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Specialization for Families of Abelian Varieties

An Example

We start with an example. Consider the family of ellip-
tic curves and family of points,

E : y2 = x3 + x + T 2, P = (0, T ).

We are interested in studying how frequently the spe-
cialized point Pt = (0, t) is a point of finite order on
the specialized elliptic curve Et.

For example, setting t = 0, we find that

P0 = (0, 0) is a point of order 2 on E0.

Similarly,

t =
4
√√

5− 1

2
makes Pt a point of order 5 on Et.
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Specialization for Families of Abelian Varieties

The Specialization Map

In general, given an elliptic curve E defined over K(T ),

E : y2 = x3 + A(T )x + B(T ),

each t ∈ K defines a Specialization Map

σt : E
(
K(T )

) −→ Et(K).

Thus given a point P =
(
x(T ), y(T )

) ∈ E
(
K(T )

)
, we

compute σt(P ) by evaluating at T = t:

σt(P ) =
(
x(t), y(t)

) ∈ Et(K) : y2 = x3 + A(t)x + B(t).

It is natural to ask how frequently independent points
in E

(
K(T )

)
remain independent when specialized. Equiv-

alently, how large is the exceptional set

E(E, K)
def
=

{
t ∈ K : σt fails to be injective

}
?
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Specialization for Families of Abelian Varieties

Specialization Theorems

Theorem. Let K/Q be a number field and E/K(T )
an elliptic curve. Then

E(E, K) −→




is small (density 0) (Néron, 1952),

is finite (JS, 1983).

More generally, we look at one-parameter families of
abelian varieties and consider specializations over Q̄.

Theorem. Let T/Q̄ be a curve and let A → T be
a family of abelian varieties, defined over Q̄, with no
constant part. Then

E(A, Q̄) =
{
t ∈ T (Q̄) : σt fails to be injective}

is a set of bounded height.
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Specialization for Families of Abelian Varieties

Heights and Specialization

The theorem is proven using a height specialization re-
sult. We fix an ample symmetric divisor D on A and
consider three height functions:

ĥt : At(Q̄) −→ R, canonical height wrt Dt,

ĥ : A
(
Q̄(T )

) −→ R, canonical height wrt divisor D,

h : T (Q̄) −→ R height wrt degree 1 divisor.

These heights are related by a limit formula:

Theorem. Let P ∈ A
(
Q̄(T )

)
. Then

lim
t∈T (Q̄)
h(t)→∞

ĥt(Pt)

h(t)
= ĥ(P ).

The specialization theorem follows from nondegeneracy
of ĥ and ĥt. Specialization and Unlikely Intersections – 4–



Specialization
in the

Multiplicative Group



Specialization in the Multiplicative Group

Specialization in the Multiplicative Group

Somewhat surprisingly, specialization results on elliptic
curves and abelian varieties preceded study of the anal-
ogous question for the multiplicative group.

We again start with an example.

For which t ∈ Q are t and t− 2

multiplicatively dependent?

If either t or t− 2 equals 1 or −1, they are dependent,
so that’s t ∈ {−1, 1, 3}. Are there other t ∈ Q?

t and t− 2 are multiplicatively dependent

⇐⇒ t ∈ {−2,−1, 1, 3, 4}.
Of course, if we allow t ∈ Q̄, there are many exceptional
values. Indeed, each equation tn(t − 2)m = 1 with
n,m ∈ Z, (m,n) 6= (0, 0) gives finitely many t ∈ Q̄
such that t and t− 2 are multiplicatively dependent.

Specialization and Unlikely Intersections – 5–



Specialization in the Multiplicative Group

Specialization in the Multiplicative Group

Let
f1, . . . , fr ∈ Q̄(T )∗

be rational functions that are multiplicatively indepen-
dent modulo Q̄∗. The associated exceptional set is

E(f1, . . . , fr) =

{
t ∈ Q̄ :

f1(t), . . . , fr(t) are
multiplicatively dependent

}
.

Theorem. (Bombieri–Masser–Zannier, 1999)

E(f1, . . . , fr) is a set of bounded height.
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Specialization in the Multiplicative Group

Heights and Specialization

The BMZ proof relies on height estimates, but note that
the height is not a positive definite form on Gm.

Theorem. (BMZ) There exist C1, C2 > 0 such that
for all m1, . . . , mr ∈ Z and all t ∈ Q̄,

h
(
f1(t)

m1f2(t)
m2 · · · fr(t)

mr
)

≥ (
max

1≤i≤r
|mi|

)(
C1h(t)− C2).

Proof Idea. • deg
(
f

m1
1 · · · fmr

r
) À max |mi|.

• A general theorem says that

h
(
f (t)

) ≥ (deg f )h(t)− c(f ),

but that’s no good, since c(f ) depends on f . It requires
an intricate argument to replace the constant c(f ) with
deg(f )c(f1, . . . , fr) when f is in the group generated
by f1, . . . , fr.
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Specialization in the Multiplicative Group

An Unlikely Intersection

We can reformulate the BMZ result as follows. Consider
the map

F = (f1, . . . , fr) : T −→ Ar.

Since T is a curve, we have

f1(t), . . ., fr(t) are multiplicatively dependent

⇐⇒ F (t) lies on some X
e1
1 · · ·Xer

r = 1︸ ︷︷ ︸
subgroup of Gr

m

.

Thus the exceptional set is the intersection

E(f1, . . . , fr) = Image(F ) ∩
(

subgroups
of Gr

m

)
.

︸ ︷︷ ︸
Unlikely Intersection

The BMZ results says that this unlikley intersection is
a set of bounded height.
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Higher Dimensional Families

Up to now we have been considering one-paramter fam-
ilies, i.e., dim T = 1. Things become much more com-
plicated when dim T ≥ 2. Let

f1, . . . , fr ∈ Q̄(T1, . . . , Tn)∗

be multiplicatively independent rational functions of n
variables. Each relation

f1(t)
e1 · · · fr(t)

er = 1

cuts the dimension of the solution set by one, so each n
independent relations gives a finite set of points.

Problem. Describe the exceptional set

E(f1, . . . , fr) =



t ∈ Q̄n :

f1(t), . . . , fr(t) satisfy
n independent
multiplicative relations



 .
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Higher Dimensional Families

Higher Dimensional Unlikely Intersections

We again reformulate the problem by looking at the
map

F = (f1, . . . , fr) : An −→ Ar.

Then

E(F ) = (Image of F ) ∩
⋃

H⊂Gr
m

subgroup of codim n

H.

It is natural to guess that

E(F )
?⊂

(
proper Zariski
closed set

)
∪

(
set of bounded
height

)
.

This guess is correct for r = n, which is the case

E(F ) =
{
t ∈ Q̄n : f1(t), . . . , fn(t) are roots of unity

}
.

However, in general it is not correct.
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Higher Dimensional Families

A Counterexample
This example was shown to me by David Masser.

n = 2, r = 3, f1 = X, f2 = Y, f3 = X + Y.

For u, v ∈ N, let β ∈ Q̄ be a root of

βu + βv = 1 and specialize X = βu, Y = βv.

Then the specialized values

f1 = βu, f2 = βv, f3 = 1,

satisfy two independent relations

fv
1 fu

2 = 1 and f3 = 1.

But for any B, the set⋃

u,v∈N

{
(βu, βv) : βu + βv = 1, h(βu) > B

}

is Zariski dense in A2, so E(f1, f2) is not in the union
of a set of bounded height and a proper closed subset.
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Anomalous Subvarieties and the Bounded Height Theorem

Anomalous Subvarieties

Definition. Let
Y ⊂ X ⊂ Gr

m.

Y is anomalous (for X) if dim Y ≥ 1 and there exists
a coset (translate of a subgroup) K ⊂ Gr

m satisfying

Y ⊂ K and dim Y > dim X + dim K − r.︸ ︷︷ ︸
expected dimension of X ∩K

Since Y ⊂ X ∩K, this means that X and K contain
an unlikey intersection.

Definition. The non-anomalous part of X is

Xna = X r (all anomalous subvarieties).

Example. X =
{
(x, y, x + y)

} ⊂ G3
m =⇒ Xna = ∅.

Theorem. (BMZ) Xna is a Zariski open subset of X .
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Anomalous Subvarieties and the Bounded Height Theorem

The Bounded Height Theorem
The following beautiful result was conjectured by Bombieri,
Masser and Zannier (2007) and proven by Habegger.
Notation.

G[d] =

(
union of all algebraic subgroups
of Gr

m of codimension d

)

Theorem. (Habegger 2009)

Xna ∩ G[dim X ] is a set of bounded height.

More generally, Habegger shows that the result is true
for points that are “close to G[dim X ].”

Theorem. There exists an ε > 0 such that

Xna ∩
{

xy :
x ∈ G[dim X ], y ∈ Gr

m,
and h(y) ≤ ε(h(x) + 1)

}

is a set of bounded height.
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Anomalous Subvarieties and the Bounded Height Theorem

Sketch of Habegger’s Proof

Let n = dim X . Construct a set of algebraic quotient
groups Γ1, . . . , Γt of Gr

m such that every P ∈ Gr
m ly-

ing in a subgroup of codimension n is in the kernel of
some Gr

m → Γi. It thus suffices to fix one

ψ : Gr
m −→ Γ.

In order to compare the heights of P and ψ(P ), Habeg-
ger uses the following theorem of Siu.

Theorem. (Siu 1993) Let X be an irreducible pro-
jective variety of dimension n ≥ 1 defined over C. Let
L and M be nef line bundles on X . If

c1(L)n[X ] > n
(
c1(L)n−1c1(M)[X ]

)
,

then there exists an integer k ≥ 1 such that
(L ⊗M−1)k has a nonzero global section.
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Anomalous Subvarieties and the Bounded Height Theorem

Sketch of Habegger’s Proof (continued)

Habegger uses Siu’s theorem to construct an effective
divisor D satisfying

hD
(
ψ(P )

) ≥ c(ψ)hD(P ) for P ∈ (
X r |D|)(Q̄),

where

c(ψ) ≥ 0 is given as an intersection number.

In order to show that c(ψ) > 0, Harbegger proves that
it extends to a continuous map

c : Hom(Gr
m, Γ)⊗ R −→ R

and uses properties of Xna ∩ (subgroups) and a (spe-
cial case of a) theorem of Ax on analytic subgroups of
Gr

m(C) to prove positivity.

The proof also requires working on an appropriate com-
pactification of the group law map Gr

m × Gr
m → Gr

m.
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Anomalous Subvarieties and the Bounded Height Theorem

The Case r = n

We sketch an elementary proof of Habegger’s theorem
when r = n. We thus have a rational map

F = (f1, . . . , fn) : Gn
m −→ Gn

m.

If F is not dominant, a result of Laurent gives the de-
sired result. Let

φ : V 99K W

be a rational map of varieties. The triangle inequality
gives an elementary upper bound (on an open set)

h
(
φ(t)

) ¿ h(t).

Proposition. Assume that dim V = dim W and that
φ is dominant. Then

h
(
φ(t)

) À h(t) on a nonempty open subset of V .
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Anomalous Subvarieties and the Bounded Height Theorem

The Case r = n (continued)

Proof Sketch.

dim V = dim W and φ dominant

=⇒ k(V )/φ∗k(W ) is a finite extension.

Let f ∈ k(V ), so f is a root of

Xd + A1X
d−1 + · · · + Ad = 0, Ai ∈ φ∗k(W ).

There is an open subset U ⊂ V so that for all t ∈ U ,

f (t) is a root of Xd + A1(t)X
d−1 + · · · + Ad(t) = 0.

Standard estimates relating the height of the coefficients
of a polynomial to its roots gives

h
(
f (t)

) ≤ h
(
[1, A1(t), . . . , Ad(t)]

)
+ O(1). (∗)
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Anomalous Subvarieties and the Bounded Height Theorem

The Case r = n (continued)
Write Ai = φ∗Bi and define

α = [1, A1, . . . , Ad] : V 99K Pd,

β = [1, B1, . . . , Bd] : W 99K Pd.

Then (∗) says

h
(
f (t)

) ≤ h
(
α(t)

)
+ O(1).

The elementary height estimate gives

h
(
β(x)

) ¿ h(x) + O(1).

h
(
f (t)

) ≤ h
(
α(t)

)
+ O(1)

= h
(
β ◦ φ(t)

)
+ O(1) since α = β ◦ φ,

¿ h
(
φ(t)

)
+ O(1).

Now apply this to each of the coordinate functions of
some embedding V ⊂ PN . ¤
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“Very” Unlikely Intersections

Increasing the Codimension

The codimension condition used to define unlikely inter-
sections between subvarieties and subgroups is set up so
that each individual X ∩ H is finite. But since there
may be infinitely many H , the exceptional set consisting
of all unlikely intersections

E = X ∩
⋃

H

H

is generally infinite. In this case, one hopes to prove
that the points in E in a geometrically described subset
have bounded height.

If we increase the codimension condition by one, then
most individual intersections X ∩ H should be empty,
so we might expect the full exceptional set to be finite.
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“Very” Unlikely Intersections

“Very” Unlikely Intersections

Conjectures for Very Unlikely Intersections of this
sort were originally formulated by Zilber (2002, for con-
stant families) and Pink (2005, in general). Here is a
general version.

Conjecture. Let G → T be a semiabelian scheme
over a base T , all defined over C. For any d, let G[d]

be the union of the semiabelian subschemes of G of
codimension at least d. Let X be an irreducible closed
subvariety of G. Then Xna ∩ G[dim X+1] is contained
in a finite union of semiabelian subschemes of G of
positive codimension.

A number of people (Bombieri, Habegger, Masser, Mau-
rin, Ratazzi, Remond, Viada, Zannier,. . . ) have made
progress on this conjecture in the last few years, espe-
cially for constant families.
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Very Unlikely Intersections in Gr
m

For the constant group scheme

G = Gr
m

over a variety X , Habegger’s upper bound can be com-
bined with:

Theorem. (BMZ 2008) For all B,
{
P ∈ Xna ∩ G[dim X+1] : h(P ) ≤ B

}
is finite.

to prove finiteness:

Corollary.

Xna ∩ G[dim X+1] is finite.

For non-constant families, very little is known.
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Very Unlikely Intersections in a Non-Constant Family

Consider the elliptic curve

E : y2 = x(x− 1)(x− T )

and the two points

P =
(
2,
√

4− 2T
)
, Q =

(
3,
√

18− 6T
)
.

(We may view E as an elliptic curve over the function
fieldQ(T, U, V ), where U2 = 4−2T and V 2 = 18−6T .)
The original theorem that we discussed says that the set
of t for which Pt is a torsion point is a set of bounded
height, and similarly for Qt. What happens if we require
that Pt and Qt simultaneously be torsion points?

Theorem. (Masser–Zannier, 2008)

{t ∈ C : Pt and Qt are both torsion points}
is a finite set.
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