INSTRUCTIONS—Read Carefully
• Time: 50 minutes
• There are 4 problems.
• Write your name legibly at the top of this page.
• No calculators or other electronic devices are allowed. (You won’t need them.)
• Show all your work. Partial credit will be given for substantial progress towards the solution. No credit will be given for answers with no explanation, except for Problem #1, which is a True/False question and has no partial credit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>** **</td>
</tr>
</tbody>
</table>
Problem 1. (20 points) This is a TRUE/FALSE question. For each statement, circle whether it is true or false. You do not need to give a reason for your answer. The scoring for this problem is:

- Correct Answer = 2.5 points,
- Blank = 1 point,
- Incorrect Answer = 0 points.

Solution. I didn’t ask you to give a reason for your answer, but I’ll provide a reason.

(a) Let \(V \) be finite-dimensional a vector space, let \(\mathcal{B} \) be a basis of \(V \), and let \(\mathcal{S} \) be a spanning set. Then always \(\#\mathcal{B} \leq \#\mathcal{S} \).

True

We know that every spanning set contains a basis, so \(\mathcal{S} \) contains a basis, and every basis has the same number of elements, so \(\mathcal{S} \) must be at least as large as \(\mathcal{B} \).

(b) Let \(V \) be a finite-dimensional vector space, let \(\mathcal{B} \) be a basis of \(V \), and let \(\mathcal{L} \) be a linearly independent set. Then \(\#\mathcal{B} \leq \#\mathcal{L} \).

False

Similarly, we know that every linearly independent set can be extended to a basis, so \(\mathcal{L} \) can’t be larger than \(\mathcal{B} \). This inequality is going the wrong direction to be true. As a particular example, take any vector \(v \in \mathcal{B} \) and let \(\mathcal{L} = \mathcal{B} \setminus \{v\} \). Then \(\mathcal{L} \) is linearly independent and smaller than \(\mathcal{B} \).

(c) Every element of a ring has an additive inverse.

True

Addition makes the elements of a ring into an abelian group, so in particular, every element has an inverse.

(d) Every element of a field has an multiplicative inverse.

False

This is almost true, but not quite, since 0 never has an inverse.

(e) Let \(G \) be a group, and let \(\phi : G \to G \) be the map \(\phi(g) = g^2 \). Then \(\{g \in G : \phi(g) = e\} \) is always a normal subgroup of \(G \).

False

The set looks like its the kernel of the homomorphism \(\phi \), but unfortunately \(\phi \) isn’t a homomorphism (unless \(G \) is an abelian group). So in general the set isn’t even a subgroup, much less a normal subgroup. As a particular example, consider \(D_3 \), the dihedral group. It
has one element of order 1, three elements of order 2 (the flips), and two elements of order 3 (the non-trivial rotations). So in this case \(\{ g \in D_3 : \phi(g) = e \} \) has 4 elements, so Lagrange says that it can’t be a subgroup of \(D_3 \), which has 6 elements.

(f) Addition in a field is commutative.

True

A field is a special kind of ring, and the definition of ring says that addition makes the ring into a commutative group.

(g) Let \(F \) be a field, and let \(f(x) \in F[x] \) be an irreducible polynomial. Then the only way to factor \(f(x) \) as \(f(x) = g(x)h(x) \) with \(g(x), h(x) \in F[x] \) is to have either \(g(x) = \pm 1 \) or \(h(x) = \pm 1 \).

False

This looks like the definition of prime number in \(\mathbb{Z} \), but it’s not quite right for a polynomial ring, since for any non-zero constant \(c \in F^* \), we can factor \(f(x) \) as \(f(x) = c^{-1} \cdot cf(x) \). The correct definition is that only way to factor \(f(x) \) as \(f(x) = g(x)h(x) \) with \(g(x), h(x) \in F[x] \) is to have either \(g(x) \in F^* \) or \(h(x) \in F^* \).

(h) Suppose that a finite group \(G \) acts on a finite set \(X \). Then it is always true that for every \(x \in X \), the orbit \(Gx \) of \(x \) has more elements than the stabilizer \(G_x \) of \(x \).

False

Sometimes the orbit is larger, sometimes the stabilizer is larger. As an example showing that the statement is false, let \(G \) act trivially on a set \(X \). Then every orbit has 1 element, since \(Gx = \{ x \} \), and every stabilizer is as large as possible, \(G_x = G \). In particular, \#G_x > #Gx.

(i) Let \(G \) be a group and let \(H \) be a subgroup. Then \(H \) is a normal subgroup of \(G \) if and only if \(g^{-1}Hg^{-1} = H \) for every \(g \in G \).

True

Our definition was that \(H \) is normal if \(g^{-1}Hg = H \) for every \(g \in G \). But as \(g \) ranges over the elements of \(G \), so does \(g^{-1} \), so we equally well have that

\[H \text{ is normal} \iff (g^{-1})^{-1}Hg^{-1} = H \quad \text{for all } g \in G. \]

Since \((g^{-1})^{-1} = g \), this is exactly the desired statement.

(j) There are no fields with 91 elements.

True

This is true, since 91 = 7 \cdot 13, and we know that every finite field has \(p^d \) elements for some prime \(p \) and some \(d \geq 1 \).
Problem 2. (25 points) Let F be a field, and let V be the vector space of polynomials of degree at most n, that is,

$$V = \{ a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n : a_0, a_1, \ldots, a_n \in F \}.$$

Let $D : V \to V$ be the map that sends a polynomial to its derivative,

$$D(a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n) = a_1 + 2a_2 X + 3a_3 X^2 + \cdots + na_n X^{n-1}.$$

(a) Prove that D is an F-linear transformation.

(b) Assume that F has characteristic 0. The image of D and the null space (kernel) of D are defined by:

- $\text{Image}(D) = \{ D(p(x)) : p(x) \in V \}$,
- $\text{Null}(D) = \{ p(x) \in V : D(p(x)) = 0 \}$.

Write down a basis for $\text{Image}(D)$ and $\text{Null}(D)$. What are their dimensions?

(c) Suppose instead that F has characteristic p for some prime $p > 0$, for example, suppose that $F = \mathbb{F}_p$. Write down a basis for $\text{Null}(D)$ and compute its dimension.

Solution. (a)

$$D(p(X) + q(X)) = D \left(\sum_{k=0}^{n} a_k X^k + \sum_{k=0}^{n} b_k X^k \right) = D \left(\sum_{k=0}^{n} (a_k + b_k) X^k \right)$$

$$= \sum_{k=1}^{n} k(a_k + b_k) X^{k-1} = \sum_{k=1}^{n} ka_k X^{k-1} + \sum_{k=1}^{n} kb_k X^{k-1}$$

$$= D \left(\sum_{k=0}^{n} a_k X^k \right) + D \left(\sum_{k=0}^{n} b_k X^k \right) = D(p(X)) + D(q(X)).$$

Similarly,

$$D(cp(X)) = D \left(c \sum_{k=0}^{n} a_k X^k \right) = D \left(c \sum_{k=0}^{n} a_k X^k \right) = \sum_{k=0}^{n} kca_k X^{k-1}$$

$$= c \sum_{k=0}^{n} ka_k X^{k-1} = cD \left(\sum_{k=0}^{n} a_k X^k \right) = cD(p(X)).$$

(b) When we apply D, the degree of a polynomial goes down by 1, so the image of D is every polynomial of degree at most $n - 1$. More precisely, given any polynomial

$$q(X) = \sum_{k=0}^{n-1} b_k X^k,$$
we see that \(q(X) \) is in the image of \(D \), since

\[
D \left(\sum_{k=1}^{n} k^{-1} b_k X^k \right) = q(X).
\]

Note that it’s okay to take \(k^{-1} \) in \(F \), since \(F \) has characteristic 0, so \(k \neq 0 \) in \(F \) for all \(k \geq 1 \). This proves that

\[
\text{Basis for Image}(D) = \{1, X, \ldots, X^{n-1}\},
\]

and

\[
\dim \text{Image}(D) = n.
\]

Suppose \(p(X) = \sum a_k X^k \) in \text{Null}(D). This means that

\[
\sum_{k=0}^{n} k a_k X^{k-1} = 0, \quad \text{so} \quad k a_k = 0 \quad \text{for all} \quad 0 \leq k \leq n.
\]

For \(k = 0 \), we can take any value for \(a_0 \), but for \(k \geq 1 \), since \(k \neq 0 \) in \(F \), we must have \(a_k = 0 \). Hence the kernel of \(D \) consists of the constant polynomials,

\[
\text{Basis for Null}(D) = \{1\}
\]

and

\[
\dim \text{Null}(D) = 1.
\]

(c) This is similar to (c), except that now the condition \(k a_k = 0 \) does not always imply that \(a_k = 0 \). Indeed, we’re in a field where \(p = 0 \), and more generally, any multiple of \(p \) is 0. It follows that

\[
D(X^k) = kX^{k-1} = 0 \quad \text{for all} \quad k \text{ such that} \quad p \mid k.
\]

Hence

\[
\text{Basis for Null}(D) = \{X^{pj} : 0 \leq j \leq n/p\}
\]

and

\[
\dim \text{Null}(D) = \left\lfloor \frac{n}{p} \right\rfloor + 1.
\]

Problem 3. (25 points) Let \(F \) be a field, and suppose that the polynomial \(X^2 + X + 1 \) is irreducible in \(F[X] \). Let

\[
K = F[X]/(X^2 + X + 1)F[X]
\]

be the quotient ring. We know from class that \(K \) is a field. We will put bars over polynomials to indicate that they represent elements of \(K \), for example, we write \(\overline{X} + 2 \) for the corresponding element of \(K \). In other words, if we let \(I \) be the ideal \(I = (X^2 + X + 1)F[X] \), then \(\overline{X} + 2 \) is shorthand for the coset \((X + 2) + I \).

(a) Find a polynomial \(p(X) \in F[X] \) of degree at most 1 satisfying

\[
p(X) = \frac{X+3}{2X+1}.
\]

\[
\overline{p(X)} = (\overline{X} + 3) \cdot (2\overline{X} + 1).
\]
(b) Find a polynomial \(q(X) \in F[X] \) satisfying
\[
q(X) \cdot (X+1) = 1.
\]
In other words, find a multiplicative inverse for \(X+1 \) in the field \(K \).

(c) Find a polynomial \(r(X) \in F[X] \) satisfying
\[
r(X)^2 = -3.
\]
In other words, find a square root of \(-3\) in the field \(K \).

Solution. (a) First we multiply
\[
(X + 3)(2X + 1) = 2X^2 + 7X + 3.
\]
Then we use the fact that \(X^2 + X + 1 = 0 \) in \(K \). In general, we’d divide by \(X^2 + X + 1 \) and take the remainder, but in this case, we just need to subtract,
\[
(X + 3) \cdot (2X + 1) = 2X^2 + 7X + 3
= (2X^2 + 7X + 3) - 2(X^2 + X + 1)
= 5X + 1.
\]

(b) There are various ways to do this problem, but the most direct is simply to write
\[
(aX + b) \cdot (X + 1) = 1,
\]
multiply it out, and solve for \(a \) and \(b \). But remember to use the fact that \(X^2 + X + 1 = 0 \). Thus
\[
(aX + b) \cdot (X + 1) = aX^2 + (a + b)X + b
= (aX^2 + (a + b)X + b) - a(X^2 + X + 1)
= bX + (b - a).
\]
We want this to equal \(1 \), so we need
\[
b = 0 \quad \text{and} \quad b - a = 1.
\]
So \(b = 0 \) and \(a = -1 \). In other words, we can take \(q(X) = -X \), and then
\[
(-X) \cdot (X + 1) = 1.
\]

(c) We want
\[
(aX + b)^2 = -3.
\]
Multiplying this out gives
\[
a^2X^2 + 2abX + b^2 = -3.
\]
Subtracting \(a^2(X^2 + X + 1) \) from the left-hand side, which is allowed, since this quantity equals \(0 \) in \(K \), we want to find \(a \) and \(b \) so that

\[
(2ab - a^2)X + (b^2 - a^2) = -3.
\]

So we need

\[
a(2b - a) = 0 \quad \text{and} \quad b^2 - a^2 = -3.
\]

The first equation says that either \(a = 0 \), or \(a = 2b \).

If we set \(a = 0 \), then the second equation gives \(b^2 = -3 \). But there might not be any element of \(F \) whose square is \(-3 \). So we turn to the second possibility, namely

\[
a = 2b.
\]

Substituting this into \(b^2 - a^2 = -3 \) gives

\[
\begin{align*}
 b^2 - (2b)^2 &= -3, \\
-3b^2 &= -3, \\
 b^2 &= 1.
\end{align*}
\]

This has the solution \(b = \pm 1 \) in \(F \). And then we take \(a = 2b = 2 \). This proves that

\[
r(X) = 2X + 1 \quad \text{satisfies} \quad r(X)^2 = (2X + 1)^2 = -3.
\]

Problem 4. (25 points) Let \(\pi \in S_9 \) be the permutation defined by

\[
\begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\downarrow & \downarrow \\
 3 & 5 & 2 & 4 & 1 & 9 & 7 & 6 & 8
\end{array}
\]

Let

\[
G = \{e, \pi, \pi^2, \pi^3, \ldots\}
\]

be the subgroup of \(S_9 \) generated by the powers of \(\pi \).

(a) Describe the orbits of \(G \) acting on the set \{1, 2, \ldots, 9\}.

(b) For which elements \(x \) of \{1, 2, \ldots, 9\} is the stabilizer \(G_x \) equal to all of \(G \)?

(c) What is the stabilizer of the element \(3 \in \{1, 2, \ldots, 9\} \)? In other words, describe the subgroup \(G_3 \).

Solution. (a) We start with 1 and compute its orbit as we repeatedly apply \(\pi \).

\[
1 \xrightarrow{\pi} 3 \xrightarrow{\pi} 2 \xrightarrow{\pi} 5 \xrightarrow{\pi} 1.
\]
So 1, 2, 3, 5 are in the same orbit. Next we find the orbit of 4. Hmmm... \(\pi(4) = 4 \), so the orbit of 4 is just 4. Similarly, \(\pi(7) = 7 \), so the orbit of 7 is 7. Finally, we see that 6, 8, and 9 form an orbit, since

\[
6 \xrightarrow{\pi} 9 \xrightarrow{\pi} 8 \xrightarrow{\pi} 6.
\]

So \(G \) has four orbits:

- \(G \cdot 1 = G \cdot 2 = G \cdot 3 = G \cdot 5 = \{1, 2, 3, 5\} \),
- \(G \cdot 6 = G \cdot 8 = G \cdot 9 = \{6, 8, 9\} \),
- \(G \cdot 4 = \{4\} \),
- \(G \cdot 7 = \{7\} \).

(b) The elements 4 and 7 are fixed by \(\pi \), so they are also fixed by all powers of \(\pi \). Hence

\[
\text{4 and 7 have stabilizers } G_4 = G_7 = G,
\]

None of the other elements of \(\{1, 2, \ldots , 9\} \) are fixed by \(\pi \), so their stabilizers cannot be all of \(G \).

(c) From (a) we see that 3, \(\pi(3), \pi^2(3), \pi^3(3) \) are distinct, but \(\pi^4(3) = 3 \). So \(\pi^4 \) is in the stabilizer of 3, and similarly so are \(\pi^8, \pi^{12}, \pi^{16}, \ldots \). So the stabilizer \(G_3 \) is all powers of \(\pi^4 \). However, we can note that \(\pi^{12} \) actually fixes every element in \(\{1, 2, \ldots , 9\} \), and that’s the smallest power of \(\pi \) that fixes every element, so \(\pi \) has order 12. In particular, \(\pi^{12} = e \), so

\[
\text{Stabilizer of } 3 = G_3 = \{e, \pi^4, \pi^8\}.
\]