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Rational Maps on Projective Space

Notation: We fix

n ≥ 1 and d ≥ 2.

Primary Object of Study: Dynamics of

Ratnd :=
{

Rational maps f : Pn −→ Pn of degree d
}
.

Dynamics is the study of Iteration:

f◦k := f ◦ f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k copies

.

The Orbit of a point α ∈ Pn is

Of (α) :=
{
f◦k(α) : k = 0, 1, 2, . . .

}
.

The point α is Preperiodic if it has finite orbit.
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A Soupçon of Motivation

Arithmetic Dynamics is the study of arithmetic prop-
erties of iteration of maps and their orbits. Many prob-
lems are inspired by analogy from arithmetic geometry.
Some examples:

• Let f (z) ∈ Q(z). Only finitely many α ∈ Q are
preperiodic (Northcott, 1950). Is there a bound for
the number of such points that depends only on deg(f )?
(Uniform Boundedness Conjecture)

• Let f (z) ∈ Q(z) and α ∈ Q. When can Of (α) con-
tain infinitely many integers? (Dynamical analogue
of Siegel’s theorem)

• Let f : Pn→ Pn and V ⊆ Pn and α ∈ Pn(C). When
is #Of (α) ∩ V =∞? When is # Per(f ) ∩ V =∞?
(Dynamical analogues of Bombieri-Lang and Manin-
Mumford conjectures)
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A Soupçon of Motivation

• In arithmetic geometry, rather than studying one va-
riety, it is fruitful to look at the space of all varieties.

• More precisely, one studies the space of isomorphism
classes of varieties having a specified structure, i.e.,
moduli spaces.

• The aim of this talk is to describe some of the moduli
spaces that come up in dynamics, and to see how
they are analogous, in some ways, to moduli spaces
such as X1(N), Mg, and Ag that are so important
in arithmetic geometry.
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Rational Maps on P1

We start with n = 1. Rational maps P1→ P1 look like

f (z) =
a0z

d + a1z
d−1 + · · · + ad

b0zd + b1zd−1 + · · · + bd
,

but we get the same map if multiply the numerator and
denominator by any non-zero c. Hence

Rat1
d =

{
[a0, . . . , ad, b0, . . . , bd]

}
= P2d+1.

Convention: For now we allow “degenerate” maps
where top and bottom have a common factor. To get
a map of exact degree d, we need a0, b0 not both zero
and no common factor.
Example:

Rat1
2 =

{
a0z

2 + a1z + a2

b0z2 + b1z + b2
: [a0, . . . , b2] ∈ P5

}
.
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Identifying Ratnd with PN

In general we write

f (X0, . . . , Xn) =
[
f1(X0, . . . , Xn), . . . , fn(X0, . . . , Xn)

]
with

fi ∈ K[X0, . . . , Xn] homogeneous of degree d.

Then we identity f with the list of its coefficients:

f ↔ [coeffs. of f ] ∈ PN with N = (n + 1)

(
n + d

d

)
− 1.

The exact value of N = Nn
d is not important, except to

note that it gets quite large as d→∞. For example,

N1
d = 2d + 1, N2

d =
3d2 + 9d + 4

2
.
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Equivalence of Dynamical Systems

Question: When are two maps f, g : Pn→ Pn

Dynamically Equivalent?

Answer: When they differ by a change of variables
of Pn, i.e., when there is an automorphism L : Pn→ Pn
so that

g = fL := L−1 ◦ f ◦ L,
Pn g−→ PnyL yL
Pn f−→ Pn

N.B. Conjugation by L commutes with composition:

(fL)◦k = fL ◦ · · · ◦ fL = (f ◦ · · · ◦ f )L = (f◦k)L.

That’s why conjugation is the appropriate equivalence
relation for dynamics.
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Equivalence of Dynamical Systems

For example, if n = 1, then

L =
αz + β

γz + δ
∈ PGL2

is a linear fractional transformation, and in general

L ∈ Aut(Pn) ∼= PGLn+1

is given by n + 1 linear forms in n + 1 variables.
The conjugation action of

Aut(Pn) = PGLn+1 on Ratnd
∼= PN

gives a very complicated homomorphism

PGLn+1 −→ PGLN+1 .

Primary Goal: Understand the quotient space∗

Ratnd /PGLn+1-conjugation

∗ Really Ratnd / SLn+1 for technical reasons. Will ignore!
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An Example

We illustrate with the map

Aut(P1) = PGL2 −→ PGL6 = Aut(Rat1
2) ∼= P5.

The conjugation action of the linear fractional transfor-

mation L = αz+β
γz+δ on the vector of coefficients of the

quadratic map f = a0z
2+a1z+a2

b0z2+b1z+b2
is given by the matrix

α2δ αγδ γ2δ −α2β −αβγ −βγ2
2αβδ αδ2 + βγδ 2γδ2 −2αβ2 −αβδ − β2γ −2βγδ

β2δ βδ2 δ3 −β3 −β2δ −βδ2
−α2γ −αγ2 −γ3 α3 α2γ αγ2

−2αβγ −αγδ − βγ2 −2γ2δ 2α2β α2δ + αβγ 2αγδ

−γβ2 −βγδ −γδ2 αβ2 αβδ αδ2
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Geometric Invariant Theory to the Rescue

The quotient space

Ratnd /(PGLn+1 -conjugation).

makes sense as a set, but algebraically and topologically,
it’s a mess!

Geometric Invariant Theory (GIT, Mumford et
al.) explains what to do. GIT says that if we restrict to
a “good” subset of Ratnd , then we get a “good” quotient.
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Moduli Spaces of (Semi)Stable Rational Maps

Theorem. There exist subsets of semi-stable and sta-
ble points so that the quotients

Mn
d := (Ratnd)ss/PGLn+1,

Mn
d := (Ratnd)stab/PGLn+1,

are “nice” algebraic varieties.

• (Ratnd)stab ⊆ (Ratnd)ss are non-empty Zariski open
subsets of Ratnd , i.e., they’re pretty big.

•Mn
d andMn

d are varieties, withMn
d projective.

• Two maps f, g ∈ (Ratnd)stab have the same image

inMn
d if and only if g = fL for some L ∈ PGLn+1.

Theorem. (Levy, Petsche–Szpiro–Tepper)

f ∈ Ratnd a morphism =⇒ 〈f〉 ∈ Mn
d .



The Space of Rational Self-Maps of Pn 11

Dynamical Moduli Space of Maps on P1

For n = 1, we know a fair amount.

Theorem. (Milnor over C, JS as Z-schemes)

M1
2
∼= A2 and M1

2
∼= P2.

Milnor describes the isomorphismM1
2
∼= A2 very explic-

itly. I’ll discuss this on the next slide.

Theorem. (Levy)

M1
d is a rational variety.

(It is clear thatMn
d is unirational.)



The Space of Rational Self-Maps of Pn 12

An Explicit Description of M1
2

• Degree 2 rational maps f have three fixed points:

f (α1) = α1, f (α2) = α2, f (α3) = α3.

• Compute the multipliers

λ1 = f ′(α1), λ2 = f ′(α2), λ3 = f ′(α3),

and take the symmetric functions

σ1(f ) := λ1 + λ2 + λ3, σ2(f ) := λ1λ2 + λ1λ3 + λ2λ3.

• Fact: σ1(fL) = σ1(f ) and σ2(fL) = σ2(f ).

• Theorem: The map

(σ1, σ2) :M1
2
∼−−−→ A2 is an isomorphism.

Theorem. (McMullen) If one uses enough symmet-
ric functions of multipliers of periodic points, then one
“usually” obtains a finite-to-one mapM1

d −→ P∗.
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“Special Points” in M1
d

Let f ∈M1
d, and write f (z) ∈ K(z). A critical point

of f is a point α where f ′(α) = 0. A rational map of de-
gree d has 2d− 2 critical points (counted with multiplic-
ities). The map is said to be Post-Critically Finite
(PCF) if every critical point is preperiodic.

“Coincidentally” we also have dimM1
d = 2d− 2.

Theorem. (Thurston) There are only countably many
PCF maps inM1

d. Properly formulated, they each ap-
pear with multiplicity one.

Analogy : PCF maps︸ ︷︷ ︸
dynamics

←→ CM abelian varieties︸ ︷︷ ︸
arithmetic geometry

There’s been much work recently (Baker, DeMarco, . . . )
on dynamical André–Oort type results, with PCF in
place of CM.
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Adding Level Structure

Analogy : (Pre)periodic points︸ ︷︷ ︸
dynamics

←→ Torsion points︸ ︷︷ ︸
arithmetic geometry

We can add level structure toMn
d by marking a periodic

point:

Mn
d(N) :=

{
(f, α) : f ∈Mn

d and α ∈ PerN (f )
}
.

Conjecture. Mn
d(N) is of general type for all suffi-

ciently large N .

Theorem. (Blanc, Canci, Elkies)
• M1

2(N) is rational for N ≤ 5.

• M1
2(N) is of general type for N = 6.
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The Automorphism Group of a Rational Map

General Principle: Given a category C and an ob-
ject X , the group of automorphisms

AutC(X) = {isomorphisms φ : X → X}
is an interesting group.

Definition: The automorphism group of f ∈ Ratnd
is the group

Aut(f ) =
{
L ∈ PGLn+1 : fL = f

}
.

In other words, Aut(f ) is the set of fractional linear
transformations that commute with f .

Observation:

Aut(fL) = L−1 Aut(f )L,

so Aut(f ) is well-defined (as an abstract group) for f ∈
Mn

d .
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The Automorphism Group of a Rational Map

Theorem. If f is a morphism, then Aut(f ) is finite.

But note that Aut(f ) may be infinite for dominant ra-
tional maps.

The theorem is not hard to prove, for example by using
the fact that φ ∈ Aut(f ) must permute the points of
period N . More precise results include:

f ∈Mn
d =⇒ # Aut(f ) ≤ C(n, d) (Levy),

f ∈M1
d =⇒ # Aut(f ) ≤ max{60, 2d + 2},

f ∈M2
d =⇒ # Aut(f ) ≤ 6d3 (de Faria–Hutz),

f ∈M2
2 =⇒ # Aut(f ) ≤ 21 (Manes–JS),
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The Automorphism Group of Maps of Degree 2 on P1

Proposition. Recall that there is a natural isomor-
phismM1

2
∼= A2. With this identification,{
f ∈M1

2 : Aut(f ) is non-trivial
}

is a cuspidal cubic curve Γ ⊂ A2, and we have

Aut(f ) =


1 if f /∈ Γ,

C2 if f = Γ r cusp,

S3 if f = cusp ∈ Γ.

The non-cusp points of Γ are maps of the form

f (z) = bz +
1

z
with b 6= 0.

The cusp is the map f (z) = z−2.
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Automorphisms and Twists

Just as with elliptic curves, the existence of non-trivial
automorphisms leads to twists, that is, maps f and f ′

that are equivalent over the algebraic closure of K, but
not over K itself. The dynamnics of distinct twists may
exhibit different arithmetic properties.

The twists of f are classfied, up to K-equivalence, by

Ker
(
H1(GK̄/K,Aut(f )

)
→ H1(GK̄/K,PGLn+1(K̄)

))
.

Example: The map f (z) = bz + z−1 on the last slide
has Aut(f ) = C2. Its quadratic twists are

fc = bz +
c

z
with c ∈ K∗.

Notice that

L(z) =
√
c z sends fLc (z) = f1(z).
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Maps in M2
2 with Large Automorphism Group

Joint work (in progress) with Michelle Manes

We classify semi-stable dominant rational maps

f : P2 99K P2 of degree 2 with 3 ≤ # Aut(f ) <∞.

At this point we have a geometric classification.
Some interesting factoids gleaned from the classification:

• Let f ∈ M2
2 with Aut(f ) finite. Then Aut(f ) is

isomorphic to one of the following groups:

C1, C2, C3, C4, C5, C
2
2 , C3 o C2, C3 o C4,

C2
2 o S3, C4 o C2, C7 o C3.

Further, all of these groups occur.

• The map f = [Y 2, X2, Z2] has Aut(f ) ∼= C7 o C3.

• If Aut(f ) contains a copy of either C5 or C2 × C2,

then f ∈M2
2 rM2

2, so f is not a morphism.
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Proof Idea

For a dominant rational map f : P2 99K P2, let:

I(f ) = Indeterminacy locus of f

= {P ∈ P2 : f is not defined at P},
Crit(f ) = Critical locus of f

= Ramification locus of f .

Observation: Every φ ∈ Aut(f ) leaves I(f ) and Crit(f )
invariant, i.e.,

φ
(
I(f )

)
= I(f ) and φ

(
Crit(f )

)
= Crit(f ).

Here I(f ) is either empty or a finite set of points, and
Crit(f ) is a cubic curve in P2.
Typical Examples
• If I(f ) = {P1, P2}, then φ fixes or swaps P1 or P2.
• If I(f ) = L ∪ C, then φ(L) = L and φ(C) = C.
• If I(f ) = L1 ∪ L2 ∪ L3, then φ permutes the lines.
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Proof Idea

Combining information from

φ
(
I(f )

)
= I(f ), φ

(
Crit(f )

)
= Crit(f ), φ ◦ f = f ◦ φ

usually puts sufficient restrictions on φ to allow a case-
by-case analysis.
The cases with

I(f ) = ∅ and Crit(f ) = smooth cubic curve

are interesting . For these we exploit the fact that
φ
(
Crit(f )

)
= Crit(f ) to note that φ preserves

(1) The 9 flex points of Crit(f ), and (2) Lines.

This leads to 432 possible ways that φ can permute the 9
flex points, and each permutation π yields a 6-by-12 ma-
trix Mπ,φ such that f satisfies the constraint

rankMπ,φ ≤ 5.

A short computer program then checked all cases.
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In Conclusion

I want to thank the organizers for inviting me to give
this talk. But most of all, I want to say ..................

H A P P Y B I R T H D A Y R I C H A R D
R D H A P P Y B I R T H D A Y R I C H A
H A R D H A P P Y B I R T H D A Y R I C
I C H A R D H A P P Y B I R T H D A Y R
R I C H A R D H A P P Y B I R T H D A Y
A Y R I C H A R D H A P P Y B I R T H D
H D A Y R I C H A R D H A P P Y B I R T
R T H D A Y R I C H A R D H A P P Y B I
B I R T H D A Y R I C H A R D H A P P Y
P Y B I R T H D A Y R I C H A R D H A P
A P P Y B I R T H D A Y R I C H A R D H
H A P P Y B I R T H D A Y R I C H A R D
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