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Elliptic Divisibility Sequences

Elliptic Divisibility Sequences As Recursions

An Elliptic Divisibility Sequence (EDS) is a se-
quence W = (Wn) defined by a recursion of the form

W0 = 0, W1 = 1, W2W3 6= 0, W2 | W4,

Wm+nWm−n = Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m

If W1, . . . , W4 ∈ Z, then:
• Wn ∈ Z for all n ≥ 0.
• If m | n, then Wm | Wn. Thus W is a divisibility

sequence.

• In fact, it is a strong divisibility sequence:

Wgcd(m,n) = gcd(Wm,Wn).

Aritmetic properties of EDS were first studied by Mor-
gan Ward in the 1940’s.
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Elliptic Divisibility Sequences

EDS and Elliptic Curves

Let E/Q be an elliptic curve given by a Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

and let P ∈ E(Q) be a nontorsion point.

We write the multiples of P as

nP =

(
AnP

D2
nP

,
BnP

D3
nP

)
.

Then the sequence D = (Dn) is a (strong) divisibility
sequence.

Further, if P is nonsingular modulo p for all primes and
if we assign signs properly to the Dn, then D satisfies
the EDS recursion.
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Elliptic Divisibility Sequences

The Growth Rate of Elliptic Divisibility Sequences

Here is the elliptic divisibility sequence starting 1, 1, 1,−1.

1, 1, 1, −1, −2, −3, −1, 7, 11, 20, −19, −87, −191, . . .

It is associated to the point P = (0, 0) on the curve
y2 + y = x3 + x2.

Don’t be fooled by this example into thinking that EDS
grow slowly.

Theorem. (Siegel + Néron-Tate) Let (Wn) be an
EDS associated to a point P ∈ E(Q). Then

log |Wn| ∼ ĥ(P )n2 as n →∞.

For the EDS starting 1, 1, 1, −1, we have

|Wn| ≈ 1.0319n2
,

so for example W100 has about 136 digits.
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Elliptic Divisibility Sequences

Variation of the Sign

The sign of an EDS varies rather irregularly. It is not
hard to describe the variation, but there are several
cases. Here is a representative example.

Theorem. (Stephens-JS) Assume that P is in the
identity component of E(R). Then there is a β ∈
RrQ and a ν ∈ {0, 1} so that

Sign(Wn) = (−1)[nβ]+ν for all n ≥ 1.

Example. Continuing with the EDS that starts 1, 1, 1,−1,

Sign(Wn) = (−1)[nβ] with β =
1

2
log|q|(u) = 0.280058 . . . .

Here q and u are from the Jacobi parametrization

E(R) ∼= R∗/qZ and P ↔ u.
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Elliptic Divisibility Sequences

Division Polynomials

Ward noted that the division polynomials of an elliptic
curve satisfy the EDS recursion. This insight allows one
to study EDS using the theory of elliptic functions.

Definition. Let E be an elliptic curve. The nth di-
vision polynomial Fn is the (suitably normalized)
rational function on E whose zeros and poles are

div(Fn) =
∑

T∈E[n]

(T )− n2(O).

Theorem. (Ward) Let (Wn) be a nondegenerate el-
liptic divisibility sequence. Then there exists an elliptic
curve E/Q and a point P ∈ E(Q) so that

Wn = Fn(P ) for all n ≥ 1.

N.B. May need a nonminimal Weierstrass equation.
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Elliptic Divisibility Sequences

The Classical Theory of Elliptic Functions

An elliptic curve E over C has a complex uniformization

C/L
∼−−−−→ E(C).

Here L is a lattice in C and the map is given by the
classical Weierstrass ℘ function and its derivative.

Integrating−℘ twice and exponentiating gives the Weier-
strass σ function:

σ(z; L) = z
∏

ω∈L
ω 6=0

(
1− z

ω

)
e(z/ω)+1

2(z/ω)2.

The σ function is not itself an elliptic function, i.e., it is
not periodic for L. However, it has a simple transforma-
tion formula and can be used to build elliptic functions.
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Elliptic Divisibility Sequences

Building the Division Polynomials from the σ Function

Proposition. Let P ∈ E correspond to z ∈ C/L.
Then the (normalized) division polynomial is given by

Fn(P ) =
σ(nz; L)

σ(z; L)n
2

This formula for Fn, Ward’s theorem expressing EDS
in terms of Fn, and a product formula for σ are the
ingredients that go into determining Sign(Wn).
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Elliptic Divisibility Sequences

Why Study Elliptic Divisibility Sequences?

Here are some possible answers to this question.
(1) They are the “simplest” nontrivial nonlinear recur-

sions.
(2) Ward’s theorem Wn = Fn(P ) allows us to study

nontorsion points in E(Q) via the EDS recursion.
(3) All EDS are defined by a single universal relation;

only the three initial values change.
(4) EDS grow extremely rapidly, but in a manner that

can be precisely characterized.

Don Zagier (1996) suggested that one might try to de-
velop the entire theory of elliptic curves, and possibly
even the theory of modular functions, starting with just
the EDS recursion formula.
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Elliptic Divisibility Sequences

Elliptic Divisibility Sequences Modulo p

It is natural to study the behavior of EDS modulo p, or
more generally modulo pe.

Definition. Let p ≥ 3 and assume that p - W2W3.
The rank of apparition of p in (Wn) is the smallest
value of n such that p | Wn.

In other words, Wrp is the first term in the sequence
divisible by p.

Recall that p is a primitive divisor of Wn if p | Wn

and p - Wi for i < n. Then the basic theorem on
primitive divisors discussed by Everest on Monday says:

Theorem. Let (Wn) be an EDS. Then

{rp : p prime}
contains all but finitely many natural numbers.
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Elliptic Divisibility Sequences

Periodicity Properties of Elliptic Divisibility Sequences

It is not clear that rp < ∞, i.e., that every prime p
divides some term in the sequence, but this is true. More
generally:

Theorem. (a) (Ward 1948) Wn mod p is purely pe-
riodic with period rt, where

r = rp ≤ 2p + 1 and t | p− 1.

(b) (Shipsey 2001) rp ≤ p + 1 + 2
√

p.

(c) (Ayad 1993) Wn mod pe is purely periodic with
period

pmax{e−e0,0}rt, where e0 = ordp(Wr).

Proof. (a,b) Elliptic functions.
(c) The EDS recursion and explicit addition formulas.
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Elliptic Divisibility Sequences

An Explicit Periodicity Formula

Under some mild assumptions, Ayad more-or-less proves
the following result.

Theorem. (Ayad) For all e ≥ 1 there are constants
Ae and Be so that for all k, n ∈ Z,

Wkpe−1r+n ≡ Akn
e ·Bk2

e ·Wn (mod pe).

(This was originally proved by Ward for e = 1, and
Shipsey and Swart studied some higher congruences in
their theses.)

Ayad’s mild assumptions are

p ≥ 3, r = rp ≥ 3, and P̃ is nonsingular in E(Fp).

For the remainder of this talk, I will assume that these
conditions are satisfied.
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Elliptic Divisibility Sequences

p-adic Convergence of Elliptic Divisibility Sequences

Theorem 1. Given an elliptic divisibility sequence
(Wn) and a prime p, there exists a power q = pN so
that for all m ≥ 1, the limit

Ŵm,q
def
= lim

k→∞
Wmqk converges in Zp.

Proof. Use Ayad’s formula to show that the sequence
is Zp-Cauchy.

Remark. Ŵm,q only depends on m modulo q.

Theorem 2. Assume in addition that the underly-
ing elliptic curve is ordinary at p. (This means that
Ẽ(F̄p)[p] 6= 0.) Then

Ŵm,q is algebraic over Q.
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Elliptic Divisibility Sequences

Proof Sketch of Theorem 2

The proof of Theorem 2 uses tools that may be useful
for further investigations of p-adic properties of EDS.

Tools used in proof.
• Transformation formulas for division polynomials Fn.
• The Mazur-Tate p-adic σ-function, which we denote

by σp.
• The Teichmüller character on Z∗p and on E(Qp).

• An elementary lemma on nth-roots of p-adic conver-
gent sequences.

• A case-by-case analysis depending, for example on
whether

mP ≡ O (mod p) and/or #Ẽ(Fp) = p.
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Elliptic Divisibility Sequences

Proof Sketch of Theorem 2 (continued)

Properties of the Mazur-Tate p-adic σ-function.
• σp only exists if E is ordinary at p.

• Let E1(Qp) be the formal group of E, i.e., the kernel
of reduction,

E1(Qp) = Ker
(
E(Qp) −→ Ẽ(Fp)

)
.

The p-adic σ-function is defined on the formal group,

σp : E1(Qp) −→ Qp.

• For points Q ∈ E1(Qp), the classical σ-function/division
polynomial formula is valid:

Fn(Q) =
σp(nQ)

σp(Q)n
2 .

Unfortunately, we need to evaluate Fn at P /∈ E1(Qp).
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Elliptic Divisibility Sequences

Proof Sketch of Theorem 2 (continued)

Let r = rp be the order of P in E(Fp) and assume that

p - rm and r - m.

(This is one of the many cases that must be considered.)

We use the division polynomial transformation formula

Fab(Q) = Fa(bQ)Fb(Q)a
2

(∗)
and the Mazur-Tate formula

Fn(Q) =
σp(nQ)

σp(Q)n
2 , valid for Q ∈ E1(Qp). (∗∗)

Applying (∗) twice and then applying (∗∗) to Q = rP ∈
E1(Qp) yields

W r2

n = Fn(P )r
2

=
σp(rnP )

Fr(nP )

(
Fr(P )

σp(rP )

)n2

. (∗∗∗)
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Elliptic Divisibility Sequences

Proof Sketch of Theorem 2 (continued)

Now write

P = P ′ + T with P ′ ∈ E1(Qp) and T ∈ E[r].

A careful analysis of

W r2

n = Fn(P )r
2

=
σp(rnP ′)
Fr(nP )

(
Fr(P )

σp(rP ′)

)n2

(∗∗∗)

shows that each of the two factors on the right-hand side
has a p-adic limit if we take n = mqk and let k →∞.
Roughly speaking:

First Factor −→ “derivative of Fr at mT”,

Second Factor −→ root of unity = Teich
(
F ′r(T )

)
.

Finally, an elementary lemma shows that we can take a
unique r2-root to get the limit of Wn.
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EDS Questions and Open Problems

(1) Is the limit in Theorem 2 algebraic in the supersin-
gular case?

(2) Can one use EDS and/or Ayad’s arguments to de-
fine the p-adic σ-function in the supersingular case.
(This is very speculative.)

(3) Are the EDS limits in Theorems 1 and 2 related to
values of p-adic height functions and/or to special
values of p-adic L-functions?

(4) Graham already mentioned the question of whether
there are only finitely many primes in an EDS,
or more generally, only finitely many terms with
a bounded number of prime factors.

(5) For higher rank elliptic nets (to be discussed by
Stange on Thursday), are there infinitely many primes?
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EDS Questions and Open Problems (continued)

(6) Let Wn and W ′
n be independent EDS. Is it true

that for every ε > 0 we have

gcd(Wn,W ′
m) ≤ C(ε) max

{|Wn|, |W ′
m|

}ε
?

This would follow from Vojta’s conjecture. It is an
elliptic analog of a theorem of Corvaja and Zannier
concerning the growth rate of gcd(an − 1, bn − 1).

(7) Let Wn and W ′
n be independent EDS. Is

gcd(Wn,W ′
n) = 1 for infinitely many n?

This is an elliptic analog of a conjecture of Ailon
and Rudnick. To illustrate our present state of
knowledge, it is currently not known whether

gcd(2n − 1, 3n − 1) = 1

for infinitely many n.
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Sequences in Arithmetic Dynamics

Rapidly Growing Sequences in Arithmetic Dynamics

Let
φ(z) ∈ Q(z)

be a rational function of degree d ≥ 2 and let α ∈ Q
be an initial point. For each n ≥ 0, write

φn(α) = (φ ◦ φ ◦ · · · ◦ φ)(α) =
An

Bn
∈ Q

as a fraction in lowest terms. We assume that α is not
preperiodic, i.e.,

φn(α) 6= φm(α) for all n 6= m.

Theorem. (JS) If φ2(z) /∈ Q[1/z], then

lim
n→∞

log |An|
dn = ĥφ(α) > 0.
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Sequences in Arithmetic Dynamics

Primitive Divisors in Dynamical Sequences

The theorem says that the sequence (An) grows ex-
tremely rapidly:

|An| ≈ Cdn
for some C = C(φ, α) > 1.

It is natural to ask for the existence of primitive divisors
in the sequence (An). Here is a sample result.

Theorem. (JS) Assume that

φ(0) = 0 and φ′(0) ∈ Z.

Then all but finitely many terms in the sequence (An)
have a primitive prime divisor.

Remarks
(1) A similar statement is true over number fields.
(2) It suffices to assume that 0 is a periodic point with

integral multiplier.
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Sequences in Arithmetic Dynamics

Some Open Problems About Dynamical Sequences

(1) What happens if we do not require φ′(0) ∈ Z?
This leads to p-adic chaotic behavior for primes p
dividing the denominator of φ′(0).

(2) What happens if 0 has an infinite orbit?

(3) There are dynamial analogs of division polynomi-
als. The n’th dynatomic polynomial for φ
is a polynomial Φφ,n whose roots are the points
of period n for φ. What can one say about the
arithmetic properties of the (numerators of the) se-
quence (

Φφ,n(α)
)
n≥1?
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