from 1837 says that with this assumption there are always infinitely many primes
congruent to a modulo m.

Theorem 6.3 (Dirichlet’s Theorem on Primes in Arithmetic Progressions3). Let a
and m be integers with gcd(a,m) = 1. Then there are infinitely many primes that
are congruent to a modulo m. That is, there are infinitely many prime numbers p
satisfying

p ≡ a (mod m).

Earlier in this chapter we proved Dirichlet’s Theorem for (a,m) = (3, 4), and
Exercise 6.2 asks you to do (a,m) = (5, 6). Unfortunately, the proof of Dirichlet’s
Theorem for all (a,m) is quite complicated, so we will not be able to give it here.
The proof uses advanced methods from calculus and, in fact, calculus with complex
numbers!

6.2 Counting Primes
How many prime numbers are there? We have already given the answer that there are
infinitely many. Of course, there are also infinitely many composite numbers. Which

3An arithmetic progression is a list of numbers with a common difference. For example, 2, 7, 12, 17,
22, . . . is an arithmetic progression with common difference 5. The numbers congruent to a modulo m
form an arithmetic progression with common difference m, which explains the name of Dirichlet’s The-
orem.
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are there more of, primes or composites? Despite the fact that there are infinitely
many of each, we can compare them by using a counting function.

First, let’s start with an easier question that will illustrate the underlying idea.
Our intuition says that approximately half of all numbers are even. We can put this
intuition onto firmer ground by looking at the even number counting function:

Even(x) = #{even numbers n with 1 ≤ n ≤ x}.

This function counts how many even numbers there are less than or equal to x. For
example,

Even(3) = 1, Even(4) = 2, Even(5) = 2, . . .

Even(100) = 50, Even(101) = 50, . . . .

To study what fraction of all numbers are even, we should look at the ratio Even(x)/x.
Thus,

Even(3)
3

=
1

3
,

Even(4)
4

=
1

2
,

Even(5)
5

=
2

5
, . . .

Even(100)
100

=
1

2
,

Even(101)
101

=
50

101
, . . . .

It is certainly not true that the ratio Even(x)/x is always equal to 1
2 , but it is true

that when x is large Even(x)/x will be close to 1
2 . If you have taken a little bit of

calculus, you will recognize that we are trying to say that

lim
x→∞

Even(x)
x

=
1

2
.

This statement4 just means that as x gets larger and larger the distance between
Even(x)/x and 1

2 gets closer and closer to 0.
Now let’s do the same thing for prime numbers. The counting function for prime

numbers is called π(x), where “π” is an abbreviation for “prime.” (This use of the
Greek letter π has nothing to do with the number 3.14159 . . . .) Thus

π(x) = #{primes p with p ≤ x}

For example, π(10) = 4, since the primes less than 10 are 2, 3, 5, and 7. Similarly,
the primes less than 60 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

so π(60) = 17. Here’s a short table giving the values of π(x) and the ratio π(x)/x.

x 10 25 50 100 200 500 1000 5000

π(x) 4 9 15 25 46 95 168 669

π(x)/x 0.400 0.360 0.300 0.250 0.230 0.190 0.168 0.134

4This mathematical statement is read “the limit, as x goes to infinity, of Even(x)/x is equal to 1/2.”
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It certainly looks like the ratio π(x)/x is getting smaller and smaller as x gets larger.
Assuming that this pattern continues, we would be justified in saying that “most
numbers are not prime.” This raises the further question of just how rapidly π(x)/x
decreases. The answer is provided by the following celebrated result, which is one
of the pinnacles of nineteenth-century number theory.

Theorem 6.4 (The Prime Number Theorem). When x is large, the number of primes
less than x is approximately equal to x/ ln(x). In other words,

lim
x→∞

π(x)

x/ ln(x)
= 1.

The quantity ln(x), which is called the natural logarithm of x, is the loga-
rithm of x to the base e = 2.7182818 . . . .5 Table 6.1 compares the values of π(x)
and x/ ln(x). By examining similar, but shorter, tables around 1800, Carl Friedrich

x 10 100 1000 104 106 109

π(x) 4 25 168 1229 78498 50847534

x/ ln(x) 4.34 21.71 144.76 1085.74 72382.41 48254942.43

π(x)/(x/ ln(x)) 0.921 1.151 1.161 1.132 1.084 1.054

Table 6.1: Some values fo π(x) and x/ ln(x)

Gauss and Adrien-Marie Legendre independently were led to conjecture that the
Prime Number Theorem should be true. Almost a century passed before a proof
was found. In 1896 Jacques Hadamard and Ch. de la Vallée Poussin each managed
to prove the Prime Number Theorem. Just as with Dirichlet’s Theorem, the proof
uses methods from complex analysis (i.e., calculus with complex numbers). More
recently, in 1948, Paul Erdös and Atle Selberg found an “elementary” proof of the
Prime Number Theorem. Their proof is elementary in the sense that it does not re-
quire methods from complex analysis, but it is by no means easy, so we are not able
to present it here.

It is somewhat surprising that to prove theorems about whole numbers, such as
Dirichlet’s Theorem and the Prime Number Theorem, mathematicians have to use
tools from calculus. An entire branch of mathematics called Analytic Number The-
ory is devoted to proving theorems in number theory using calculus methods.

There are many famous unsolved problems involving prime numbers. We con-
clude this chapter by describing three such problems with a little bit of their history.

5If you are not familiar with natural logarithms, you can just think of ln(x) as being approximately
equal to 2.30259 log(x), where log(x) is the usual logarithm to the base 10. The natural logarithm is
so important in mathematics and science that most scientific calculators have a special button to compute
it. The natural logarithm appears “naturally” in problems involving compound growth, such as popula-
tion growth, interest payments, and decay of radioactive materials. It is a wonderful fact that this widely
applicable function also appears in the purely mathematical problem of counting prime numbers.
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Conjecture 6.5 (Goldbach’s Conjecture). Every even number n ≥ 4 is a sum of two
primes.

Goldbach proposed this conjecture to Euler in a letter dated June 7, 1742. It is
not hard to check that Goldbach’s Conjecture is true for the first few even numbers.
Thus,

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, 12 = 5 + 7,

14 = 3 + 11, 16 = 3 + 13, 18 = 5 + 13, 20 = 7 + 13 . . . .

This verifies Goldbach’s Conjecture for all even numbers up to 20. Using computers,
Goldbach’s conjecture has been checked for all even numbers up to 2 · 1010. Even
better, mathematicians have been able to prove results that are similar to Goldbach’s
Conjecture. These suggest that Goldbach’s Conjecture is also true. One such theorem
was proved by I.M. Vinogradov in 1937. He showed that every (sufficiently large)
odd number n is a sum of three primes. A second theorem, proved by Chen Jing-run
in 1966, says that every (sufficiently large) even number is a sum of two numbers
p+ a, where p is a prime number and a is either prime or a product of two primes.

Conjecture 6.6 (The Twin Primes Conjecture). There are infinitely many prime
numbers p such that p+ 2 is also prime.

The list of prime numbers is quite irregular, and there are often very large gaps
between consecutive primes. For example, there are 111 composite numbers follow-
ing the prime 370,261. On the other hand, there seem to be quite a few instances in
which a prime p is followed almost immediately by another prime p+ 2. (Of course,
p+ 1 cannot be prime, since it is even.) These pairs are called twin primes, and the
Twin Primes Conjecture says that the list of twin primes should never end. The first
few twin primes are

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73),

(101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313).

Just as with Goldbach’s Conjecture, people have used computers to compile long
lists of twin primes, including, for example, the tremendous pair consisting of

242206083 · 238880 − 1 and 242206083 · 238880 + 1.

As further evidence for the validity of the conjecture, Chen Jing-run proved in 1966
that there are infinitely many primes p such that p+ 2 is either a prime or a product
of two primes.

Conjecture 6.7 (The N2 + 1 Conjecture). There are infinitely many primes of the
form N2 + 1.

IfN is odd, thenN2+1 is even, so it cannot be prime (unlessN = 1). However,
ifN is even, thenN2+1 seems frequently to be prime. TheN2 + 1 Conjecture says
that this should happen infinitely often. The first few primes of this form are
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22 + 1 = 5, 42 + 1 = 17, 62 + 1 = 37, 102 + 1 = 101,

142 + 1 = 197, 162 + 1 = 257, 202 + 1 = 401, 242 + 1 = 577,

262 + 1 = 677, 362 + 1 = 1297, 402 + 1 = 1601.

The best result currently known was proved by Henryk Iwaniec in 1978. He showed
that there are infinitely many values of N for which N2 + 1 is either prime or a
product of two primes.

Although no one knows if there are infinitely many twin primes or infinitely
many primes of the form N2 + 1, mathematicians have guessed what their counting
functions should look like. Let

Twin(x) = #{primes p ≤ x such that p+ 2 is also prime},
Sq(x) = #{primes p ≤ x such that p has the form N2 + 1}.

Then it is conjectured that

lim
x→∞

Twin(x)
x/(lnx)2

= C and lim
x→∞

Sq(x)√
x/ lnx

= C ′.

The numbers C and C ′ are a bit complicated to describe precisely. For example, C
is approximately equal to 0.66016.

Exercises
6.1. Start with the list consisting of the single prime {5} and use the ideas in Euclid’s proof
that there are infinitely many primes to create a list of primes until the numbers get too large
for you to easily factor. (You should be able to factor any number less than 1000.)

6.2. (a) Show that there are infinitely many primes that are congruent to 5 modulo 6. [Hint.
Use A = 6p1p2 · · · pr + 5.]

(b) Try to use the same idea (with A = 5p1p2 · · · pr + 4) to show that there are infinitely
many primes congruent to 4 modulo 5. What goes wrong? In particular, what happens if
you start with {19} and try to make a longer list?

6.3. Let p be an odd prime number. Write the quantity

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

p− 1

as a fraction Ap/Bp in lowest terms.
(a) Find the value of Ap (mod p) and prove that your answer is correct.
(b) Make a conjecture for the value of Ap (mod p2).
(c) Prove your conjecture in (b). (This is quite difficult.)

6.4. Let m be a positive integer, let a1, a2, . . . , aφ(m) be the integers between 1 and m that
are relatively prime to m, and write the quantity

1

a1
+

1

a2
+

1

a3
+ · · ·+ 1

aφ(m)

as a fraction Am/Bm in lowest terms.
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(a) Find the value of Am (mod m) and prove that your answer is correct.
(b) Generate some data for the value of Am (mod m2), try to find patterns, and then try to

prove that the patterns you observe are true in general. In particular, when is Am ≡ 0
(mod m2)?

6.5. Recall that the number n factorial, which is written n!, is equal to the product

n! = 1 · 2 · 3 · · · (n− 1) · n.

(a) Find the highest power of 2 dividing each of the numbers 1!, 2!, 3!, . . . , 10!.
(b) Formulate a rule that gives the highest power of 2 dividing n!. Use your rule to compute

the highest power of 2 dividing 100! and 1000!.
(c) Prove that your rule in (b) is correct.
(d) Repeat (a), (b), and (c), but this time for the largest power of 3 dividing n!.
(e) Try to formulate a general rule for the highest power of a prime p that divides n!. Use

your rule to find the highest power of 7 dividing 1000! and the highest power of 11
dividing 5000!.

(f) Using your rule from (e) or some other method, prove that if p is prime and if pm di-
vides n! then m < n/(p − 1). (This inequality is very important in many areas of
advanced number theory.)

6.6. (a) Find a prime p satisfying p ≡ 1338 (mod 1115). Are there infinitely many such
primes?

(b) Find a prime p satisfying p ≡ 1438 (mod 1115). Are there infinitely many such
primes?

6.7. (a) Explain why the statement “one-fifth of all numbers are congruent to 2 modulo 5”
makes sense by using the counting function

F (x) = #{positive numbers n ≤ x satisfying n ≡ 2 (mod 5)}.

(b) Explain why the statement “most numbers are not squares” makes sense by using the
counting function

2(x) = #{square numbers less than x}.
Find a simple function of x that is approximately equal to 2(x) when x is large.

6.8. (a) Check that every even number between 70 and 100 is a sum of two primes.
(b) How many different ways can 70 be written as a sum of two primes 70 = p + q with

p ≤ q? Same question for 90? Same question for 98?

6.9. The number n! (n factorial) is the product of all numbers from 1 to n. For example,
4! = 1 · 2 · 3 · 4 = 24 and 7! = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5040. If n ≥ 2, show that all the
numbers

n! + 2, n! + 3, n! + 4, . . . , n! + (n− 1), n! + n

are composite numbers.

6.10. (a) Do you think there are infinitely many primes of the form N2 + 2?
(b) Do you think there are infinitely many primes of the form N2 − 2?
(c) Do you think there are infinitely many primes of the form N2 + 3N + 2?
(d) Do you think there are infinitely many primes of the form N2 + 2N + 2?
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6.11. The Prime Number Theorem says that the number of primes smaller than x is approx-
imately x/ ln(x). This exercise asks you to explain why certain statements are plausible. So
do not try to write down formal mathematical proofs. Instead, explain as convincingly as you
can in words why the Prime Number Theorem makes each of the following statements rea-
sonable.

(a) If you choose a random integer between 1 and x, then the probability that you chose a
prime number is approximately 1/ ln(x).

(b) If you choose two random integers between 1 and x, then the probability that both of
them are prime numbers is approximately 1/(lnx)2.

(c) The number of twin primes between 1 and x should be approximately x/(lnx)2. [No-
tice that this explains the conjectured limit formula for the twin prime counting func-
tion Twin(x).]

6.12. (This exercise is for people who have taken some calculus.) The Prime Number Theorem
says that the counting function for primes, π(x), is approximately equal to x/ ln(x) when x is
large. It turns out that π(x) is even closer to the value of the definite integral

∫ x
2
dt/ ln(t).

(a) Show that

lim
x→∞

(∫ x

2

dt

ln(t)

) / (
x

ln(x)

)
= 1.

This means that
∫ x
2
dt/ ln(t) and x/ ln(x) are approximately the same when x is large.

[Hint. Use L’Hôpital’s rule and the Second Fundamental Theorem of Calculus.]
(b) It can be shown that∫

dt

ln(t)
= ln(ln(t)) + ln(t) +

(ln(t))2

2 · 2! +
(ln(t))3

3 · 3! +
(ln(t))4

4 · 4! + · · · .

Use this series to compute numerically the value of
∫ x
2
dt/ ln(t) for x = 10, 100, 1000,

104, 106, and 109. Compare the values you get with the values of π(x) and x/ ln(x)
given in the table on page 63. Which is closer to π(x), the integral

∫ x
2
dt/ ln(t) or the

function x/ ln(x)? (This problem can be done with a simple calculator, but you’ll prob-
ably prefer to use a computer or programmable calculator.)

(c) Differentiate the series in (b) and show that the derivative is actually equal to 1/ ln(t).
[Hint. Use the series for ex.]
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Chapter 7

Number Theory — Lecture #7

7.1 The Fibonacci Sequence
In 1202 Leonardo of Pisa (also known as Leonardo Fibonacci) published his Liber
Abbaci, a highly influential book of practical mathematics. In this book Leonardo
introduced the elegant Hindu/Arabic numerical system (the digits 1, 2, . . . , 9 and a
symbol/placeholder for 0) to Europeans who were still laboring under the handicap
of Roman numerals. Leonardo’s book also contains the following curious Rabbit
Problem.

In the first month, start with a pair of baby rabbits. One month later they
have grown up. The following month the pair of grown rabbits produce
a pair of babies, so now we have one pair of grown rabbits and one
pair of baby rabbits. Each month thereafter, each pair of grown rabbits
produces a new pair of babies, and every pair of baby rabbits grows up.
How many pairs of rabbits will there be at the end of one year?

The first few months of rabbit procreation are illustrated in Figure 7.1, where
each small circle in Figure 7.1 represents a pair of baby rabbits and each large circle
represents a pair of adult rabbits. If we let

Fn = Number of pairs of rabbits after n months,

and if we remember that each month the baby pairs grow up and that each month
the grown pairs produce new baby pairs, we can compute the number of pairs of
rabbits (baby and adult) in each subsequent month. Thus F1 = 1 (one baby pair) and
F2 = 1 (one adult pair) and F3 = 2 (one adult pair plus a new baby pair) and F4 = 3
(two adult pairs plus a new baby pair). Continuing with this computation, we find
that This answers Fibonacci’s question. At the end of the year, after the 12th month
is completed, there are 233 pairs of rabbits. The Fibonacci sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, . . .

Draft: January 2, 2020 69 c©2018, J. Silverman



70 7. Number Theory — Lecture #7
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Figure 7.1: The first few months of rabbit procreation

arising from Fibonacci’s Rabbit Problem has intrigued people from the thirteenth
century up to the present day.1

Suppose that we want to extend our list of Fibonacci numbers Fn beyond the
12th month. Looking at our list, we see that each Fibonacci number is simply the
sum of the previous two Fibonacci numbers. In symbols, this becomes the formula

Fn = Fn−1 + Fn−2.

Notice that this isn’t really a formula for Fn, because it doesn’t directly give the
value of Fn. Instead it gives a rule telling us how to compute the nth Fibonacci
number from the previous numbers. The fancy mathematical word for this sort of
rule is a recursion or a recursive formula.

We used the recursive formula for Fn to create Table 7.2 giving the first 30 Fi-
bonacci numbers. The Fibonacci numbers appear to grow very rapidly. Indeed, the
31st Fibonacci number is already larger than 1 million,

F31 = 1,346,269;

and in 45 months (less than 4 years),

F45 = 1,134,903,170,

and we have more than 1 billion pairs of rabbits! Now look at Table 7.3 and notice
how large the numbers become before we reach even the 200th Fibonacci number.

Number theory is all about patterns, but how can we possibly find a pattern in
numbers that grow so rapidly? One thing we can do is try to discover just how fast

1There is even a journal called the Fibonacci Quarterly that was started in 1962 and is devoted to
Fibonacci’s sequence and its generalizations.
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F1 = 0 Adult Pairs + 1 Baby Pair = 1 Pair
F2 = 1 Adult Pair + 0 Baby Pairs = 1 Pair
F3 = 1 Adult Pair + 1 Baby Pair = 2 Pairs
F4 = 2 Adult Pairs + 1 Baby Pair = 3 Pairs
F5 = 3 Adult Pairs + 2 Baby Pairs = 5 Pairs
F6 = 5 Adult Pairs + 3 Baby Pairs = 8 Pairs
F7 = 8 Adult Pairs + 5 Baby Pairs = 13 Pairs
F8 = 13 Adult Pairs + 8 Baby Pairs = 21 Pairs
F9 = 21 Adult Pairs + 13 Baby Pairs = 34 Pairs
F10 = 34 Adult Pairs + 21 Baby Pairs = 55 Pairs
F11 = 55 Adult Pairs + 34 Baby Pairs = 89 Pairs
F12 = 89 Adult Pairs + 55 Baby Pairs = 144 Pairs
F13 = 144 Adult Pairs + 89 Baby Pairs = 233 Pairs.

Table 7.1: The first year of rabbit procreation

the Fibonacci numbers are growing. For example, how much larger than its prede-
cessor is each successive Fibonacci number? This is measured by the ratio Fn/Fn−1.
Table 7.4 gives the value of Fn/Fn−1. for all n ≤ 18.

It looks like the ratio Fn/Fn−1 is getting closer and closer to some number
around 1.61803. It’s hard to guess exactly what number this is, so let’s see how
we might figure it out.

The last table suggests that Fn is approximately equal to αFn−1 for some fixed
number α whose value we don’t know. So we write

Fn ≈ αFn−1,

where the squiggly equals sign means “approximately equal to.” The same reasoning
tells us that

Fn−1 ≈ αFn−2,

and if we substitute this into Fn ≈ αFn−1, we get

Fn ≈ αFn−1 ≈ α2Fn−2.

So we suspect that Fn ≈ α2Fn−2 and Fn−1 ≈ αFn−2. We also know the Fi-
bonacci recursive equation Fn = Fn−1 + Fn−2, so we find that

α2Fn−2 ≈ αFn−2 + Fn−2.

Dividing by Fn−2 and moving everything to one side yields the equation

α2 − α− 1 ≈ 0.
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n Fn

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

9 34

10 55

n Fn

11 89

12 144

13 233

14 377

15 610

16 987

17 1,597

18 2,584

19 4,181

20 6,765

n Fn

21 10,946

22 17,711

23 28,657

24 46,368

25 75,025

26 121,393

27 196,418

28 317,811

29 514,229

30 832,040

Table 7.2: The Fibonacci Numbers Fn

We know how to solve an equation like this: use the quadratic formula.

α =
1 +
√
5

2
or

1−
√
5

2

We were looking for the value ofα, but we seem to have hit the jackpot and found two
values! Both of these values satisfy the equation α2 = α+ 1, so for any number n,
they both satisfy the equation

αn = αn−1 + αn−2.

This looks a lot like the Fibonacci recursive equation Fn = Fn−1 + Fn−2. In other
words, if we let Gn = αn for either of the values of α listed above, then

Gn = Gn−1 +Gn−2.

In fact, we can do even better by using both of the values, so we let α be the first
value and β be the second value,

α =
1 +
√
5

2
and β =

1−
√
5

2
.

We now consider the sequence

Hn = Aαn +Bβn, n = 1, 2, 3, . . . .

It has the property
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F60 = 1,548,008,755,920

F74 = 1,304,969,544,928,657

F88 = 1,100,087,778,366,101,931

F103 = 1,500,520,536,206,896,083,277

F117 = 1,264,937,032,042,997,393,488,322

F131 = 1,066,340,417,491,710,595,814,572,169

F146 = 1,454,489,111,232,772,683,678,306,641,953

F160 = 1,226,132,595,394,188,293,000,174,702,095,995

F174 = 1,033,628,323,428,189,498,226,463,595,560,281,832

F189 = 1,409,869,790,947,669,143,312,035,591,975,596,518,914.

Table 7.3: A list of some large Fibonacci numbers

F3/F2 = 2.00000

F4/F3 = 1.50000

F5/F4 = 1.66666

F6/F5 = 1.60000

F7/F6 = 1.62500

F8/F7 = 1.61538

F9/F8 = 1.61904

F10/F9 = 1.61764

F11/F10 = 1.61818

F12/F11 = 1.61797

F13/F12 = 1.61805

F14/F13 = 1.61802

F15/F14 = 1.61803

F16/F15 = 1.61803

F17/F16 = 1.61803

F18/F17 = 1.61803

Table 7.4: Values of the ratio of successive Fibonacci numbers

Hn−1 +Hn−2 = (Aαn−1 +Bβn−1) + (Aαn−2 +Bβn−2)

= A(αn−1 + αn−2) +B(βn−1 + βn−2)

= Aαn +Bβn

= Hn,

so Hn satisfies the same recursive formula as the Fibonacci sequence, and we are
free to choose the numbers A and B to have any values that we want.

The idea now is to choose A and B so that the Hn sequence and the Fibonacci
sequence start with the same two values. In other words, we want to choose A and B
such that

H1 = F1 = 1 and H2 = F2 = 1.

This means we need to solve

Aα+Bβ = 1 and Aα2 +Bβ2 = 1.

(Remember that α and β are specific numbers.) These two equations are easy to
solve. We use α2 = α+ 1 and β2 = β + 1 to rewrite the second equation as
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A(α+ 1) +B(β + 1) = 1.

Subtracting the first equation from this gives

A+B = 0, so B = −A.

Substituting B = −A into the first equation gives

Aα−Aβ = 1,

which lets us solve for
A = 1/(α− β) = 1/

√
5.

Also B = −A = −1/
√
5, which gives us the formula

Hn = (αn − βn)/
√
5.

The culmination of our calculations is the following beautiful formula for the
nth term of the Fibonacci sequence. It is named after Binet, who published it in 1843,
although the formula was known to Euler and to Daniel Bernoulli at least 100 years
earlier.

Theorem 7.1 (Binet’s Formula). The Fibonacci sequence Fn is the sequence de-
scribed by the recursion

F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n = 3, 4, 5, . . . .

Then the nth term of the Fibonacci sequence is given by the formula

Fn =
1√
5

{(
1 +
√
5

2

)n

−

(
1−
√
5

2

)n}
.

Proof. For each number n = 1, 2, 3, . . . , let Hn be the number

Hn =
1√
5

{(
1 +
√
5

2

)n

−

(
1−
√
5

2

)n}
.

We will prove by induction on n that Hn = Fn for every number n.
First we check that

H1 =
1√
5

{(
1 +
√
5

2

)
−

(
1−
√
5

2

)}
=

1√
5
·
√
5 = 1

and

H2 =
1√
5


(
1 +
√
5

2

)2

−

(
1−
√
5

2

)2


=
1√
5

{
6 + 2

√
5

4
− 6− 2

√
5

4

}
=

1√
5
· 4
√
5

4
= 1.
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This shows that H1 = F1 and H2 = F2.
Now suppose that n ≥ 3 and that Hi = Fi for every value of i between 1

and n− 1. In particular, Hn−1 = Fn−1 and Hn−2 = Fn−2. We need to prove that
Hn = Fn. But we have already checked that

Hn = Hn−1 +Hn−2,

and we know from the definition of the Fibonacci sequence that

Fn = Fn−1 + Fn−2,

so we see thatHn = Fn. This completes our induction proof thatHn = Fn for every
value of n.

7.2 The Fibonacci Sequence Modulo m

What happens to the numbers in the Fibonacci sequence if we reduce them mod-
ulo m? There are only finitely many different numbers modulo m, so the values do
not get larger and larger. As always, we start by computing some examples.

Here’s what the Fibonacci sequence modulo m looks like for the first few values
of m.

Fn (mod 2) 1,1,0,1,1,0,1,1,0,1,1,0. . .
Fn (mod 3) 1,1,2,0,2,2,1,0,1,1,2,0,2,2,1. . .
Fn (mod 4) 1,1,2,3,1,0,1,1,2,3,1,0,1,1,2. . .
Fn (mod 5) 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2. . .
Fn (mod 6) 1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3. . .

Notice in each case that the Fibonacci sequence eventually starts to repeat. In other
words, when we compute the Fibonacci sequence modulo m, we eventually find
two consecutive 1’s appearing, and as soon this happens, the sequence repeats. (We
leave as an exercise for you to prove that this always happens.) Thus there is an
integer N ≥ 1 such that

Fn+N ≡ Fn (mod m) for all n = 1, 2, . . . .

The smallest such integer N is called the period of the Fibonacci sequence mod-
ulo m. We denote it by N(m). The preceding examples give us the following short
table:

m 2 3 4 5 6

N(m) 3 8 6 20 24

The period of the Fibonacci sequence modulo m exhibits many interesting pat-
terns, but our brief table is much too short to use in making conjectures. For now we
concentrate on the case that the modulus is a prime p. Table 7.5 lists the period N(p)
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for all primes p ≤ 229. Looking at the first two columns of the table, we immediately
notice the five values

N(11) = 10, N(31) = 30, N(41) = 40, N(61) = 60, N(71) = 70,

so we might be tempted to conjecture that if p ≡ 1 (mod 10), then N(p) = p − 1.
Unfortunately, this conjecture is not correct, since later entries in the table include

N(101) = 50, N(151) = 50, N(181) = 90, and N(211) = 42.

However, we observe that in all cases the period N(p) divides p − 1. This suggests
that we look at the list of the primes p satisfying N(p) | p− 1,

11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149,

151, 179, 181, 191, 199, 211, 229, . . .

The pattern is obvious. These are the primes that are congruent to 1 or 9 modulo 10,
which is the same as the set of primes that are congruent to 1 or 4 modulo 5. So we
are led to conjecture that

p ≡ 1 or 4 (mod 5)
?

=⇒ N(p) | p− 1. (7.1)

We sketch a proof of this conjecture in Section 9.2.2, although we will not have time
to discuss it in class.

This concludes our discussion about the period of the Fibonacci sequence mod-
ulo m, but there are many other questions to ask and many more patterns to be
discovered. For example:

Are there infinitely many primes satisfying N(p) = p− 1?

This is not currently known! In Exercises 7.12–7.15 you will be asked to investigate
further the values of N(m) for both prime and composite values of m.

7.3 The Fibonacci Sequence: Supplement

We include some additional material that will not be covered in class. And no, it
won’t be on the exam, either!

7.3.1 An Historical Interlude

The number
1 +
√
5

2
= 1.61803 . . .
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p N(p)
2 3
3 8
5 20
7 16

11 10
13 28
17 36
19 18
23 48
29 14

p N(p)
31 30
37 76
41 40
43 88
47 32
53 108
59 58
61 60
67 136
71 70

p N(p)
73 148
79 78
83 168
89 44
97 196

101 50
103 208
107 72
109 108
113 76

p N(p)
127 256
131 130
137 276
139 46
149 148
151 50
157 316
163 328
167 336
173 348

p N(p)
179 178
181 90
191 190
193 388
197 396
199 22
211 42
223 448
227 456
229 114

Table 7.5: The Period of the Fibonacci Sequence Modulo the Prime p

is often called the Golden Ratio, although it has many other names, including for
example the Divine Proportion. The first recorded definition appears in Euclid’s El-
ements, where it was called the extreme and mean ratio.2 Various authors have at-
tributed aesthetic merit to artistic compositions built on the divine proportion. For
example, it has been suggested that the Parthenon was designed so that its exterior
dimensions are in the golden ratio. Here is a small rectangle whose sides are

in the golden ratio, and here is a larger divinely proportioned rectangle . Do

you find the proportions of these rectangles to be especially pleasing to the eye?

7.3.2 General Linear Recurrences
The Fibonacci sequence is an example of a Linear Recurrence Sequence. The word
linear in this context means that the nth term of the sequence is a linear combination
of some of the previous terms. Here are examples of some other linear recurrence
sequences:

An = 3An−1 + 10An−2 A1 = 1 A2 = 3

Bn = 2Bn−1 − 4Bn−2 B1 = 0 B2 = −2
Cn = 4Cn−1 − Cn−2 − 6Cn−3 C1 = 0 C2 = 0 C3 = 1

The method that we used to derive Binet’s Formula for the nth Fibonacci number can
be used, mutatis mutandis,3 to find a formula for the nth term of any linear recurrence

2Euclid’s definition says that “a straight line is said to have been cut in extreme and mean ratio when,
as the whole line is to the greater segment, so is the greater to the lesser. This means that the line segment
of length L is split into two pieces, the larger having length a and the smaller length b, these pieces satisfy
L
b

= b
a

. Since L = a + b, we can rewrite this as L
b

= b
L−b . Clearing the denominators and bringing

everything to one side of the equation gives L2 − bL − b2 = 0, and then the quadratic formula tells us
that L

b
= 1+

√
5

2
equals to golden ratio.

3A useful Latin phrase meaning “the necessary changes having been made.” The implication, of course,
is that the necessary changes are relatively minor.
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sequence. Of course, not all recurrence sequences are linear. Here are some examples
of recurrence sequences that are not linear:

Dn = Dn−1 +D2
n−2 D1 = 1 D2 = 1

En = En−1En−2 + En−3 E1 = 1 E2 = 2 E3 = 1

In general, there is no simple expression for the nth term of a nonlinear recurrence
sequence. This does not mean that nonlinear sequences are uninteresting, quite the
contrary, but it does mean that they are much harder to analyze than linear recurrence
sequences.

Exercises
7.1. (a) Look at a table of Fibonacci numbers and compare the values of Fm and Fmn for

various choices ofm and n. Try to find a pattern. [Hint. Look for a divisibility pattern.]
(b) Prove that the pattern you found in (a) is true.
(c) If gcd(m,n) = 1, try to find a stronger pattern involving the values of Fm, Fn, and

Fmn.
(d) Is the pattern that you found in (c) still true if gcd(m,n) 6= 1?
(e) Prove that the pattern you found in (c) is true.

7.2. (a) Find as many square Fibonacci numbers as you can. Do you think that there are
finitely many or infinitely many square Fibonacci numbers?

(b) Find as many triangular Fibonacci numbers as you can. Do you think there are finitely
many or infinitely many triangular Fibonacci numbers?

7.3. (a) Make a list of Fibonacci numbers Fn that are prime.
(b) Using your data, fill in the box to make an interesting conjecture:

If Fn is prime, then n is .

[Hint. Actually, your conjecture should be that the statement is true with one exception.]
(c) Does your conjecture in (b) work in the other direction? In other words, is the following

statement true, where the box is the same as in (b)?

If n is , then Fn is prime.

(d) Prove that your conjecture in (b) is correct.

7.4. The Fibonacci numbers satisfy many amazing identities.
(a) Compute the quantity F 2

n+1 − F 2
n−1 for the first few integers n = 2, 3, 4, . . . and try to

guess its value. [Hint. It is equal to a Fibonacci number.] Prove that your guess is correct.
(b) Same question (and same hint!) for the quantity F 3

n+1 + F 3
n − F 3

n−1.
(c) Same question (and almost the same hint) for the quantity F 2

n+2 − F 2
n−2.

(d) Same question (but not the same hint!) for the quantity Fn−1Fn+1 − F 2
n .

(e) Same question for 4FnFn−1 + F 2
n−2. [Hint. Compare the value with the square of a

Fibonacci number.]
(f) Same question for the quantity F 4

n+4 − 4F 4
n+3 − 19F 4

n+2 − 4F 4
n+1 + F 4

n .
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7.5. The Lucas sequence is the sequence of numbers Ln given by the rules L1 = 1, L2 = 3,
and Ln = Ln−1 + Ln−2.

(a) Write down the first 10 terms of the Lucas sequence.
(b) Find a simple formula for Ln, similar to Binet’s Formula for the Fibonacci number Fn.
(c) Compute the value of L2

n − 5F 2
n for each 1 ≤ n ≤ 10. Make a conjecture about this

value. Prove that your conjecture is correct.
(d) Show that L3n and F3n are even for all values of n. Combining this fact with the for-

mula you discovered in (c), find an interesting equation satisfied by the pair of numbers(
1
2
L3n,

1
2
F3n

)
. Relate your answer to Exercise 1.7.

7.6. Write down the first few terms for each of the following linear recursion sequences, and
then find a formula for the nth term similar to Binet’s formula for the nth Fibonacci number.
Be sure to check that your formula is correct for the first few values.

(a) An = 3An−1 + 10An−2 A1 = 1 A2 = 3
(b) Bn = 2Bn−1 − 4Bn−2 B1 = 0 B2 = −2
(c) Cn = 4Cn−1 − Cn−2 − 6Cn−3 C1 = 0 C2 = 0 C3 = 1

[Hint. For (b), you’ll need to use complex numbers. For (c), the cubic polynomial has some
small integer roots.]

7.7. Let Pn be the linear recursion sequence defined by

Pn = Pn−1 + 4Pn−2 − 4Pn−3, P1 = 1, P2 = 9, P3 = 1.

(a) Write down the first 10 terms of Pn.
(b) Does the sequence behave in a strange manner?
(c) Find a formula for Pn that is similar to Binet’s formula. Does your formula for Pn

explain the strange behavior that you noted in (b)?

7.8. (This question requires some elementary calculus.)
(a) Compute the value of the limit

lim
n→∞

log(Fn)

n
.

Here Fn is the nth Fibonacci number.
(b) Compute limn→∞(log(An))/n, where An is the sequence in Exercise 7.6(a).
(c) Compute limn→∞(log(|Bn|))/n, where Bn is the sequence in Exercise 7.6(b).
(d) Compute limn→∞(log(Cn))/n, where Cn is the sequence in Exercise 7.6(c).

7.9. Write down the first few terms for each of the following nonlinear recursion sequences.
Can you find a simple formula for the nth term? Can you find any patterns in the list of terms?
(a) Dn = Dn−1 +D2

n−2 D1 = 1 D2 = 1
(b) En = En−1En−2 + En−3 E1 = 1 E2 = 2 E3 = 1

7.10. Prove that the Fibonacci sequence modulo m eventually repeats with two consecu-
tive 1’s. [Hint. The Fibonacci recursion can also be used backwards. Thus if you know the
values of Fn and Fn+1, then you can recover the value of Fn−1 using Fn−1 = Fn+1 − Fn.]

7.11. Let N = N(m) be the period of Fibonacci sequence modulo m.
(a) What is the value of FN modulo m? What is the value of FN−1 modulo m?
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(b) Write out the Fibonacci sequence modulo m in the reverse direction,

FN−1, FN−2, FN−3, . . . F3, F2, F1 (mod m).

Do this for several values of m, and try to find a pattern. [Hint. The pattern will be more
evident if you take some of the values modulo m to lie between −m and −1, instead of
between 1 and m.]

(c) Prove that the pattern you found in (b) is correct.

7.12. The material in Table 7.6 suggests that ifm ≥ 3 then the periodN(m) of the Fibonacci
sequence modulom is always an even number. Prove that this is true, or find a counterexample.

7.13. Let N(m) be the period of the Fibonacci sequence modulo m.
(a) Use Table 7.6 to compare the values of N(m1), N(m2), and N(m1m2) for various

values of m1 and m2, especially for gcd(m1,m2) = 1.
(b) Make a conjecture relating N(m1), N(m2), and N(m1m2) when m1 and m2 satisfy

gcd(m1,m2) = 1.
(c) Use your conjecture from (b) to guess the values of N(5184) and N(6887). [Hint.

6887 = 71 · 97.]
(d) Prove that your conjecture in (b) is correct.

m N(m)

1 —
2 3
3 8
4 6
5 20
6 24
7 16
8 12
9 24

10 60
11 10
12 24
13 28
14 48
15 40
16 24
17 36
18 24
19 18
20 60

m N(m)

21 16
22 30
23 48
24 24
25 100
26 84
27 72
28 48
29 14
30 120
31 30
32 48
33 40
34 36
35 80
36 24
37 76
38 18
39 56
40 60

m N(m)

41 40
42 48
43 88
44 30
45 120
46 48
47 32
48 24
49 112
50 300
51 72
52 84
53 108
54 72
55 20
56 48
57 72
58 42
59 58
60 120

m N(m)

61 60
62 30
63 48
64 96
65 140
66 120
67 136
68 36
69 48
70 240
71 70
72 24
73 148
74 228
75 200
76 18
77 80
78 168
79 78
80 120

m N(m)

81 216
82 120
83 168
84 48
85 180
86 264
87 56
88 60
89 44
90 120
91 112
92 48
93 120
94 96
95 180
96 48
97 196
98 336
99 120
100 300

Table 7.6: The Period N(m) of the Fibonacci Sequence Modulo m

7.14. Let N(m) be the period of the Fibonacci sequence modulo m.
(a) Use Table 7.6 to compare the values of N(p) and N(p2) for various primes p.
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(b) Make a conjecture relating the values of N(p) and N(p2) when p is a prime.
(c) More generally, make a conjecture relating the value of N(p) to the values of all the

higher powers N(p2), N(p3), N(p4). . . .
(d) Use your conjectures from (b) and (c) to guess the values of N(2209), N(1024), and

N(729). [Hint. 2209 = 472. You can factor 1024 and 729 yourself!]
(e) Try to prove your conjectures in (b) and/or (c).

7.15. Let N(m) be the period of the Fibonacci sequence modulo m. In the text we ana-
lyzed N(p) when p is a prime satisfying p ≡ 1 or 4 modulo 5. This exercise asks you to
consider the other primes.

(a) Use Table 7.5 on page 77 to make a list of the periods N(p) of the Fibonacci sequence
modulo p when p is a prime number satisfying p ≡ 2 or 3 modulo 5.

(b) If p ≡ 1 or 4 modulo 5, we proved that N(p) divides p− 1. Formulate a similar conjec-
ture for the primes that satisfy p ≡ 2 or 3 modulo 5.

(c) Try to prove your conjecture in (b). (This is probably hard using only the tools that you
currently know.)

(d) The one prime that we have not considered is p = 5. For various values of c, look at the
sequence

n · cn−1 (mod 5), n = 1, 2, 3, . . . ,

and compare it with the Fibonacci sequence modulo 5. Make a conjecture, and then prove
that your conjecture is correct.

7.16. A Markoff triple is a triple of positive integers (x, y, z) that satisfies the Markoff equa-
tion

x2 + y2 + z2 = 3xyz.

There is one obvious Markoff triple, namely (1, 1, 1), as well as many non-obvious triples, for
example (2, 5, 29) and (13, 34, 1325).

(a) Find all Markoff triples that satisfy x = y.
(b) Let (x0, y0, z0) be a Markoff triple. Show that the following are also Markoff triples:

F (x0, y0, z0) = (x0, z0, 3x0z0 − y0),
G(x0, y0, z0) = (y0, z0, 3y0z0 − x0),
H(x0, y0, z0) = (x0, y0, 3x0y0 − z0).

This gives several ways to create new Markoff triples from old ones, similar to the way
that we created new Fibonacci number from old ones.

(c) Starting with the Markoff triple (1, 1, 1), repeatedly apply the functions F and G de-
scribed in (b) to create at least eight more Markoff triples.4 Arrange them in a picture
with two Markoff triples connected by a line segment if one is obtained from the other
by using F or G.

(d) Prove that (1, F2k−1, F2k+1) is a Markoff triple for all k ≥ 1.

4Markoff proved taht every Markoff triple can be obtained by starting from (1, 1, 1) and repeatedly
applying F , G, and H .
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Chapter 8

Number Theory — Lecture #8

8.1 Squares Modulo p

In Section 5.1 (Theorem 5.1) we learned how to how to solve linear congruences,

ax ≡ c (mod m).

It’s now time to take the plunge and move on to quadratic equations. We will look at
the following types of questions:

• Is 3 congruent to the square of some number modulo 7?

• Does the congruence x2 ≡ −1 (mod 13) have a solution?

• For which primes p does the congruence x2 ≡ 2 (mod p) have a solution?

We can answer the first two questions right now. To see if 3 is congruent to the square
of some number modulo 7, we just square each of the numbers from 0 to 6, reduce
modulo 7, and see if any of them is equal to 3. Thus,

02 ≡ 0 (mod 7)

12 ≡ 1 (mod 7)

22 ≡ 4 (mod 7)

32 ≡ 2 (mod 7)

42 ≡ 2 (mod 7)

52 ≡ 4 (mod 7)

62 ≡ 1 (mod 7).

So we see that 3 is not congruent to a square modulo 7. In a similar fashion, if we
square each number from 0 to 12 and reduce modulo 13, we find that the congruence
x2 ≡ −1 (mod 13) has two solutions, x ≡ 5 (mod 13) and x ≡ 8 (mod 13).1

1For many years during the nineteenth century, mathematicians were uneasy with the idea of the num-
ber
√
−1. Its current appellation “imaginary number” still reflects that disquiet. But if you work mod-
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As always, we need to look at some data before we can even begin to look for
patterns and make conjectures. Here are some tables giving all the squares modulo p
for p = 5, 7, 11, and 13.

b b2

0 0

1 1

2 4

3 4

4 1

Modulo 5

b b2

0 0

1 1

2 4

3 2

4 2

5 4

6 1

Modulo 7

b b2

0 0

1 1

2 4

3 9

4 5

5 3

6 3

7 5

8 9

9 4

10 1

Modulo 11

b b2

0 0

1 1

2 4

3 9

4 3

5 12

6 10

7 10

8 12

9 3

10 9

11 4

12 1

Modulo 13

Many interesting patterns are already apparent from these lists. For example, each
number (other than 0) that appears as a square seems to appear exactly twice. Thus, 5
is both 42 and 72 modulo 11, and 3 is both 42 and 92 modulo 13. In fact, if we fold
each list over in the middle, the same numbers appear as squares on the top and on
the bottom.

How can we describe this pattern with a formula? We are saying that the square
of the number b and the square of the number p− b are the same modulo p. But now
that we’ve described our pattern by a formula, it’s easy to prove. Thus,

(p− b)2 = p2 − 2pb+ b2 ≡ b2 (mod p).

So if we want to list all the (nonzero) numbers that are squares modulo p, we only
need to compute half of them:

12 (mod p), 22 (mod p), 32 (mod p), . . . ,

(
p− 1

2

)2

(mod p).

Our goal is to find patterns that can be used to distinguish squares from nonsquares
modulo p. Ultimately, we will be led to one of the most beautiful theorems in all

ulo 13, for example, then there’s nothing mysterious about
√
−1. In fact, 5 and 8 are both square roots

of −1 modulo 13.
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number theory, the Law of Quadratic Reciprocity, but first we must perform the
mundane task of assigning some names to the numbers we want to study.

A nonzero number that is congruent to a square modulo p is called a
quadratic residue modulo p. A number that is not congruent to a square
modulo p is called a (quadratic) nonresidue modulo p. We abbreviate
these long expressions by saying that a quadratic residue is a QR and a
quadratic nonresidue is an NR. A number that is congruent to 0 mod-
ulo p is neither a residue nor a nonresidue.

To illustrate this terminology using the data from our tables:

3 and 12 are QRs modulo 13.
2 and 5 are NRs modulo 13.

Note that 2 and 5 are NRs because they do not appear in the list of squares mod-
ulo 13. The full set of QRs modulo 13 is {1, 3, 4, 9, 10, 12}, and the full set of NRs
modulo 13 is {2, 5, 6, 7, 8, 11}. Similarly, the set of QRs modulo 7 is {1, 2, 4} and
the set of NRs modulo 7 is {3, 5, 6}.

Notice that there are six quadratic residues and six nonresidues modulo 13, and
there are three quadratic residues and three nonresidues modulo 7. Using our earlier
observation that (p− b)2 ≡ b2 (mod p), we can easily verify that there are an equal
number of quadratic residues and nonresidues modulo any (odd) prime.

Theorem 8.1. Let p be an odd prime. Then there are exactly (p − 1)/2 quadratic
residues modulo p and exactly (p− 1)/2 nonresidues modulo p.

Proof. The quadratic residues are the nonzero numbers that are squares modulo p,
so they are the numbers

12, 22, . . . , (p− 1)2 (mod p).

But, as we noted above, we only need to go halfway,

12, 22, . . . ,

(
p− 1

2

)2

(mod p),

since the same numbers are repeated in reverse order if we square the remaining
numbers (

p+ 1

2

)2

, . . . , (p− 2)2, (p− 1)2 (mod p).

So in order to show that there are exactly (p − 1)/2 quadratic residues, we need to
check that the numbers 12, 22, . . . ,

(
p−1
2

)2
are all different modulo p.

Suppose that b1 and b2 are numbers between 1 and (p− 1)/2, and suppose that
b21 ≡ b22 (mod p). We want to show that b1 = b2. The fact that b21 ≡ b22 (mod p)
means that

p divides b21 − b22 = (b1 − b2)(b1 + b2).
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However, b1 + b2 is between 2 and p − 1, so it can’t be divisible by p. Thus p must
divide b1 − b2. But |b1 − b2| < (p− 1)/2, so the only way for b1 − b2 to be divisible
by p is to have b1 = b2. This shows that the numbers 12, 22, . . . ,

(
p−1
2

)2
are all

different modulo p, so there are exactly (p− 1)/2 quadratic residues modulo p. Now
we need only observe that there are p− 1 numbers between 1 and p− 1, so if half
of them are quadratic residues, the other half must be nonresidues.

Suppose that we take two quadratic residues and multiply them together. Do
we get a QR or an NR, or do we sometimes get one and sometimes the other? For
example, 3 and 10 are QRs modulo 13, and their product 3 · 10 = 30 ≡ 4 is again a
QR modulo 13. Actually, this should have been clear without any computation, since
if we multiply two squares, we should get a square. We can formally verify this in
the following way. Suppose that a1 and a2 are both QRs modulo p. This means that
there are numbers b1 and b2 such that a1 ≡ b21 (mod p) and a2 ≡ b22 (mod p).
Multiplying these two congruences together, we find that a1a2 ≡ (b1b2)

2 (mod p),
which shows that a1a2 is a QR.

The situation is less clear if we multiply a QR by an NR, or if we multiply two
NRs together. Here are some examples using the data in our tables:

QR× NR ≡ ?? (mod p)

2 × 5 ≡ 3 (mod 7) NR
5 × 6 ≡ 8 (mod 11) NR
4 × 5 ≡ 7 (mod 13) NR
10 × 7 ≡ 5 (mod 13) NR

NR× NR ≡ ?? (mod p)

3 × 5 ≡ 1 (mod 7) QR
6 × 7 ≡ 9 (mod 11) QR
5 × 11 ≡ 3 (mod 13) QR
7 × 11 ≡ 12 (mod 13) QR

Thus, multiplying a quadratic residue and a nonresidue seems to yield a nonresidue,
while the product of two nonresidues always seems to be a residue. Symbolically,
we might write

QR× QR = QR, QR× NR = NR, NR× NR = QR.

We’ve already seen that the first relation is true, and we now verify the other two
relations.

Theorem 8.2 (Quadratic Residue Multiplication Rule). (Version 1) Let p be an odd
prime. Then:

(i) The product of two quadratic residues modulo p is a quadratic residue.
(ii) The product of a quadratic residue and a nonresidue is a nonresidue.

(iii) The product of two nonresidues is a quadratic residue.
These three rules can by summarized symbolically by the formulas

QR× QR = QR, QR× NR = NR, NR× NR = QR.

Proof. We have already seen that QR × QR = QR. Suppose next that a1 is a QR,
say a1 ≡ b21 (mod p), and that a2 is an NR. We are going to assume that a1a2 is
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a QR and derive a contradiction. The assumption that a1a2 is a QR means that it is
congruent to b23 for some b3, so we have

b23 ≡ a1a2 ≡ b21a2 (mod p).

Note that gcd(b1, p) = 1, since p - a1 and a1 = b21, so the Linear Congruence
Theorem (Theorem 8.1) says that we can find an inverse for b1 modulo p. In other
words, we can find some c1 such that c1b1 ≡ 1 (mod p). Multiplying both sides of
the above congruence by c21 gives

c21b
2
3 ≡ c21a1a2 ≡ (c1b1)

2a2 ≡ a2 (mod p).

Thus a2 ≡ (c1b3)
2 (mod p) is a QR, contradicting the fact that a2 is a NR. This

completes the proof that
QR× NR = NR.

We are left to deal with the product of two NRs. Let a be an NR and consider the
set of values

a, 2a, 3a, . . . , (p− 2)a, (p− 1)a (mod p).

By an argument we’ve used before (see Lemma 5.3 on page 52), these are just the
numbers 1, 2, . . . , (p − 1) rearranged in some different order. In particular, they in-
clude the 1

2 (p− 1) QRs and the 1
2 (p− 1) NRs. However, as we already proved, each

time that we multiply a by a QR, we get an NR, so the 1
2 (p− 1) products

a× QR

already give us all 1
2 (p− 1) NRs in the list. Hence when we multiply a by an NR,

the only possibility is that it is equal to one of the QRs in the list, because the a×QR
products have already used up all of the NRs in the list.2

This completes the proof of the quadratic residue multiplication rules. Now take
a minute to stare at

QR× QR = QR, QR× NR = NR, NR× NR = QR.

Do these rules remind you of anything? If not, here’s a hint. Suppose that we try to
replace the symbols QR and NR with numbers. What numbers would work? That’s
right, the symbol QR behaves like +1 and the symbol NR behaves like −1. Notice
that the somewhat mysterious third rule, the one that says that the product of two
nonresidues is a quadratic residue, reflects the equally mysterious rule3

(−1)× (−1) = +1.

2“When you have eliminated all of the quadratic residues, the remaining numbers, no matter how
improbable, must be the nonresidues!” (with apologies to Sherlock Holmes and Sir Arthur Conan Doyle).

3You may no longer consider the formula (−1) × (−1) = +1 mysterious, since it’s so familiar to
you. But you should have found it mysterious the first time you saw it. And if you stop to think about it,
there is no obvious reason why the product of two negative numbers should equal a positive number. Can
you come up with a convincing argument that (−1)× (−1) must equal +1?
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Having observed that QRs behave like +1 and NRs behave like −1, Adrien-
Marie Legendre introduced the following useful notation.

The Legendre symbol of a modulo p is(
a

p

)
=

{
1 if a is a quadratic residue modulo p,
−1 if a is a nonresidue modulo p.

For example, data from our earlier tables says that(
3

13

)
= 1,

(
11

13

)
= −1,

(
2

7

)
= 1,

(
3

7

)
= −1.

Using the Legendre symbol, our quadratic residue multiplication rules can be given
by a single formula.

Theorem 8.3 (Quadratic Residue Multiplication Rule). (Version 2) Let p be an odd
prime. Then (

a

p

)(
b

p

)
=

(
ab

p

)
.

The Legendre symbol is useful for making calculations. For example, suppose
that we want to know if 75 is a square modulo 97. We can compute(

75

97

)
=

(
3 · 5 · 5
97

)
=

(
3

97

)(
5

97

)(
5

97

)
=

(
3

97

)
.

Notice that it doesn’t matter whether
(
5
97

)
is +1 or −1, since it appears twice, and

(+1)2 = (−1)2 = 1. Now we observe that 102 ≡ 3 (mod 97), so 3 is a QR. Hence,(
75

97

)
=

(
3

97

)
= 1.

Of course, we were lucky in being able to recognize 3 as a QR modulo 97. Is there
some way to evaluate a Legendre symbol like

(
3
97

)
without relying on luck or trial

and error? The answer is yes, which leads us to our next topic.

Exercises
8.1. Make a list of all the quadratic residues and all the nonresidues modulo 19.

8.2. For each odd prime p, we consider the two numbers

A = sum of all 1 ≤ a < p such that a is a quadratic residue modulo p,

B = sum of all 1 ≤ a < p such that a is a nonresidue modulo p.

For example, if p = 11, then the quadratic residues are

12 ≡ 1 (mod 11), 22 ≡ 4 (mod 11), 32 ≡ 9 (mod 11),

42 ≡ 5 (mod 11), 52 ≡ 3 (mod 11),

so
A = 1 + 4 + 9 + 5 + 3 = 22 and B = 2 + 6 + 7 + 8 + 10 = 33.
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(a) Make a list of A and B for all odd primes p < 20.
(b) What is the value of A+B? Prove that your guess is correct.
(c) Compute A mod p and B mod p. Find a pattern and prove that it is correct. [Hint. See

Exercise 4.4 for a formula for 12 + 22 + · · ·+ n2 that might be useful.]
(d) Compile some more data and give a criterion on p which ensures that A = B.
(e) [Computer Exercise] Write a computer program to computeA andB, and use it to make

a table for all odd p < 100. If A 6= B, which one tends to be larger, A or B? Try to
prove that your guess is correct, but be forewarned that this is a very difficult problem.
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Chapter 9

Number Theory — Lecture #9

9.1 Is −1 a Square Modulo p? Is 2?
In the previous lecture we took a prime p and looked at the a’s that are quadratic
residues and the a’s that are nonresidues. For example, we made a table of squares
modulo 13 and used the table to see that 3 and 12 are QRs modulo 13, while 2 and 5
are NRs modulo 13.

In keeping with all of the best traditions of mathematics, we now turn this prob-
lem on its head. Rather than taking a particular prime p and listing the a’s that are
QRs and NRs, we instead fix an a and ask for which primes p is a a QR. To make
it clear exactly what we’re asking, we start with the particular value a = −1. The
question that we want to answer is as follows:

For which primes p is −1 a QR?

We can rephrase this question in other ways, such as “For which primes p does
the congruence x2 ≡ −1 (mod p) have a solution?” and “For which primes p is(−1

p

)
= 1?”

As always, we need some data before we can make any hypotheses. We can
answer our question for small primes in the usual mindless way by making a table
of 12, 22, 32, . . . (mod p) and checking if any of the numbers are congruent to −1
modulo p. So, for example, −1 is not a square modulo 3, since 12 6≡ −1 (mod 3)
and 22 6≡ −1 (mod 3), while −1 is a square modulo 5, since 22 ≡ −1 (mod 5).
Here’s a more extensive list.

p 3 5 7 11 13 17 19 23 29 31

Solution(s) to
x2 ≡ −1 (mod p)

NR 2, 3 NR NR 5, 8 4, 13 NR NR 12, 17 NR

Reading from this table, we compile the following data:

−1 is a quadratic residue for p = 5, 13, 17, 29.

−1 is a nonresidue for p = 3, 7, 11, 19, 23, 31.
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It’s not hard to discern the pattern. If p is congruent to 1 modulo 4, then−1 seems
to be a quadratic residue modulo p, and if p is congruent to 3 modulo 4, then −1
seems to be a nonresidue. We can express this guess using Legendre symbols,

(
−1
p

)
?
=

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

Let’s check our conjecture on the next few cases. The next two primes, 37 and 41,
are both congruent to 1 modulo 4, and sure enough,

x2 ≡ −1 (mod 37) has the solutions x ≡ 6 and 31 (mod 37), and
x2 ≡ −1 (mod 41) has the solutions x ≡ 9 and 32 (mod 41).

Similarly, the next two primes 43 and 47 are congruent to 3 modulo 4, and we check
that −1 is a nonresidue for 43 and 47. Our guess looks good!

Having successfully answered, at least conjecturally, the question of when −1 is
a square modulo p, we move on to the question of when 2, the “oddest” of all primes,
is a square modulo p. Just as we did with a = −1, we are looking for some simple
characterization for the primes p such that 2 is a quadratic residue modulo p. Can
you find the pattern in the following data, where the line labeled x2 ≡ 2 gives the
solutions to x2 ≡ 2 (mod p) if 2 is a quadratic residue modulo p and is marked NR
if 2 is a nonresidue?

p 3 5 7 11 13 17 19 23 29 31

x2 ≡ 2 NR NR 3, 4 NR NR 6, 11 NR 5, 18 NR 8, 23

p 37 41 43 47 53 59 61 67 71 73

x2 ≡ 2 NR 17, 24 NR 7, 40 NR NR NR NR 12, 59 32, 41

p 79 83 89 97 101 103 107 109 113 127

x2 ≡ 2 9, 70 NR 25, 64 14, 83 NR 38, 65 NR NR 51, 62 16, 111

Here’s the list of primes separated according to whether 2 is a residue or a nonresidue.

2 is a quadratic residue for p = 7, 17, 23, 31, 41, 47, 71, 73,

79, 89, 97, 103, 113, 127

2 is a nonresidue for p = 3, 5, 11, 13, 19, 29, 37, 43, 53, 59,

61, 67, 83, 101, 107, 109

For a = −1, it turned out that the congruence class of p modulo 4 was crucial. Is
there a similar pattern if we reduce these two lists of primes modulo 4? Here’s what
happens if we do.
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7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127

≡ 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3 (mod 4),

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109

≡ 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1 (mod 4).

This doesn’t look too promising. Maybe we should try reducing modulo 3.

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127

≡ 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1 (mod 3)

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109

≡ 0, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1 (mod 3).

This doesn’t look any better. Let’s make one more attempt before we give up. What
happens if we reduce modulo 8?

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127

≡ 7, 1, 7, 7, 1, 7, 7, 1, 7, 1, 1, 7, 1, 7 (mod 8)

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109

≡ 3, 5, 3, 5, 3, 5, 5, 3, 5, 3, 5, 3, 3, 5, 3, 5 (mod 8).

Eureka! It surely can’t be a coincidence that the first line is all 1’s and 7’s and the
second line is all 3’s and 5’s. This suggests the general rule that 2 is a quadratic
residue modulo p if p is congruent to 1 or 7 modulo 8 and that 2 is a nonresidue if p
is congruent to 3 or 5 modulo 8. In terms of Legendre symbols, we would write(

2

p

)
?
=

{
1 if p ≡ 1 or 7 (mod 8),
−1 if p ≡ 3 or 5 (mod 8).

(9.1)

To recapitulate in broad terms, the data suggests that:

−1 is a square mod p ⇐⇒ p satisfies some condition mod 4.
2 is a square mod p ⇐⇒ p satisfies some condition mod 8.

These are parts of the Law of Quadratic Reciprocity. The word “Reciprocity”
refers to the fact that it converts a mod p property into a mod m property for some
other m, in these cases m = 4 or m = 8. We turn now to the general problem.
Our quest is to determine, for a given number a, exactly which primes p have a
as a quadratic residue. We have (conjecturally) solved this problem for a = −1
and a = 2. Now we tackle the question of computing the Legendre symbol

(
a
p

)
for

other values of a. For example, suppose we want to compute
(
70
p

)
. We can use the

Quadratic Residue Multiplication Rules (Theorem 8.3) to compute(
70

p

)
=

(
2 · 5 · 7
p

)
=

(
2

p

)(
5

p

)(
7

p

)
.
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We already know how to find
(
2
p

)
, so we’re left with the problem of determining

(
5
p

)
and

(
7
p

)
.

In general, if we want to compute
(
a
p

)
for any number a, we can start by factor-

ing a into a product of primes, say

a = q1q2 · · · qr.

(It’s okay if some of the qi’s are the same.) Then the Quadratic Residue Multiplica-
tion Rules give (

a

p

)
=

(
q1
p

)(
q2
p

)
· · ·
(
qr
p

)
.

The moral of this story: If we know how to compute
(q
p

)
for primes q, then we know

how to compute
(
a
p

)
for every a.1 Since nothing we have done so far tells us anything

about
(q
p

)
(for fixed q and varying p), the time has come2 to compile some data and

use it to make some conjectures. Table 9.1 gives the value of the Legendre symbol
(q
p

)
for all odd primes p, q ≤ 37.

p\
q

3 5 7 11 13 17 19 23 29 31 37

3 −1 1 −1 1 −1 1 −1 −1 1 1

5 −1 −1 1 −1 −1 1 −1 1 1 −1
7 −1 −1 1 −1 −1 −1 1 1 −1 1

11 1 1 −1 −1 −1 −1 1 −1 1 1

13 1 −1 −1 −1 1 −1 1 1 −1 −1
17 −1 −1 −1 −1 1 1 −1 −1 −1 −1
19 −1 1 1 1 −1 1 1 −1 −1 −1
23 1 −1 −1 −1 1 −1 −1 1 1 −1
29 −1 1 1 −1 1 −1 −1 1 −1 −1
31 −1 1 1 −1 −1 −1 1 −1 −1 −1
37 1 −1 1 1 −1 −1 −1 −1 −1 −1

Table 9.1: The Value of the Legendre Symbol
(
q
p

)
Before reading further, you should take some time to study Table 9.1 and try to

find some patterns. Don’t worry if you don’t immediately discover the answer; the

1Yet another instance of the principle that primes are the basic building blocks of number theory, so if
you can solve a problem for primes, you’re usually well on your way to solving it for all numbers.

2“The time has come,” the Walrus said, “to talk of many things, of shoes, and primes, and residues,
and cabbages and kings.”
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most important pattern concealed in this table is somewhat subtle. But you will find
that it is well worth the effort to uncover the design on your own, since you then
share the thrill of discovery with Legendre and Gauss.

Now that you’ve formulated your own conjectures, we’ll examine the table to-
gether. We are going to compare the rows with the columns or, what amounts to the
same thing, we are going to compare the entries when we reflect across the diagonal
of the table. For example, the row with p = 5 reads

q 3 5 7 11 13 17 19 23 29 31 37(q
5

)
−1 −1 1 −1 −1 1 −1 1 1 −1

Similarly, the column with q = 5 (turned sideways to save space) is

p 3 5 7 11 13 17 19 23 29 31 37(
5
p

)
−1 −1 1 −1 −1 1 −1 1 1 −1

They match! So we might guess that(
5

p

)
=

(
p

5

)
for all primes p. Do you see how useful a rule like this would be? We are looking for
a method to calculate the Legendre symbol

(
5
p

)
, a difficult problem, but the Legendre

symbol
(p
5

)
is easy to compute, because it only depends on p modulo 5. In other

words, we know that (
p

5

)
=

{
1 if p ≡ 1 or 4 (mod 5),
−1 if p ≡ 2 or 3 (mod 5).

So if our guess that
(
5
p

)
=
(p
5

)
is correct, then we would know, for example, that 5 is

a nonresidue modulo 3593, since(
5

3593

)
=

(
3593

5

)
=

(
3

5

)
= −1.

Similarly, (
5

3889

)
=

(
3889

5

)
=

(
4

5

)
= 1,

so 5 should be a quadratic residue modulo 3889, and sure enough we find that
5 ≡ 29012 (mod 3889).

Emboldened by this success, we might guess that(
q

p

)
=

(
p

q

)
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for all primes p and q. Unfortunately, this isn’t even true for the first row and column
of the table. For example,(

3

7

)
= −1 and

(
7

3

)
= 1.

So sometimes
(q
p

)
is equal to

(p
q

)
, and sometimes it is equal to −

(p
q

)
. Table 9.2

table will help us find a rule explaining when they are the same and when they are
opposites.

p
\ q 3 5 7 11 13 17 19 23 29 31 37

3 ♥ F F ♥ ♥ F F ♥ F ♥
5 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥
7 F ♥ F ♥ ♥ F F ♥ F ♥
11 F ♥ F ♥ ♥ F F ♥ F ♥
13 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥
17 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥
19 F ♥ F F ♥ ♥ F ♥ F ♥
23 F ♥ F F ♥ ♥ F ♥ F ♥
29 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥
31 F ♥ F F ♥ ♥ F F ♥ ♥
37 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

Table 9.2: Table with ♥ if
(
q
p

)
=
(
p
q

)
and F if

(
q
p

)
= −

(
p
q

)
Looking at this table, we can pick out the primes that have ♥-filled rows and

columns:
p = 5, 13, 17, 29, 37.

The primes whose rows and columns are not exactly the same (i.e., the rows and
columns containing F’s) are

p = 3, 7, 11, 19, 23, 31.

With our previous experience, there is no mystery about these lists; the former con-
sists of the primes that are congruent to 1 modulo 4, and the latter contains the primes
that are congruent to 3 modulo 4.

So our first conjecture might be that if p ≡ 1 (mod 4) or if q ≡ 1 (mod 4) then
the rows and columns are the same. We can write this in terms of Legendre symbols.

Conjecture: If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(
q

p

)
=

(
p

q

)
.
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What happens if both p and q are congruent to 3 modulo 4? Looking at the table,
we find in every instance that

(q
p

)
and

(p
q

)
are opposites. So we are led to make a

further guess.

Conjecture: If p ≡ 3 (mod 4) and q ≡ 3 (mod 4), then
(
q

p

)
= −

(
p

q

)
.

These two conjectural relations form the heart of the Law of Quadratic Reciprocity.

Theorem 9.1 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes.(
−1
p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).(
2

p

)
=

{
1 if p ≡ 1 or 7 (mod 8),

−1 if p ≡ 3 or 5 (mod 8).

(
q

p

)
=


(
p

q

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−
(
p

q

)
if p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

There is a reasonably elementary proof of the Law of Quadratic Reciprocity for(−1
p

)
, which we give in Supplement Section 9.3. The proof for

(
2
p

)
is somewhat more

intricate, and although there are many different proofs of the relationship between(q
p

)
and

(p
q

)
, none is easy. We refer you to any standard number theory textbook for

the proof.

9.1.1 An Historical Interlude
Euler and Lagrange were the first to formulate the Law of Quadratic Reciprocity, but
it remained for Gauss to give the first proof in his famous monograph Disquisitiones
arithmeticae in 1801. Gauss discovered the law for himself when he was 19, and
during his lifetime he found seven different proofs! Mathematicians during the nine-
teenth century subsequently formulated and proved Cubic and Quartic Reciprocity
Laws, and these in turn were subsumed into the Class Field Theory developed by
David Hilbert, Emil Artin, and others from the 1890s through the 1920s and 1930s.
During the 1960s and 1970s a number of mathematicians formulated a series of con-
jectures that vastly generalize Class Field Theory and that today go by the name of
the Langlands Program. The fundamental theorem proved by Andrew Wiles in 1995
is a small piece of the Langlands Program, yet it sufficed to solve Fermat’s 350-year-
old “Last Theorem.”

9.1.2 Using Quadratic Reciprocity to Compute
(
a
p

)
The Law of Quadratic Reciprocity is not only a beautiful and subtle theoretical state-
ment about numbers, it is also a practical tool for determining whether a number is
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a quadratic residue. Essentially, it lets us flip the Legendre symbol
(q
p

)
and replace it

by ±
(p
q

)
. Then we can reduce p modulo q and repeat the process. This leads to Leg-

endre symbols with smaller and smaller entries, so eventually we arrive at Legendre
symbols that we can compute. Here’s an example with detailed justification for each
step.(

14

137

)
=

(
2

137

)(
7

137

)
Quadratic Residue Multiplication Rule,

=

(
7

137

)
Quadratic Reciprocity says

(
2

137

)
= 1,

since 137 ≡ 1 (mod 8),

=

(
137

7

)
Quadratic Reciprocity and 137 ≡ 1 (mod 4),

=

(
4

7

)
reducing 137 modulo 7,

= 1 since 4 = 22 is certainly a square.

Thus, 14 is a quadratic residue modulo 137. In fact, the solutions to the congruence
x2 ≡ 14 (mod 137) are x ≡ 39 (mod 137) and x ≡ 98 (mod 137).

Here’s a second example that illustrates how the sign can change back and forth
a number of times.(

55

179

)
=

(
5

179

)(
11

179

)
=

(
179

5

)
× (−1)×

(
179

11

)
since 5 ≡ 1 (mod 4) and

11 ≡ 179 ≡ 3 (mod 4),

=

(
4

5

)
× (−1)×

(
3

11

)
since 179 ≡ 4 (mod 5) and

179 ≡ 3 (mod 11),

= 1× (−1)×
(
3

11

)
since 4 = 22 is a square,

= 1× (−1)× (−1)×
(
11

3

)
since 3 ≡ 11 ≡ 3 (mod 4),

= 1× (−1)× (−1)×
(
2

3

)
since 11 ≡ 2 (mod 3),

= 1× (−1)× (−1)× (−1) since 2 is a nonresidue mod 3,
= −1.

So 55 is a nonresidue modulo 179.
There is often more than one way to use Quadratic Reciprocity to evaluate a

given Legendre symbol
(
a
p

)
, for example, by using the equality

(p
q

)
=
(p−q

q

)
. Thus

we can compute
(
299
397

)
as
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9.2. Quadratic Reciprocity to the Rescue 99(
299

397

)
=

(
13

397

)(
23

397

)
=

(
397

13

)(
397

23

)
=

(
7

13

)(
6

23

)
=

(
13

7

)(
2

23

)(
3

23

)
=

(
−1
7

)
× 1×−

(
23

3

)
= −1×−

(
2

3

)
= −1,

or we can compute it as(
299

397

)
=

(
−98
397

)
=

(
−1
397

)(
2

397

)(
7

397

)2

= 1× (−1)× (±1)2 = −1.

Of course, regardless of the path taken, the final destination is always the same.
The Law of Quadratic Reciprocity furnishes an efficient way to compute the

Legendre symbol
(
a
p

)
,3 even for large values of a and p. In fact, the number of steps

to compute
(
a
p

)
is more or less equal to the number of digits in p, so it is possible to

evaluate Legendre symbols for numbers with hundreds of digits. We won’t spend the
time to do an example that is that large, but are content with the following modest
example. (

37603

48611

)
=

(
31

48611

)(
1213

48611

)
= −

(
48611

31

)(
48611

1213

)
= −

(
3

31

)(
91

1213

)
=

(
31

3

)(
7

1213

)(
13

1213

)
=

(
1

3

)(
1213

7

)(
1213

13

)
=

(
2

7

)(
4

13

)
= 1

Hence, 37603 is a quadratic residue modulo 48611.

9.2 Quadratic Reciprocity to the Rescue
We now use quadratic reciprocity to help answer two questions that arose earlier:

• Are the infinitely many primes satisfying p ≡ 1 (mod 4)?

• If p ≡ 1 or 4 (mod 5), does the period of the Fibonacci sequence always
divide p− 1?

9.2.1 Primes that are Congruent to 1 Modulo 4

As you may recall, we showed in Theorem 6.2 that there are infinitely many primes
that are congruent to 3 modulo 4, but we left unanswered the analogous question
for primes congruent to 1 modulo 4. Happily, we can use the first part of Quadratic
Reciprocity to answer this question.

3Although we should point out that the method we’ve described for computing
(
a
p

)
may require fac-

toring large numbers. However, it turns out that
(
a
p

)
can be computed without any factoring using a

generalized version of the Law of Quadratic Reciprocity!
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Theorem 9.2 (Primes 1 (Mod 4) Theorem). There are infinitely many primes that
are congruent to 1 modulo 4.

Proof. Suppose we are given a list of primes p1, p2, . . . , pr, all of which are congru-
ent to 1 modulo 4. We are going to find a new prime, not in our list, that is congruent
to 1 modulo 4. Repeating this process gives a list of any desired length.

Consider the number

A = (2p1p2 · · · pr)2 + 1.

We know that A can be factored into a product of primes, say

A = q1q2 · · · qs.

It is clear that q1, q2, . . . , qs are not in our original list, since none of the pi’s divideA.
So all we need to do is show that at least one of the qi’s is congruent to 1 modulo 4.
In fact, we’ll see that all of them are.

First we note that A is odd, so all the qi’s are odd. Next, each qi divides A, so

(2p1p2 · · · pr)2 + 1 = A ≡ 0 (mod qi).

This means that x = 2p1p2 · · · pr is a solution to the congruence

x2 ≡ −1 (mod qi),

so −1 is a quadratic residue modulo qi. Now Quadratic Reciprocity tells us that
qi ≡ 1 (mod 4).

We can use the procedure described in this proof to produce a list of primes
that are congruent to 1 modulo 4. Thus, if we start with p1 = 5, then we form
A = (2p1)

2 + 1 = 101, so our second prime is p2 = 101. Then

A = (2p1p2)
2 + 1 = 1020101,

which is again prime, so our third prime is p3 = 1020101. We’ll go one more step,

A = (2p1p2p3)
2 + 1

= 1061522231810040101

= 53 · 1613 · 12417062216309.

Notice that all the primes 53, 1613, and 12417062216309 are congruent to 1 mod-
ulo 4, just as predicted by the theory.

9.2.2 Period of the Fibonacci Sequence Modulo Primes that are
Congruent to 1 or 4 Modulo 5

In Section 7.2 we studied the period N(p) of the Fibonacci sequence modulo p.
Thus N(p) tells us how many terms it takes before the values of the Fibonacci se-
quence modulo p start to repeat. The data we accumulated suggested that if p is
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9.2. Quadratic Reciprocity to the Rescue 101

congruent to 1 or 4 modulo 5, then N(p) divides p − 1. One approach to proving
this conjecture is to use Binet’s formula modulo p, but Binet’s formula involves

√
5.

However, if p is congruent to 1 or 4 modulo p, then Quadratic Reciprocity can be
used to show that 5 is a square modulo p, leading to the following theorem and
proof.

Theorem 9.3 (Fibonacci Sequence Modulo p Theorem). Let p be a prime that is
congruent to either 1 or 4 modulo 5. Then the periodN(p) of the Fibonacci sequence
modulo p satisfies

N(p) | p− 1.

Proof. We are assuming that p ≡ 1 or 4 (mod 5), so the Law of Quadratic Reci-
procity (Theorem 9.1) tells us that(

5

p

)
=

(
p

5

)
=

(
1

5

)
or
(
4

5

)
=

(
2

5

)2

= 1.

Thus 5 is a quadratic residue modulo p, so we can find a number c with the property
that c2 ≡ 5 (mod p). We will assume that c is odd, since if it isn’t odd, we can always
use c+ p instead. We note that c 6≡ 0 (mod p), so c has a mod p inverse, which we
denote by c−1. In other words, c−1 is a number satisfying cc−1 ≡ 1 (mod p).

We now define a sequence of numbers modulo p by the formula

Jn ≡ c−1
((

1 + c

2

)n

−
(
1− c
2

)n)
(mod p).

(Notice that this is exactly Binet’s formula if we treat c as
√
5.) Using the fact that

c2 ≡ 5 (mod p), it is easy to check that

J1 ≡ J2 ≡ 1 (mod p) and Jn ≡ Jn−1 + Jn−2 for all n ≥ 3.

Thus the sequence Jn has the same starting values and satisfies the same recursion
as the Fibonacci sequence modulo p. It follows that

Fn ≡ Jn (mod p) for all n ≥ 1.

To simplify notation, we let

U =
1 + c

2
and V =

1− c
2

,

and then
Fn ≡ c−1(Un − V n) (mod p).

In particular, we can use Fermat’s Little Theorem (Theorem 5.2) to deduce that

Fi+(p−1)j ≡ c−1(U i+(p−1)j − V i+(p−1)j) (mod p)

≡ c−1
(
U i · (Up−1)j + V i · (V p−1)j

)
(mod p)

≡ c−1(U i − V i) (mod p)

≡ Fi (mod p).
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Thus the Fibonacci sequence modulo p repeats every p− 1 steps.
However, the definition ofN(p) says that the sequence repeats everyN(p) steps,

and that N(p) is the smallest such value. We divide p− 1 by N(p) to get a quotient
and remainder

p− 1 = N(p)q + r with 0 ≤ r < N(p).

Using the fact that the sequence repeats every p − 1 steps and that it also repeats
every N(p) steps allows us to compute

Fi ≡ Fi+(p−1)j ≡ Fi+N(p)qj+rj ≡ Fi+rj (mod p).

Thus the Fibonacci sequence also repeats every r steps. But r < N(p), and N(p) is
the smallest possible positive period, so we must have r = 0. Hence

p− 1 = N(p)q,

which completes the proof that N(p) divides p− 1.

9.3 Proof that
(−1

p

)
= (−1)(p−1)/2 [Supplement]

We conjectured that (
−1
p

)
=

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 1 (mod 3).

The tool that we use to verify this conjecture might be called the “Square Root of
Fermat’s Little Theorem.” How, you may well ask, does one take the square root of
a theorem? Recall that Fermat’s Little Theorem (Theorem 5.2 in Section 5.2) says

ap−1 ≡ 1 (mod p).

We won’t really be taking the square root of this theorem, of course. Instead, we take
the square root of the quantity ap−1 and ask for its value. So we want to answer the
following question:

Let A = a(p−1)/2. What is
the value of A modulo p?

One thing is obvious. If we square A, then Fermat’s Little Theorem tells us that

A2 = ap−1 ≡ 1 (mod p).

Hence, p divides A2 − 1 = (A − 1)(A + 1), so either p divides A− 1 or p di-
vides A+ 1. (Notice how we are using Lemma 4.1, which is the property of prime
numbers that we proved on page 37.) Thus A must be congruent to either +1 or −1.

Here are a few random values of p, a, and A. For comparison purposes, we have
also included the value of the Legendre symbol

(
a
p

)
. Do you see a pattern?
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p 11 31 47 97 173 409 499 601 941 1223

a 3 7 10 15 33 78 33 57 222 129

A (mod p) 1 1 −1 −1 1 −1 1 −1 1 1(
a
p

)
1 1 −1 −1 1 −1 1 −1 1 1

It certainly appears that A ≡ 1 (mod p) when a is a quadratic residue and that
A ≡ −1 (mod p) when a is a nonresidue. In other words, it looks like A (mod p)
has the same value as the Legendre symbol

(
a
p

)
. We use a counting argument to verify

this assertion, which goes by the name of Euler’s Criterion.

Theorem 9.4 (Euler’s Criterion). Let p be an odd prime. Then

a(p−1)/2 ≡
(
a

p

)
(mod p).

Proof. Suppose first that a is a quadratic residue, say a ≡ b2 (mod p). Then Fer-
mat’s Little Theorem (Theorem 5.2) tells us that

a(p−1)/2 ≡ (b2)(p−1)/2 = bp−1 ≡ 1 (mod p).

Hence a(p−1)/2 ≡
(
a
p

)
(mod p), which is Euler’s Criterion when a is a quadratic

residue.
We next consider the congruence

X(p−1)/2 − 1 ≡ 0 (mod p). (9.2)

We have just proven that every quadratic residue is a solution to this congruence, and
we know from Theorem 8.1 that there are exactly 1

2 (p−1) distinct quadratic residues.
A polynomial of degree d can have at most d roots modulo p,4 so the polynomial
congruence (9.2) can have at most 1

2 (p− 1) distinct solutions. Hence{
solutions to X(p−1)/2 − 1 ≡ 0 (mod p)

}
=
{

quadratic residues modulo p
}
.

Now let a be a nonresidue. Fermat’s Little Theorem tells us that ap−1 ≡ 1
(mod p), so

0 ≡ ap−1 − 1 ≡ (a(p−1)/2 − 1)(a(p−1)/2 + 1) (mod p).

The first factor is not zero modulo p, because we already showed that the solutions
to X(p−1)/2 − 1 ≡ 0 (mod p) are the quadratic residues. Hence the second factor
must vanish modulo p, so

a(p−1)/2 ≡ −1 =

(
a

p

)
(mod p).

This shows that Euler’s Criterion is also true for nonresidues.
4Lack of time has prevented us from proving this fact about roots of polynomials modulo p. You might

try giving a proof yourself.
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Using Euler’s Criterion, it is very easy to determine if −1 is a quadratic residue
modulo p. For example, if we want to know whether−1 is a square modulo the prime
p = 6911, we just need to compute

(−1)(6911−1)/2 = (−1)3455 = −1.

Euler’s Criterion then tells us that(
−1
6911

)
≡ −1 (mod 6911).

But
(
a
p

)
is always either +1 or −1, so in this case we must have

( −1
6911

)
= −1.

Hence, −1 is a nonresidue modulo 6911.
Similarly, for the prime p = 7817 we find that

(−1)(7817−1)/2 = (−1)3908 = 1.

Hence,
( −1
7817

)
= 1, so−1 is a quadratic residue modulo 7817. Observe that, although

we now know that the congruence

x2 ≡ −1 (mod 7817)

has a solution, we still don’t have any efficient way to find a solution. The solutions
turn out to be x ≡ 2564 (mod 7817) and x ≡ 5253 (mod 7817).

As these two examples make clear, Euler’s Criterion can be used to determine
exactly which primes have −1 as a quadratic residue.

Theorem 9.5 (Quadratic Reciprocity). (Part I) Let p be an odd prime. Then

−1 is a quadratic residue modulo p if p ≡ 1 (mod 4), and

−1 is a nonresidue modulo p if p ≡ 3 (mod 4).

In other words, using the Legendre symbol,(
−1
p

)
=

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

Proof. Euler’s Criterion says that

(−1)(p−1)/2 ≡
(
−1
p

)
(mod p).

Suppose first that p ≡ 1 (mod 4), say p = 4k + 1. Then

(−1)(p−1)/2 = (−1)2k = 1, so 1 ≡
(
−1
p

)
(mod p).

But
(−1

p

)
is either +1 or −1, so it must equal 1. This proves that if p ≡ 1 (mod 4)

then
(−1

p

)
= 1.
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Next we suppose that p ≡ 3 (mod 4), say p = 4k + 3. Then

(−1)(p−1)/2 = (−1)2k+1 = −1, so − 1 ≡
(
−1
p

)
(mod p).

This shows that
(−1

p

)
must equal −1, which completes the proof of Quadratic Reci-

procity (Part I).

Exercises
9.1. Determine whether each of the following congruences has a solution. (All of the moduli
are primes.)

(a) x2 ≡ −1 (mod 5987) (c) x2 + 14x− 35 ≡ 0 (mod 337)
(b) x2 ≡ 6780 (mod 6781) (d) x2 − 64x+ 943 ≡ 0 (mod 3011)

[Hint. For (c), use the quadratic formula to find out what number you need to take the square
root of modulo 337, and similarly for (d).]

9.2. Use the procedure described in the Primes 1 (Mod 4) Theorem to generate a list of primes
congruent to 1 modulo 4, starting with the seed p1 = 17.

9.3. In Exercise 8.2 we defined A and B to be the sums of the residues, respectively non-
residues, modulo p. Part (d) of that exercise asked you to find a condition on p which implies
that A = B. Using the material in this section, prove that your criterion is correct. [Hint. The
important fact you’ll need is the condition for −1 to be a quadratic residue.]

9.4. Use the Law of Quadratic Reciprocity to compute the following Legendre symbols.

(a)

(
85

101

)
(b)

(
29

541

)
(c)

(
101

1987

)
(d)

(
31706

43789

)

9.5. Does the congruence

x2 − 3x− 1 ≡ 0 (mod 31957)

have any solutions? [Hint. Use the quadratic formula to find out what number you need to take
the square root of modulo the prime 31957.]

9.6. Show that there are infinitely many primes congruent to 1 modulo 3. [Hint. See the proof
of the “1 (Modulo 4) Theorem” in Section 9.2.1, useA = (2p1p2 · · · pr)2 + 3, and try to pick
out a good prime dividing A.]

9.7. Let p be a prime number (p 6= 2 and p 6= 5), and let A be some given number. Suppose
that p divides the number A2 − 5. Show that p must be congruent to either 1 or 4 modulo 5.

9.8 (Computer Exercise). Write a program that uses Quadratic Reciprocity to compute the
Legendre symbol

(
a
p

)
.

9.9. Let p be a prime satisfying p ≡ 3 (mod 4), and suppose that a is a quadratic residue
modulo p.
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(a) Show that x = a(p+1)/4 is a solution to the congruence

x2 ≡ a (mod p).

This gives an explicit way to find square roots modulo p for primes congruent to 3 mod-
ulo 4.

(b) Find a solution to the congruence x2 ≡ 7 (mod 787). (Your answer should lie be-
tween 1 and 786.)

9.10. Let p be a prime satisfying p ≡ 5 (mod 8) and suppose that a is a quadratic residue
modulo p.

(a) Show that one of the values

x = a(p+3)/8 or x = 2a · (4a)(p−5)/8

is a solution to the congruence

x2 ≡ a (mod p).

This gives an explicit way to find square roots modulo p for primes congruent to 5 mod-
ulo 8.

(b) Find a solution to the congruence x2 ≡ 5 (mod 541). (Give an answer lying between 1
and 540.)

(c) Find a solution to the congruence x2 ≡ 13 (mod 653). (Give an answer lying between 1
and 652.)

9.11 (Computer Exercise). Let p be a prime that is congruent to 5 modulo 8. Write a program
to solve the congruence

x2 ≡ a (mod p)

using the method described in the previous exercise and successive squaring. The output
should be a solution satisfying 0 ≤ x < p. Be sure to check that a is a quadratic residue,
and return an error message if it is not. Use your program to solve the congruences

x2 ≡ 17 (mod 1021), x2 ≡ 23 (mod 1021), x2 ≡ 31 (mod 1021).
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Appendix A

Class Exercise: Lecture #1
Mix and Match Number Types

We’ve just seen lots of interesting sorts of numbers. Can you find overlaps? The
following qustions ask “are there any . . . ,” but implicitly includes the instruction that
if there are any, then you should try to describe them.

• Are there any odd numbers that are also even numbers?

• Are there any square numbers that are also cube numbers?

• Are there any prime numbers that are also square numbers?

• Are there any prime numbers that are a sum of two square numbers?

• Are there any perfect numbers that are also odd numbers?

• Are there any square numbers that are also triangle numbers?
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Appendix B

Class Exercise: Lecture #2
Pythagorean-Like Triples

A primitive Pythagorean triple (PPT) is a triple of positive integers (a, b, c) having
no common factors and satisfying

a2 + b2 = c2.

We consider two tweaks of the problem of finding all PPTs. For each, gather some
data and then try to find a general answer.

• Describe the no-common-factor triples (a, b, c) satisfying

a2 + b2 = 2c2.

• Describe the no-common-factor triples (a, b, c) satisfying

a2 + b2 = 3c2.

• More generally, look at solution to a2 + b2 = kc2 for other values of k.
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Appendix C

Class Exercise: Lecture #3
Least Common Multiples

The greatest common divisor of a and b is the largest number d that divides both of
them. We’ve already talked about gcd(a, b).

Similarly, the least common multiple of a and b is the smallest number L that is
divisible by both a and b. It is denoted LCM(a, b). For example,

LCM(6, 10) = 30, since 6 | 30 and 10 | 30,

and 30 is the smallest number with this property.

• Comptue the gcd’s and LCM’s in the following table:

m n gcd(m,n) LCM(m,n)

8 12
20 30
51 68
24 18

• Using the data in the table, conjecture a relationship between the values of m, n,
gcd(m,n) and LCM(m.n).

• Suppose that gcd(m,n) = 18 and LCM(m,n) = 720. Find m and n. Is there
more than one possibility? If so, find all of them.

Draft: January 2, 2020 109 c©2018, J. Silverman



Appendix D

Class Exercise: Lecture #4
Further Travels in the E-Zone

NOTE: In the E-Zone odd numbers do not exist!

• Here are the first few E-primes:

2, 6, 10, 14, 18, 22, 26, 30.

Extend the list. Try to find a nice description of all E-primes.

• What is the smallest even number that has two different factorizations as a prod-
uct of E-primes? (Changing the order of the factors doesn’t count!) What about
the smallest even number that has three different factorizations as a product of E-
primes? Four factorizations? Etc.

• The number 12 has only one factorization as a product of E-primes: 12 = 2 · 6.
Find some other even numbers with this property. Can you describe all of them?
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Appendix E

Class Exercise: Lecture #5
Polynomial Roots Modulo m

You probably know that a polynomial of degree d can can have a most d real roots.
But how about if we work modulo m? In other words, how many solutions can there
be to the congruence

adX
d + ad−1X

d−1 + · · ·+ a2X
2 + a1X + a0 ≡ 0 (mod m),

where congruent solutions are considered identical. For example,

X2 + 1 ≡ 0 (mod 13) has two solutions, namely X ≡ 5 and X ≡ 8.

• How many solutions are there to the following congruences?

X2 + 1 ≡ 0 (mod 2) X2 + 1 ≡ 0 (mod 3)

X2 + 1 ≡ 0 (mod 4) X2 + 1 ≡ 0 (mod 5)

Make a conjecture about the possible number of solutions to X2 + 1 ≡ 0 (mod m).

• How many solutions are there to the following congruences?

X2 − 1 ≡ 0 (mod 3) X2 − 1 ≡ 0 (mod 4)

X2 − 1 ≡ 0 (mod 8) X2 − 1 ≡ 0 (mod 15)

Do your answers make you rethink your earlier conjecture?

• I used a computer to check the number of solutions to X2 + 1 ≡ 0 (mod m) for
every 3 ≤ m ≤ 4000, and there were always either 2, 4, or 6 solutions. This suggests
that X2 + 1 ≡ 0 (mod m) always has an even number of solutions. Either prove
that this is true, or find a counterexample.
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Appendix F

Class Exercise: Lecture #6
Sums of Reciprocals
For every integer m ≥ 2, we look at the fraction

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

m− 1
.

Here is some data: 1

1
+

1

2
=

3

2
1

1
+

1

2
+

1

3
=

11

6
1

1
+

1

2
+

1

3
+

1

4
=

25

12
1

1
+

1

2
+

1

3
+

1

4
+

1

5
=

137

60
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
=

49

20
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
=

363

140
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
=

761

280
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
=

7129

2520
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
=

7381

2520

Let Nm be the numerator of the fraction for m, so for our data we have

m 3 4 5 6 7 8 9 10 11
Nm 3 11 25 137 49 363 761 7129 7381

• Can you find some interesting property of the numerators? (As is often the case,
looking at Np for prime values of p may be easier.)

• Can you prove something interesting about the numerators Np when p is prime?
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Appendix G

Class Exercise: Lecture #7
The 3n + 1 Problem

The 3n+1 Algorithm works as follows: Start with any number n. If n is even, divide
it by 2. If n is odd, replace it with 3n+ 1. Repeat. For example, if we start with 5,

5
3n+1−−−→ 16

n/2−−→ 8
n/2−−→ 4

n/2−−→ 2
n/2−−→ 1

3n+1−−−→︸ ︷︷ ︸
Length 9

4
n/2−−→ 2

n/2−−→ 1
3n+1−−−→︸ ︷︷ ︸

repeats

· · ·

Notice that as soon as we get to 1, the sequence repeats 4, 2, 1. Starting at 7 gives

7
3n+1−−−→22

n/2−−→ 11
3n+1−−−→ 34

n/2−−→ 17
3n+1−−−→ 52

n/2−−→ 26
n/2−−→

13
3n+1−−−→ 40

n/2−−→ 20
n/2−−→ 10

n/2−−→ 5
3n+1−−−→ 16

n/2−−→ 8
n/2−−→ 4

n/2−−→ 2
n/2−−→ 1︸ ︷︷ ︸

Length 17

The 3n + 1 Conjecture (also known as the Collatz Conjecture). No matter
what n you start with, the 3n+ 1 Algorithm eventually gets down to 1.

The length of the sequence starting from n, i.e., the number of entries required
to get down to 1, is denoted L(n). Thus

L(5) = 9 and L(7) = 17.

— Continued on Next Page −→
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114 G. Class Exercise: Lecture #7: The 3n + 1 Problem

• Find the length of the 3n+ 1 algorithm for each of the following starting values:

(i) n = 21 (ii) n = 13 (iii) n = 31 (You might not want to finish (iii)!)

• Here is a table giving the length L(n) for (almost) all 1 ≤ n ≤ 30.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Length 1 2 8 3 6 9 17 4 20 7 15 10 — 18 18 5 13 21 21 8

n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Length — 16 16 11 24 11 112 19 19 19 107 6 27 14 14 22 22 22 35 9

n 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Length 110 9 30 17 17 17 105 12 25 25 25 12 12 113 113 20 33 20 33 20

The Length of the 3n+ 1 Algorithm

Looking at the table, there seem to be a lot of values of n with L(n) = L(n + 1).
Can you find a pattern for at least some of those n? Can you find an infinite list of n
for which you can prove that L(n) = L(n+ 1)?
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Appendix H

Class Exercise: Lecture #8
Cubes Modulo p

We’ve looked at squares modulo p, so let’s move on to cubes. A number a is called
a cubic residue modulo p if it is congruent to a non-zero cube modulo p, that is, if
there is a number b 6≡ 0 (mod p) such that

a ≡ b3 (mod p).

• Make a list of the cubic residues mod 5, mod 7, and if you feel like it, mod 13.

• If a and b are cubic residues modulo p, is the product ab always a cubic residue?

• If a or b (or both) are not cubic residues modulo p, what can you say about the
product ab? Use the following table of cubes modulo 19 to gather some data.

Cubic Residues Mod 19 Cubic Non-Residues Mod 19
1, 7, 8, 11, 12, 18 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17

• Here is a list of cubic residues for a few primes p that satisfy p ≡ 2 (mod 3).

p Cubic Residues Mod p
5 1, 2, 3, 4

11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

23 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

29 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

What’s the pattern? Can you prove it? (Hint: Fermat’s little theorem may be useful!)
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Appendix I

Class Exercise: Lecture #9
Cubic Reciprocity

Recall that the number a is called a cubic residue modulo p if it is congruent to a
non-zero cube modulo p. Let p and q be primes. Can we relate the following two
statements?

• q is (is not) a cubic residue modulo p.

• p is (is not) a cubic residue modulo q.

Here is a table to help in making conjectures.

p\
q 5 7 11 13 17 19 23 29 31 37 41

5 − ◦ ♥ ♥ ♥ ◦ ♥ ♥ ◦ ◦ ♥
7 ◦ − ◦ ◦ ◦ ◦ ◦ ♥ F F ♥
11 ♥ ◦ − ◦ ♥ ♥ ♥ ♥ ◦ ♥ ♥
13 ♥ ◦ ◦ − ◦ F ◦ ◦ ◦ F ◦
17 ♥ ◦ ♥ ◦ − ◦ ♥ ♥ ◦ ◦ ♥
19 ◦ ◦ ♥ F ◦ − ◦ ◦ ◦ ◦ ◦
23 ♥ ◦ ♥ ◦ ♥ ◦ − ♥ ♥ ♥ ♥
29 ♥ ♥ ♥ ◦ ♥ ◦ ♥ − ♥ ♥ ♥
31 ◦ F ◦ ◦ ◦ ◦ ♥ ♥ − ◦ ◦
37 ◦ F ♥ F ◦ ◦ ♥ ♥ ◦ − ◦
41 ♥ ♥ ♥ ◦ ♥ ◦ ♥ ♥ ◦ ◦ −

Table with♥ if p and q are each cubic residues of the other, with◦ if one is and one
isn’t, and with F if neither is a cubic residue of the other.
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