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Morphisms, Rational Maps, and Dominant Maps

Iteration of a morphism

ϕ : PN −→ PN

is well-defined, as is the orbit Oϕ(P ) of a point.

Iteration of a dominant rational map

ϕ : PN 99K PN

is well-defined, but the orbit of P is undefined if some
iterate ϕn(P ) is in the indeterminacy locus I(ϕ) of ϕ.

We set the notation

PNϕ =
{
P ∈ PN : Oϕ(P ) ∩ I(ϕ) = ∅

}
.
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The Space of Rational Maps

A degree d rational map

ϕ : PN 99K PN

is described by degree d homogeneous polynomials

ϕ = [ϕ0, . . . , ϕN ], ϕ0, . . . , ϕN ∈ k[X0, . . . , XN ],

having no common factors.

Replacing ϕ0, . . . , ϕN with cϕ0, . . . , cϕN gives the same
map, so ϕ corresponds to a point

ϕ ∈ PM , where M =

(
N + d

d

)
(N + 1)− 1.

We write

RatNd = {degree d rational maps PN 99K PN} ⊂ PM ,

HomN
d = {degree d morphisms PN → PN} ⊂ PM .

Then HomN
d and RatNd are Zariski open subsets of PM .
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Morphisms and Dominant Rational Maps

Classical Theorem. There is a polynomial R(ϕ) in
the coefficients of ϕ such that

HomN
d = PM r {R(ϕ) = 0}.

R(ϕ) is called the Macaulay resultant of ϕ.

Define

DomN
d = {dominant degree d maps PN 99K PN} ⊂ PM .

Clearly

HomN
d ⊂ DomN

d ⊂ RatNd ⊂ PM .

Classical(?) Theorem. The set DomN
d of dominant

rational maps is a Zariski open subset of PM .
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Height Functions

Let K/Q be a number field. The height of a point
P ∈ PN (K) is

h(P ) =
∑

v∈MK

log max
0≤i≤N

∥∥xi(P )
∥∥
v,

where the absolute values v on K are appropriately nor-
malized.

Intuition The height h(P ) satisfies

h(P ) ≍ number of bits to store P on a computer.

Example For P ∈ PN (Q), write

P = [α0, . . . , αN ] with αi ∈ Z and gcd(α0, . . . , αN ) = 1.

Then
h(P ) = logmax

{
|α0|, . . . , |αN |

}
.
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Basic Properties of Height Functions

Height functions are a fundamental tool in arithmetic ge-
ometry and arithmetic dynamics. Two important prop-
erties:

Finiteness. For all A and B, the set{
P ∈ PN (Q̄) : h(P ) ≤ A and [Q(P ) : Q] ≤ B

}
is finite.

Functoriality. Let

ϕ : PN −→ PN

be a morphism defined over Q̄. Then

h
(
ϕ(P )

)
= (deg ϕ)h(P ) +O(1) for all P ∈ PN (Q̄).
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An Application to Periodic Points

Let

ϕ : PN −→ PN

be a morphism defined over Q̄ of degree d ≥ 2. It’s an
exercise using functorialty to prove that{

P ∈ PN : P is preperiodic for ϕ
}

is a set of bounded height.

In particular, for any number field K,

PrePer(ϕ) ∩ PN (K) is finite.

These results are due to Northcott (1950).
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Functoriality for Rational Maps?

If ϕ : PN 99K PN is a rational map of degree d, we
always have an upper bound

h
(
ϕ(P )

)
≤ dh(P ) +O(1).

The proof is elementary, using the triangle inequality and
a lot of algebra.

There is no corresponding lower bound.

Example For the degree 2 map ϕ
(
[x, y, z]

)
= [x2, y2, xz],

there is a Zariski dense set of points P such that

h
(
ϕ(P )

)
≈ h(P ).

However, for this map we do have

h
(
ϕ(P )

)
≥ h(P ) for all P with x(P ) ̸= 0.
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A Lower Bound for Dominant Rational Maps

Theorem. Let

ϕ : PN 99K PN

be a dominant rational map of degree d ≥ 2 defined
over Q̄. There are constants c1 > 0 and c2 and a
nonempty Zariski open set Uϕ ⊂ PN such that

h
(
ϕ(P )

)
≥ c1h(P )− c2 for all P ∈ Uϕ(Q̄).

So for dominant maps there is a nontrivial lower bound
for the height of ϕ(P ) if we omit a closed subset. The
optimal value of c1 = c1(ϕ) is naturally of interest.



Arithmetic Dynamics 9

The Height Expansion Coefficient

Definition The height expansion coefficient of ϕ
is the quantity

µ(ϕ) = sup
∅≠U⊂PN

lim inf
P∈U(Q̄)
h(P )→∞

h
(
ϕ(P )

)
h(P )

.

The theorem on the previous slide says that

µ(ϕ) > 0 for all ϕ ∈ DomN
d (Q̄),

and that for all ϵ > 0 there is a ∅ ̸= Uϵ ⊂ PN such that

h
(
ϕ(P )

)
≥
(
µ(ϕ)− ϵ

)
h(P ) for all P ∈ Uϵ(Q̄).

Of course, if ϕ is a morphism, i.e., if ϕ ∈ HomN
d , then

we have µ(ϕ) = d.
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Examples of Height Expansion Ratios

Example 1 The map

ϕ
(
[x0, . . . , xN ]

)
= [x−1

0 , . . . , x−1
N ]

has height expansion ratio

µ(ϕ) =
1

N
=

1

deg ϕ
.

Example 2 Let ϕ : PN 99K PN be a regular affine
automorphism of degree d with dim I(ϕ) = 0. Then

µ(ϕ) =
1

dN−1
.

(This example follows from results of Kawaguchi.)
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The Universal Height Expansion Ratio

The theorem says that µ(ϕ) > 0 for every ϕ ∈ Domd
N (Q̄).

Definition The universal height expansion ratio
for degree d dominant maps of PN is

µd(PN )
def
= inf

ϕ∈DomN
d (Q̄)

µ(ϕ).

Theorem. For all N ≥ 1 and d ≥ 2,

µd(PN ) > 0.

The proof is a double induction on dimension using a
general height result for dominant rational maps of va-
rieties, applied to the universal family of degree d domi-
nant rational maps of PN .

We have µd(P1) = d, while Example 2 shows that

µd(PN ) ≤ d−(N−1) for all N ≥ 2.
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Dynamical Degree

The (first) dynamical degree of a dominant rational
map ϕ : PN 99K PN is

DynDeg(ϕ) = lim
n→∞

(deg ϕn)1/n.

(An elementary argument shows that the limit exists)

The algebraic entropy of ϕ is log DynDeg(ϕ).

Conjecture A. (Bellon–Viallet) The dynamical de-
gree is always an algebraic integer.

Conjecture B. The quantity

ℓϕ = inf

{
ℓ ≥ 0 : sup

n≥1

deg(ϕn)

nℓDynDeg(ϕ)n
< ∞

}
.

is an integer satisfying 0 ≤ ℓϕ ≤ N .
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Monomial Maps

A monomial map ϕA : PN 99K PN is an endomor-
phism of the torus GN

m defined by a matrix A = (aij)
with integer coefficients and det(A) ̸= 0:

ϕA(x1, . . . , xN )

=
(
x
a11
1 x

a12
2 · · ·xa1NN , . . . , x

aN1
1 x

aN2
2 · · ·xaNN

N

)
.

The map ϕA is semisimple if A is diagonalizable.

Theorem. Let ϕA : PN 99K PN be a monomial map.
(a) (Hasselblatt–Propp)

DynDeg(ϕA) = spectral radius of A.

(b) (Lin, Jonsson–Wulcan)

deg(ϕnA) ≍ nℓDynDeg(ϕA)
n

for an integer 0 ≤ ℓ < N .

Thus Conjectures A and B are true for monomial maps.



Arithmetic Degree
and

Arithmetic Entropy



Arithmetic Degree and Arithmetic Entropy 14

The Arithmetic Degree of a Rational Map at a Point

If ϕ is a morphism of degree d and P is not preperiodic,
then h

(
ϕn(P )

)
≍ dn, so

lim
n→∞

h
(
ϕn(P )

)1/n
= d.

For ϕ ∈ DomN
d (Q̄) and P ∈ PNϕ (Q̄), the arithmetic

degree of ϕ at P is

ArithDeg(ϕ, P ) = lim sup
n→∞

h
(
ϕn(P )

)1/n
.

We call log
(
ArithDeg(ϕ, P )

)
the arithmetic entropy

of the orbit Oϕ(P ).

Since h
(
ϕn(P )

)
≪ dn, we have

1 ≤ ArithDeg(ϕ, P ) ≤ deg(ϕ).



Arithmetic Degree and Arithmetic Entropy 15

Dynamical Degree and Arithmetic Degree

Elementary Theorem.

ArithDeg(ϕ, P ) ≤ DynDeg(ϕ).

Conjecture C. Let ϕ : PN 99K PN be a dominant
rational map defined over Q̄.
(a) The set{

ArithDeg(ϕ, P ) : P ∈ PNϕ (Q̄)
}

is a finite set of algebraic integers.
(b) If Oϕ(P ) is Zariski dense in PN , then

ArithDeg(ϕ, P ) = DynDeg(ϕ).

Theorem. (JS) Conjecture C is true for (semisimple)
monomial maps.
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Canonical Height for Dominant Rational Maps

Let ϕ ∈ DomN
d (Q̄) and assume (Conjecture B) that

deg(ϕn) ≍ nℓ · DynDeg(ϕ)n.

The ϕ-canonical height of P ∈ PNϕ (Q̄) is

ĥϕ(P ) = lim sup
n→∞

h
(
ϕn(P )

)
nℓ · DynDeg(ϕ)n

.

This definition generalizes Kawaguchi’s canonical heights
for regular affine automorphisms.

The height is “canonical” in the sense that

ĥϕ
(
ϕ(P )

)
= DynDeg(ϕ) · ĥϕ(P ).

Conjecture D. DynDeg(ϕ) > 1 =⇒ ĥϕ(P ) < ∞.

Conjecture D is true for monomial maps.
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Two Conjectures Relating Degrees and Heights

Conjecture E. For ϕ ∈ DomN
d (Q̄) and P ∈ PN (Q̄)ϕ,

ĥϕ(P ) > 0 ⇐⇒ ArithDeg(ϕ, P ) = DynDeg(ϕ).

(The implication =⇒ is easy.)

Conjecture F. Let ϕ ∈ DomN
d (Q̄) be a map with

DynDeg(ϕ) > 1, and let P ∈ PN (Q̄)ϕ be a point whose
orbit Oϕ(P ) is Zariski dense. Then

ĥϕ(P ) > 0.

Conjectures C, D, E and F are true for (semisimple)
monomial maps. The proof uses:
• A local non-limit description of ĥϕ(P ) = 0.

• A lemma describing when Q̄-linear relations among
transcendental numbers descend toQ-linear relations.

• Baker’s theorem on linear-forms-in-logarithms.
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Rational Automorphisms

For a birational map ϕ : PN 99K PN , we look at

O±(P ) =
{
ϕn(P ) : n ∈ Z

}
.

The total height expansion coefficient is

µ±(ϕ) = sup
∅̸=U⊂PN

lim inf
P∈U(Q̄)
h(P )→∞

1

h(P )

(
h
(
ϕ(P )

)
deg(ϕ)

+
h
(
ϕ−1(P )

)
deg(ϕ−1)

)
.

It is easy to see that 0 ≤ µ±(ϕ) ≤ 2.

Theorem. (Kawaguchi, Lee) For regular affine auto-
morphisms,

µ±(ϕ) = 1 +
1

deg(ϕ) deg(ϕ−1)
.

Question. What are the possible values of µ±(ϕ)? For
algebraically stable maps? For affine automorphisms?
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Rational Automorphisms

A birational map ϕ : PN 99K PN has two dynamical
degrees and two canonical heights:

δ+ = DynDeg(ϕ) and δ− = DynDeg(ϕ−1),

ĥ+ = ĥϕ and ĥ− = ĥϕ−1.

Following Kawaguchi, we define the total canonical height

ĥ = ĥ+ + ĥ−.

The canonical property of ĥ+ and ĥ− give

1

δ+
ĥ
(
ϕ(P )

)
+

1

δ−
ĥ
(
ϕ−1(P )

)
=

(
1 +

1

δ+δ−

)
ĥ(P ).

Question. For which ϕ is it true that ĥ ≍ h?
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I want to thank you for your attention and to thank the
organizers, Shu Kawaguchi, Shigeyuki Kondo, Takehiko
Morita, Keiji Oguiso for inviting me to speak.
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