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Page 71, Line 12 (two corrections)
“She can this by first computing c11” should be “She can do this by first computing
ca1”

Page 89, Theorem 2.31 (Pohlig-Hellman Algorithm)
The rough estimate for the running time leaves out some factors. For each gi, hi
in Step (1), it seems that one would need to do N/qeii group operations before
solving the DLP? And since the baseline algorithm (baby step giant step) counts
the number of group operations performed as part of its running time, Pohlig-
Hellman should probably do the same as well. This means that we need to add
N/qeii to each Sqeii

.

Page 153, Definition
It should possibly be stressed further that in computer science, exponential growth
is in terms of the bit-size of the input. Thus in CS, the function N2 exhibits
exponential growth and (logN)2 exhibits polynomial growth as a function of the
bit-size of N .

Page 199, Line 8
“The quantity a” should be “The quantity A”. This is a serious typo, since a is
Alice’s secret exponent.

Page 167, Line −6
The sentence “We note that g = 37 is . . . p = 18443” is missing a period at the end.

Date: c© June 2, 2017.

1



2 ERRATA FOR INTRO TO MATH CRYPTO — 2ND EDITION

Page 182, Exercise 3.10(b)
The decryption exponent d listed in this exercise is

16784693 = e−1 modulo
(p− 1)(q − 1)

2
.

This works fine as a decryption exponent. However, it would also be okay to use
the alternative decryption exponent

36153251 = e−1 modulo (p− 1)(q − 1).

Page 239, Definition at top of page
The notaton Pr(X = x) is not explicitly defined, although it is reasonably clear
from the previous paragraph. But might be worth adding:

Pr(X = x) = Pr
(
{ω ∈ Ω : X(ω) = x}

)
,

and similalry for Pr(X ≤ x) and Pr(X > x).

Page 251, Line 6
“Next we choose additional random exponents z1, z2, . . . , zn between 1 and k”
should be “Next we choose additional random exponents z1, z2, . . . , zn between 1
and N”

Page 264, Definition
Warning: The definition of perfect secrecy is not consistent with some other books.
For example, Katz and Lindell’s Introduction to Modern Cryptography requires that
the given identity hold for all distributions over the message space.

Page 266, Proposition 5.55
It might be better to use M+, instead of C+, since C has been used to denote the
space of cipher texts.

Page 270, Property H3

Property H3 is incorrect. First, the elements xij should all be distinct. Secondly,
the penultimate dispalyed formula on page 270 should read

Pr(X = xij) = Pr(Y = Zi) Pr(Zi = xij).

(Using the incorrect property as stated in the text, we can construct counterexam-
ples when the random variables Y and Zi are not independent. For example let
Y,Z0, Z1 be (dependent) binary choices given by a single toss of an unbiased coin.
Then H(X) = 1, but the right hand side of the entropy formula would evaluate
to 2. This cannot be correct, since we cannot get two bits of entropy out of a single
toss.)

Page 296, Exercise 5.45(b)
Possibly add: Warning : Perfect secrecy depends on what happens for all c.

Page 321, Remark 6.20
It has been suggested that the criterion for the extra bit should be 1

2p ≤ y < p,

instead of 1
2p < y < p. However, since p is presumably a large (odd) prime, the

two formulations are identical.
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Page 442, Last displayed equation
b∗j should be b2j .

Page 447, Middle of the page
The formula for Gaussian shortest length is not listed correctly. The lattice has
dimension 6, so the exponent should be 1/6. However, the value was computed
correctly. Thus it should read

σ(L) = (3! detL)1/6/
√
π ≈ 23.062.

Page 454, Exercise 7.3
The encrypted message should be S = 755, not S = 4398.
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SUPPLEMENTARY MATERIAL

Page 24, Section 1.3.2
The history of the square and multiply algorithm is interesting. We would like to
thank Carlo Beenakker for providing some information in his answer on MathOVer-
flow:

http://mathoverflow.net/questions/107708

The following appears in Donald Knuth, Seminumerical Algorithms, volume 2 of
The Art of Computer Programming, page 441:

“The method is quite ancient; it appeared before 200 B.C. in Pingala’s Hindu
classic Chandah-sutra [see B. Datta and A.N. Singh, History of Hindu Mathematics
1, 1935]; however, there seem to be no other references to this method outside
of India during the next 1000 years. A clear discussion of how to compute 2n

efficiently for arbitrary n was given by al-Uqlidisi of Damscus in 952 A.D.; see
The Arithmetic of al-Uglidisi by A.S. Saidan (1975), p. 341-342, where the general
ideas are illustrated for n = 51. See also al-Biruni’s Chronology of Ancient Nations
(1879), p. 132-136; this eleventh-century Arabic work had great influence.”

A detailed discussion of the earliest history is in A. Kulkarni, Recursion and Com-
binatorial Mathematics in Chandashaastra. [Chandashaastra = Chandah-sutra]

http://arxiv.org/abs/math/0703658

Page 235, Example 5.26
The Prisoner Paradox can be confusing for students, but since it is not a funda-
mental part of the course, the authors do not feel it deserves more than half a page.
The following material is thus made available as a supplement for instructors and
students:

Before Alice gets any information from the jailer, there are three outcomes, each
of which has equal probability, so

Pr(Alice released) = 1/3,

Pr(Bob released) = 1/3,

Pr(Carl released) = 1/3.

Next suppose that the jailer tells Alice the name of someone who will stay jailed,
but when the jailer has a choice, i.e., when both Bob and Carl will stay jailed, he
picks one at random. Then

Pr(Alice released and jailer says “Bob”) = 1/6,

Pr(Alice released and jailer says “Carl”) = 1/6,

Pr(Bob released and jailer says “Carl”) = 1/3,

Pr(Carl released and jailer says “Bob”) = 1/3.

So the fact that the jailer told Alice that Bob will stay jailed means that

Pr(Alice released | jailer says “Bob”) =
1/6

1/6 + 1/3
=

1

3
,

so Alice’s chances of being released are still 1
3 .
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Finally, suppose that the jailer tells Alice the name of someone who will stay
jailed, but when the jailer has a choice, he always chooses Bob. Then

Pr(Alice released and jailer says “Bob”) = 1/3,

Pr(Alice released and jailer says “Carl”) = 0,

Pr(Bob released and jailer says “Carl”) = 1/3,

Pr(Carl released and jailer says “Bob”) = 1/3.

So the fact that the jailer told Alice that Bob will stay jailed means that

Pr(Alice released | jailer says “Bob”) =
1/3

1/3 + 1/3
=

1

2
,

so in this scenario Alice’s probability of being released has increased to 1
2 .

Page 238, Section 5.3.4
This section can be difficult for students (and instructors) who have not previously
studied probability. It has been suggested that in each of the examples, we explicitly
describe the sample space Ω, although once one becomes familiar with the language
of probability, this is seldom done. In particular, note that the sample space in
Example 4.31 is an infinite set.

Here is expanded text for Examples 4.29 and 4.31.

Example 4.29. The sample space Ω consists of all binary strings ω = b1b2 . . . bn
of length n, where bi = 0 if the i’th experiment is a failure and bi = 1 if the
i’th experiment is a success. The value of the random variable X at ω is simply
X(ω) = b1 + b2 + · · · + bn, which is the number of successes. Using the random
variable X, we can express the probability of the event ω as

Pr({ω}) = pX(ω)(1− p)n−X(ω).

(Do you see why this is the correct formula?)

Example 4.31. The sample space Ω consists of all binary strings ω = b1b2b3 . . .,
where bi = 0 if the i’th toss is tails and bi = 1 if the i’th toss is heads. This is an
example of an infinite probability space. The way in which we assign probabilities
to events is by specifying a certain number of initial tosses. So for any given finite
binary string β1β2 . . . βn, we assign a probability

Pr
(
{ω ∈ Ω : ω starts β1β2 . . . βn}

)
= p(# of βi equal to 1)(1− p)(# of βi equal to 0).

The random variable X is defined by

X(ω) = X(b1b2b3 . . .) = (smallest i such that bi = 1).

Then
{X = n} =

{
ω ∈ Ω : X(ω) = n

}
=
{

000 . . . 00︸ ︷︷ ︸
n− 1 zeros

1bn+1bn+2 . . .
}
.

Hence
fX(n) = Pr(X = n) = (1− p)n−1p.
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Page 340, Example 6.37
We provide a further explanation as to why the divisor of X−α is 2[P ]−2[O], and
not [P ]− [O].

There are various ways to see that div(X − α) is 2[P ]− 2[O]. In particular, the
fact that (α, 0) is a point on E means that α is a root of the cubic used to define E,
so the equation of E has the form

E : Y 2 = (X − α)(X2 + aX + b).

Further, the polynomials of X − α and X2 + aX + b have no common roots (this
is where we use the nonsingularity of E), so they have no common zeros. And of
course, their only pole is the point O. It follows that div(X−α) and div(X2+aX+b)
have no points in common except for O. But

2 div(Y ) = div(X − α) + div(X2 + aX + b),

which shows that the zeros of X − α appear with even multiplicity. Of course, the
only zero of X − α is the point P = (α, 0), which shows that

div(X − α) = 2n[P ]− 2n[O]

for some integer n ≥ 1. (Note that the total number of zeros and poles sums to
zero.)

There are various ways to prove that n equals 1. For example, we can prove
that Y is a local uniformizer at P , i.e., it vanishes to order 1 at P . To do that, we
consider the local ring at P , which is the ring

R =

{
f(X,Y )

g(X,Y )
: Y 2 = X3 +AX +B and g(α, 0) 6= 0

}
.

In other words, we take all rational functions whose denominator does not vanish
at P . This is a local ring whose maximal ideal is generated by X − α and Y . But
since

X − α =
Y 2

X2 + aX + b
and X2 + aX + b does not vanish at P ,

we see that X−α is in the ideal of R generated by Y , so Y is a uniformizer. Indeed,
this shows that X − α generates the same ideal as Y 2, so

ordP (X − α) = 2 ordP (Y ) = 2.


