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What Is Dynamics?

A (Discrete) Dynamical System is simply a map

ϕ : S −→ S

from a set to itself. Dynamics is the study of the behavior
of the points in S under iteration of the map ϕ.
We write

ϕn = ϕ ◦ ϕ ◦ ϕ · · ·ϕ︸ ︷︷ ︸
n iterations

for the nth iterate of ϕ and

Oϕ(α) =
{
α, ϕ(α), ϕ2(α), ϕ3(α), . . .

}
for the (forward) orbit of α ∈ S.

A primary goal in the study of dynamics is to classify
the points of S according to the behavior of their orbits.
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A Finite Field Example of a Dynamical System

Consider the iterates of the polynomial map ϕ

ϕ(z) = z2 − 1

acting on the set of integers

{0, 1, 2, . . . , 10} modulo 11.

So for example

ϕ(3) = 8 and ϕ2(3) = ϕ(8) = 63 = 8 modulo 11.

We can describe this dynamical system by drawing an
arrow connecting each point to its image. Thus
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Polynomials and Rational Maps

Classical dynamical systems studies how the iterates of
polynomial maps such as

ϕ(z) = z2 + c

act on the real numbers R or the complex numbers C.
More generally, people often study the dynamics of ratios
of polynomials, although now we have to allow ∞ as a
possible value.

A rational function is a ratio of polynomials

ϕ(z) =
F (z)

G(z)
=

adz
d + ad−1z

d−1 + · · · + a1z + a0
beze + be−1ze−1 + · · · + b1z + b0

The degree of ϕ is the larger of d and e. From now on,
we will assume that deg(ϕ) ≥ 2 .
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Some Dynamical Terminology

A point α is called periodic if

ϕn(α) = α for some n ≥ 1.

The smallest such n is called the period of α.

If ϕ(α) = α, then α is a fixed point.

A point α is preperiodic if some iterate ϕi(α) is peri-
odic, or equivalently, if its orbit Oϕ(α) is finite.

A wandering point is a point whose orbit is infinite.

An Example: The Map ϕ(z) = z2

• 2 and 1
2 are wandering points.

• 0 and 1 are fixed points.
• −1 is a preperiodic point that is not periodic.

• −1+
√
−3

2 is a periodic point of period 2.



A Number Theorist’s View
of Periodic Points



A Number Theorist’s View of Periodic Points 5

Periodic Points and Number Theory

For a dynamicist, the periodic points of ϕ are the (com-
plex) numbers satisfying an equation

ϕn(z) = z for some n = 1, 2, 3, . . ..

A number theorist asks:

What sorts of numbers may
appear as periodic points?

For example:

Question. Is it possible for a periodic point to be a
rational number?

The answer is obviously

Yes.

We’ve seen several examples. This leads to the. . .
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Periodic Points and Number Theory

Question. How many periodic points can be rational
numbers?

This is a more interesting question. There are always
infinitely many complex periodic points, and in many
cases there are infinitely many real periodic points.

But among the infinitely many
periodic points, how many of
them can be rational numbers?

The answer is given by a famous theorem:

Theorem. (Northcott 1949) A rational function
ϕ(z) ∈ Q(z) has only finitely many periodic points that
are rational numbers.
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Proof (Skecth) of Northcott’s Theorem

Proof. Every math talk should have one proof, so I’ll
sketch the (fairly elementary) proof of Northcott’s result.
An important tool in the proof is the height of a rational
number p/q:

H
(p
q

)
= max

{
|p|, |q|

}
.

Notice that for any constant B, there are only finitely
many rational numbers α ∈ Q with height H(α) ≤ B.

Lemma. If ϕ(z) has degree d, then there is a constant
C = Cϕ > 0 so that for all rational numbers β ∈ Q,

H
(
ϕ(β)

)
≥ C ·H(β)d.

This is intuitively reasonable if you write out ϕ(z) as a
ratio of polynomials. The tricky part is making sure
there’s not too much cancellation.
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Proof (Sketch) of Northcott’s Theorem
Suppose that α is periodic, say ϕn(α) = α. We apply
the lemma repeatedly:

H
(
ϕ(α)

)
≥ C ·H(α)d

H
(
ϕ2(α)

)
≥ C ·H

(
ϕ(α)

)d ≥ C1+d ·H(α)d
2

H
(
ϕ3(α)

)
≥ C ·H

(
ϕ2(α)

)d ≥ C1+d+d2 ·H(α)d
3

... ...
H
(
ϕn(α)

)
≥ C ·H

(
ϕn−1(α)

)d ≥ C1+d+···+dn−1
·H(α)d

n

But ϕn(α) = α, so we get

H(α) = H
(
ϕn(α)

)
≥ C(dn−1)/(d−1)H(α)d

n
.

Then a little bit of algebra yields

H(α) ≤ C−1/(d−1).

This proves that the rational periodic points have bounded
height, hence there are only finitely many of them. QED
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Rational Periodic Points

All right, we now know that ϕ(z) has only finitely many
rational periodic points. This raises the question:

How many rational periodic
points can ϕ(z) have?

If we don’t restrict the degree of ϕ, then we can get as
many as we want. Simply take ϕ to have large degree
and set

ϕ(0) = 1, ϕ(1) = 2, ϕ(2) = 3, . . . , ϕ(n− 1) = 0.

This leads to a system of n linear equations for the coef-
ficients of ϕ in the coefficients of ϕ, so if deg(ϕ) > n, we
can solve for the coefficients of ϕ.
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A Uniformity Conjecture

Hence in order to pose an interesting question, we should
restrict attention to rational functions of a fixed degree.

Uniform Boundedness Conjecture for
Rational Periodic Points. (Morton–Silverman)
Fix an integer d ≥ 2. Then there is a constant P (d)
so that every rational function ϕ(z) ∈ Q(z) of degree d
has at most P (d) rational periodic points.
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Rational Periodic Points of ϕc(z) = z2 + c

Even for very simple families of polynomials such as

ϕc(z) = z2 + c,

very little is known about the possible periods of rational
periodic points.

We can write down some examples:

ϕ(z) = z2 has 1 as a point of period 1,

ϕ(z) = z2 − 1 has −1 as a point of period 2,

ϕ(z) = z2 − 29
16 has −1

4 as a point of period 3.

Can ϕ(z) = z2 + c have a
rational point of period 4?
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Rational Periodic Points of ϕc(z) = z2 + c

Theorem.
(a) (Morton) The polynomial ϕc(z) cannot have a ra-
tional periodic point of period 4.

(b) (Flynn, Poonen, Schaefer) The polynomial ϕc(z)
cannot have a rational periodic point of period 5.

(c) (Stoll 2008) The polynomial ϕc(z) cannot have a
rational periodic point of period 6 (provided that the
Birch–Swinnerton-Dyer conjecture is true).

And that is the current state of our knowledge! No one
knows if ϕc(z) can have rational periodic points of pe-
riod 7 or greater. (Poonen has conjectured it cannot.)



Integer Points
in Orbits



Integer Points in Orbits 13

Integers and Wandering Points

At its most fundamental level, number theory is the
study of the set of integers

. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . . .

The orbit of a rational number α consists of rational
numbers, so it is natural to ask how often those rational
numbers can be integers.

Question. Is it possible for an orbit Oϕ(α) to contain
infinitely many integers?

The obvious answer is Yes, of course it can. For exam-
ple, take ϕ(z) = z2 + 1 and α = 1.

More generally, if ϕ(z) is any polynomial with integer
coefficients and if we start with an integer point, then
the entire orbit consists of integers.

Are there any other possibilities?
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Rational Functions with Polynomial Iterate

Here is an example of a nonpolynomial with an orbit
containing infinitely many integer points. Let

ϕ(z) =
1

z2
and let α ∈ Z.

Then

Oϕ(α) =

{
α,

1

α2
, α4,

1

α8
, α16,

1

α32
, α64, . . .

}
.

Thus half the points in the orbit are integers.

This is not an unexpected phenomenon, since ϕ2(z) =
z2 is a polynomial. And in principle, the same thing
happens if any higher iterate of ϕ is a polynomial, but
surprisingly:

Theorem. If some iterate ϕn(z) is a polynomial, then
already ϕ2(z) is a polynomial.
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Integer Points in Orbits

Here is an example of a rational map of degree 2 with
quite a few integer points in an orbit. Let

ϕ(z) =
221z2 + 2637z − 5150

433z2 − 603z − 1030
.

Then the orbit of 0 contains (at least) 7 integer points:

0 → 5 → 2 → −2 → −5 → −1

→ −1261 → 58014389
114880291 → . . . .

However, if we rule out the examples coming from poly-
nomials, then:

Theorem. (JS) Assume that ϕ2(z) is not a polyno-
mial. Then

Oϕ(α) ∩ Z is finite.
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Integer-Like Points in Wandering Orbits

There is a stronger, and more striking, description of the
extent to which orbiting points fail to be integral.

Start with some α ∈ Q and write the points in its orbit
as fractions,

ϕn(α) =
An

Bn
∈ Q for n = 0, 1, 2, 3 . . . .

Notice that ϕn(α) is an integer if and only if |Bn| = 1.
So the previous theorem says that |Bn| ≥ 2 for most n.

Theorem. (JS) Assume that ϕ2(z) is not a polynomial
and that 1/ϕ2(z−1) is not a polynomial. Let α ∈ Q be
a point having infinite orbit. Then

lim
n→∞

Number of digits in An

Number of digits in Bn
= 1.
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Integer-Like Points — An Example

We take the function

ϕ(z) =
z2 − 1

z
= z − 1

z
and initial point α = 2.

ϕ(2) = 3
2

ϕ2(2) = 5
6

ϕ3(2) = −11
30

ϕ4(2) = 779
330

ϕ5(2) = 497941
257070

ϕ6(2) = 181860254581
128005692870

ϕ7(2) = 16687694789137362648661
23279147893155496537470

ϕ8(2) = −263439569256003706800705587722279993788907979
388475314992168993748220639081347493631827670

The numbers get very large. One can show that An

and Bn have approximately 0.174 · 2n digits!



Putting Number Theory
and Dynamics into Context
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Arithmetic Dynamics

Arithmetic Dynamics refers to the study of number the-
oretic properties of dynamical systems inspired by clas-
sical theorems and conjectures in Arithmetic Geometry
and the theory of Diophantine Equations.
• The Dynamical Uniform Boundedness Conjecture is
inspired by boundedness theorems of Mazur, Kami-
enny, and Merel for torsion points on elliptic curves.

• Studying integer-like points in orbits is inspired by
Siegel’s theorem on integer-like points on affine curves,
and its generalization to abelian varieties by Faltings.

• There is much current research on dynamical ana-
logues of the Mordell–Lang conjecture (proven by Falt-
ings) that attempt to describe when an orbit in PN
can be Zariski dense on a proper subvariety.

• There are dynamical modular curves and dynamical
moduli spaces analogous to classical elliptic modular
and moduli spaces of abelian varieties.
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p-adic Dynamics

A fundmental tool in number theory is reduction mod-
ulo m, which by the Chinese Remainder Theorem often
reduces to working modulo prime powers. Fitting the
prime powers together leads to the field of p-adic num-
bers Qp with its strange absolute value ∥ · ∥p satisfying

∥α + β∥p ≤ max
{
∥α∥p, ∥β∥p

}
.

p-adic (or Non-Archimedean) Dynamics is the
study of dynamical systems working with the field Qp,
or its completed algebraic closure Cp.

Many of the theorems and conjectures in p-adic dynamics
are inspired by classical results in real and complex dy-
namics. However, there are some interesting differences.
I will give two examples.
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p-adic Dynamics versus Complex Dynamics

The Fatou set F(ϕ) of a map is the set of points where
iteration is “well-behaved,” while the Julia set J (ϕ) is
the set of points where iteration is “chaotic.”

Classical results say that over C, we always have J (ϕ) ̸=
∅, but that it is possible to have F(ϕ) = ∅.
In the non-archimedean setting of Cp, the results are re-
versed. We always have F(ϕ) ̸= ∅, but it often happens
that J (ϕ) = ∅!
A famous result of Sullivan says that the connected com-
ponents of F(ϕ) are all preperiodic, they never wander,
but . . .

Benedetto has shown that over Cp, it is possible for F(ϕ)
to have wandering domains! The existence of wandering
domains over Qp is still an open problem.
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I thank you for your attention
and

the organizers for inviting me to speak.
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