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Arithmetic Dynamics

Discrete dynamical systems defined by polynomial or ra-
tional functions

x = (x1, . . . , xN ) 7−→ ϕ(x) =
(
ϕ1(x), . . . , ϕN (x)

)
have been intensively studied over the past century (and
more). The usual focus is dynamics in RN or CN .

In the past 20+ years, number theorists and algebraic
geometers have started studying the dynamics of such
maps applied to points in ZN or QN , or even p-adic
points QN

p . This study goes by the name Arithmetic
Dynamics.

Typical questions include:
• How many periodic points can there be in QN?
• In an infinite orbit, how many points can be in ZN?

What I’ll do today is discuss the arithmetic dynamics of
difference equations and Hénon-like maps.
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Rational Difference Equations and Rational Maps

Consider a rational difference equation

αN+1 = R(α1, . . . , αN ), where R ∈ C(x1, . . . , xN ).

There is an associated rational map

ϕR : PN −→ PN

given in affine coordinates by

ϕR(x1, . . . , xN ) =
(
x2, . . . , xN , R(x1, . . . , xN )

)
.

The dynamics of the difference equation is mirrored by
the dynamics of ϕR, since

ϕnR(α1, . . . , αN ) = (αn+1, αn+2, . . . , αn+N ).
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Classical Hénon Maps
A classical Hénon map is an automorphism

ϕ : A2 −→ A2

of the form

ϕ(x, y) = (y, ax + b + y2) with a ̸= 0.

The Hénon map is associated to the polynomial differ-
ence equation

αN+1 = aαN−1 + b + α2N .

The Hénon map ϕ is an automorphism,

ϕ−1(x, y) =
(
a−1(y − b− x2), x

)
.

The extension of ϕ to P2 is not a morphism, since

Φ
(
[X,Y, Z]

)
= [Y Z, aXZ + bZ2 + Y 2, Z2]

is not defined at [1, 0, 0].
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Regular Affine Automorphisms

The Hénon map is an example of a regular affine au-
tomorphism, because the point [1, 0, 0] where Φ is not
defined is disjoint from the point [0, 1, 0] where Φ−1 is
not defined.
In general, let ϕ be a polynomial map

ϕ = (ϕ1, . . . , ϕN ) : AN −→ AN

that has a polynomial inverse, and let

Φ : PN −→ PN and Φ−1 : PN −→ PN

be the extensions of ϕ and ϕ−1 to PN . Then ϕ is called
a regular affine automorphism if:

At every point P of PN (C), at least
one of Φ(P ) and Φ−1(P ) is defined.

The real and complex dynamics of regular affine auto-
morphisms have been extensively studied.
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Periodic Points

Let

ϕ(x, y) = (y, ax + b + y2)

be a Hénon map with a, b ∈ Q. Then we might ask how
many of the periodic points of ϕ are in Q.

Theorem A. A Hénon map with a, b ∈ Q has only
finitely many periodic points with x, y ∈ Q.

More generally, for any number field K/Q:

Theorem B. A regular affine automorphism
ϕ : AN → AN defined by rational functions with co-
efficients in K has only finitely many periodic points
in AN (K).

Theorem B is due to Denis (1995) and Marcello (2000).
When Φ : PN → PN is a morphism, Theorem B was
proven by Northcott in 1950.
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Height Functions

Let K/Q be a number field. The height of a point
P ∈ PN (K) is

h(P ) =
∑

v∈MK

log max
0≤i≤N

∥∥xi(P )
∥∥
v,

where the absolute values v on K are appropriately nor-
malized.

Intuition The height h(P ) satisfies

h(P ) ≍ number of bits to store P on a computer.

Example For P ∈ PN (Q), write

P = [α0, . . . , αN ] with αi ∈ Z and gcd(α0, . . . , αN ) = 1.

Then
h(P ) = logmax

{
|α0|, . . . , |αN |

}
.
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Basic Properties of Height Functions

Height functions are a fundamental tool in arithmetic ge-
ometry and arithmetic dynamics. Two important prop-
erties:

Finiteness. For all A and B, the set{
P ∈ PN (Q̄) : h(P ) ≤ A and [Q(P ) : Q] ≤ B

}
is finite.

Functoriality. Let

ϕ : PN −→ PN

be a morphism defined over Q̄. Then

h
(
ϕ(P )

)
= (deg ϕ)h(P ) +O(1) for all P ∈ PN (Q̄).
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Functoriality for Rational Maps

If ϕ : PN 99K PN is a rational map of degree d, we
always have an upper bound

h
(
ϕ(P )

)
≤ dh(P ) +O(1).

The proof is elementary, using the triangle inequality and
a lot of algebra. But in general there is no corresponding
lower bound.

Theorem. (Kawaguchi, Lee) Let ϕ : AN → AN be
a regular affine automorphism with d = deg(ϕ) and
e = deg(ϕ−1). Then

1

d
h
(
ϕ(P )

)
+
1

e
h
(
ϕ−1(P )

)
≥

(
1 +

1

de

)
h(P )− C(ϕ).

Intuition: At least one of ϕ(P ) and ϕ−1(P ) is arith-
metically much larger than P .
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Uniform Bounds for Rational Periodic Points

Let

ϕa,b(x, y) = (y, ax + b + y2)

be a Hénon map with a, b ∈ Q. We know that

Per(ϕa,b,Q) =
{
periodic points of ϕa,b in Q2}

is finite. How large can it be?

Example: The map ϕ1,−2 has the rational 4-cycle

(0, 0) −→ (0,−2) −→ (−2, 2) −→ (2, 0) −→ (0, 0).

Conjecture. There is an absolute constant C such
that

#Per(ϕa,b,Q) ≤ C for all a ∈ Q∗, b ∈ Q.

This is a Hénon analogue of a uniformity conjecture that
Patrick Morton and I made for morphisms of PN in 1994.
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Parting Questions

• Which difference equations given by rational functions
with Q-coefficients have only finitely many discrete
periodic cycles whose coordinates are in Q?

• In an algebraic family of difference equations defined
over Q, is there a uniform bound for the number of
discrete periodic cycles having coordinates in Q?

I want to thank you for your attention and to thank the
organizers for inviting me to speak.
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