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What Is Dynamics?

What Is Dynamics?

Abstractly, a (Discrete) Dynamical System is a
map

φ : S −→ S

from a set to itself. Dynamics is the study of the be-
havior of the points in S under iteration of the map φ.

We write
φn = φ ◦ φ ◦ φ · · ·φ︸ ︷︷ ︸

n iterations

for the nth iterate of φ and

Oφ(α) =
{
α, φ(α), φ2(α), φ3(α), . . .

}

for the (forward) orbit of α ∈ S.

A primary goal in the study of dynamics is to classify
the points of S according to the behavior of their orbits.

The Arithmetic of Dynamical Systems – 1–



What Is Dynamics?

Rational Maps

In this talk I will concentrate on rational functions

φ(z) =
F (z)

G(z)
=

adz
d + ad−1z

d−1 + · · · + a1z + a0

beze + be−1ze−1 + · · · + b1z + b0

that define maps

φ : P1 −→ P1

on the projective line, although I will also mention maps

φ : PN −→ PN

on higher dimensional projective spaces, and possibly
maps φ : V → V on other algebraic varieties.

The degree of the rational map φ is the larger of d
and e, where ad 6= 0 and be 6= 0. The rational maps in
this talk will be assumed to have degree at least 2.
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A Soupçon of Classical Dynamics

Periodic and Preperiodic Points

A Periodic Point is a point that returns to where it
started,

α
φ−→ φ(α)

φ−→ φ2(α)
φ−→ · · · φ−→ φn(α) = α.

The smallest such n is the Period of α

Another interesting set of points consists of those with
a finite orbit,

#Oφ(α) < ∞.

These are called Preperiodic Points.

We write
Per(φ) and PrePer(φ)

for the sets of periodic and preperiodic points of φ.

Periodic and preperiodic points are defined by purely
algebraic properties. Things get more interesting when
we add in a topology or a metric.
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A Soupçon of Classical Dynamics

The Chordal Metric on P1(C)

A natural metric on the complex projective plane is the
chordal metric, which is defined by identifying P1(C)
with the Riemann sphere.

(0,0,1)

z

z*

Each point z ∈ P1(C) = C ∪ ∞ is identified with a
point z∗ on the sphere. The chordal metric is

ρ(z, w) =
1

2
|z∗ − w∗| =

|z − w|√
|z|2 + 1

√
|w|2 + 1

.
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A Soupçon of Classical Dynamics

The Fatou and Julia Sets

Some points α ∈ P1(C) have the property that if β
starts close to α, then all of the iterates φn(β) stay close
to the corresponding φn(α). Informally, the Fatou Set
of φ is the set of all α ∈ P1(C) satisfying

β close to α =⇒ φn(β) close to φn(α) for all n ≥ 0.

The Julia Set of φ is the complement of the Fatou set.
Points in the Julia set tend to move away from one an-
other under iteration of φ. They behave chaotically.

More formally, the Fatou set Fatou(φ) is the largest
open subset of P1(C) on which the set of iterates {φn}n≥0
is an equicontinuous family of maps.

A major goal of complex dynamics is to describe the
Fatou and Julia sets for various types of maps.
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What Is Arithmetic Dynamics?

Arithmetic Dynamics and Arithmetic Geometry

Arithmetic Dynamics is the study of number the-
oretic properties of dynamical systems. The transposi-
tion of classical results from arithmetic geometry and
the theory of Diophantine equations to the setting of
discrete dynamical systems leads to a host of new and
interesting questions. Although there is no precise dic-
tionary connecting the two areas, the following associa-
tions give a flavor of the correspondence:

Diophantine
Equations

Dynamical
Systems

rational and integral
points on varieties

←→ rational and integral
points in orbits

torsion points on
abelian varieties

←→ periodic and preperiodic
points of rational maps
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What Is Arithmetic Dynamics?

Two Motivating Problems in Arithmetic Dynamics

Let φ ∈ Q(z).

Rationality of Periodic Points
To what extent can the periodic or preperiodic points
of φ be in Q? The Diophantine analogue is Q-ration-
ality of torsion points on elliptic curves (Mazur, Merel)
and abelian varieties.

Integral Points in Orbits
To what extent can orbit Oφ(α) contain infinitely many
integer points? The Diophantine analogue is integral
points on curves (Siegel) and on higher dimensional va-
rieties (Faltings, Vojta).

More generally, one can ask the same questions for mor-
phisms

φ : PN −→ PN

defined over a number field K.
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Rationality of Periodic Points

Northcott’s Theorem

Theorem. (Northcott 1949) Let φ : PN → PN be a
morphism defined over a number field K. Then

PrePer(φ) ∩ PN (K) is finite.

In particular, a rational function φ(z) ∈ Q(z) of
degree d ≥ 2 has only finitely many rational peri-
odic points.

The proof is an easy application of the theory of heights.

Northcott’s theorem is the dynamical analog of the fact
that if A/K is an abelian variety, then the torsion sub-
group

A(K)tors is finite.
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Rationality of Periodic Points

The Uniform Boundedness Conjecture

It is natural to ask: How large can we make the set

PrePer(φ) ∩ PN (K)? (∗)

It is easy to make (∗) large if we allow deg(φ) or N or K
to grow. Otherwise we have the. . .

Uniform Boundedness Conjecture. (Morton–
Silverman) There is a constant C = C(D, d, N) so
that for all fields K/Q of degree D and all mor-
phisms

φ : PN −→ PN

of degree d defined over K we have

# PrePer(φ) ∩ PN (K) ≤ C.
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Rationality of Periodic Points

Consequences of the Uniform Boundedness Conjecture

The Uniform Boundedness Conjecture for

(D, d, N) = (1, 4, 1)

implies Mazur’s Theorem: There is an absolute
constant C so that for all elliptic curves E/Q,

#E(Q)tors ≤ C.

The implication is trivial, using the rational map φ de-
termined by the equation φ

(
x(P )

)
= x

(
[2]P

)
and the

fact that Etors = PrePer
(
[2]

)
.

Fakhruddin has shown the Uniform Boundedness Con-
jecture implies uniform boundedness for abelian varieties:
Conjecture. For all fields K/Q of degree D and all
abelian varieties A/K of dimension N ,

#A(K)tors ≤ C(D,N).
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Rationality of Periodic Points

Uniform Boundedness for φc(z) = z2 + c

Quadratic polynomials

φc(z) = z2 + c

provide the first nontrivial cases of dynamical systems
and have been used as a testing ground since the genesis
of the subject.

Even for this family, little is known about rationality of
periodic points. Here is our meagre state of knowledge:

n φc may have Q-rational point of period n?
1 YES — 1 parameter family
2 YES — 1 parameter family
3 YES — 1 parameter family
4 NO (Morton)
5 NO (Flynn–Poonen–Schaefer)
≥ 6 ???
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Rationality of Periodic Points

Dynamical Modular Curves

Consider the moduli problem of classifying pairs
{
(c, α) : α has exact period n for φc(z) = z2 + c

}
.

This is analogous to the classical moduli problem of
classifying pairs (E, P ), where E is an elliptic curve
and P is a point of exact period n on E.

As in the classical case, there is an affine curve Y
dyn
1 (n)

that (almost) solves the dynamical moduli problem. We
can summarize the table on the previous slide:

Y
dyn
1 (1) ∼= Y

dyn
1 (2) ∼= Y

dyn
1 (3) ∼= P1,

Y
dyn
1 (4)(Q) = Y

dyn
1 (5)(Q) = ∅.

Unfortunately, there does not seem to be a dynamical
analog for the ring of Hecke operators, which is so im-
portant in studying elliptic modular curves.
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Integral Points in Orbits

Integral Points in Orbits

A famous theorem of Siegel says that a polynomial equa-
tion

f (x, y) = 0

has only finitely many solutions (x, y) ∈ Z if the asso-
ciated Riemann surface has genus at least 1.

A natural dynamical analog: Given φ(z) ∈ Q(z) and
α ∈ Q, can

#
(Oφ(α) ∩ Z)

= ∞?

The answer is clearly “Yes”. For example, if φ(z) ∈ Z[z]
and α ∈ Z, then Oφ(α) ⊂ Z.

Similarly, if

φ(z) = 1/zd, then φ2(z) = zd2
,

so Oφ(α) may contain infinitely many integer points.
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Integral Points in Orbits

Integral Points in Orbits

More generally, there may be infinitely many integer
points in Oφ(α) if any iterate φn(z) is a polynomial.
However, it turns out. . .

Proposition. Let φ(z) ∈ C(z). If φn(z) ∈ C[z] for
some n ≥ 1, then already φ2(z) ∈ C[z].

The proof is a nice exercise using the Riemann-Hurwitz
genus formula.

Ruling out polynomial iterates leads to the correct state-
ment:

Theorem. Let φ(z) ∈ Q(z) with φ2(z) /∈ Q[z] and
let α ∈ Q. Then

#
(Oφ(α) ∩ Z)

is finite.
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Integral Points in Orbits

A Refined Integrality Result

Let φ(z) ∈ Q(z) and α ∈ Q, and write

φn(α) =
An

Bn
∈ Q

as a fraction in lowest terms.

Theorem. Assume that

φ2(z) /∈ Q[z] and that 1/φ2(1/z) /∈ Q[z].

Then

lim
n→∞

log |An|
log |Bn| = 1.

The proof is an adaptation of Siegel’s argument, with
extra complications due to the fact that the map φ is
ramified. Ultimately it depends on a result from Dio-
phantine approximation such as Roth’s theorem.
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Canonical Height Functions

Height Functions

Height Functions are a fundamental tool in the study
of Diophantine equations. The height of a rational num-
ber written in lowest terms is

h
(a

b

)
= log max

{|a|, |b|}.

The height measures the arithmetic complexity of a
b .

More generally, a point P ∈ PN (Q) can be written as

P = [a0, a1, . . . , aN ] with ai ∈ Z and gcd(ai) = 1.

Then the height of P is

h(P ) = log max
{|a0|, |a1|, . . . , |aN |

}
.

Even more generally, there is a natural way to extend
the height funtion to all algebraic numbers,

h : PN (Q̄) −→ [0,∞).
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Canonical Height Functions

Elementary Properties of Height Functions

Height functions provide a tool for translating geometric
facts into arithmetic facts. Two key properties:
• For any number field K/Q and any B, the set

{
P ∈ PN (K) : h(P ) ≤ B

}
is finite.

• For any morphism φ : PN → PN of degree d ≥ 2,

h
(
φ(P )

)− d · h(P ) is bounded. (∗)

It is reasonable that (∗) is bounded, since φ is defined by
polynomials of degree d, and clearly h(αd) = d · h(α).
But the lower bound h

(
φ(P )

) ≥ d ·h(P )+O(1) is non-
trivial and requires some version of the Nullstellensatz.

Notice how property (∗) translates geometric informa-
tion (deg φ = d) into arithmetic information (φ(P ) is
approximately d-times as arithmetically complex as P ).
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Canonical Height Functions

Canonical Height Functions

It would be nice to replace property (∗) with an equality.

Theorem. (Tate) The limit

ĥφ(P ) = lim
n→∞

1

dnh
(
φn(P )

)

exists and has the following properties:

(a) ĥφ(P ) = h(P ) + O(1) for all P ∈ PN (Q̄).

(b) ĥφ

(
φ(P )

)
= d · h(P ) for all P ∈ PN (Q̄).

Note that (a) says ĥφ measures arithmetic complexity

and that (b) says ĥφ transforms canonically.

Proposition Let P ∈ PN (Q̄). Then ĥφ(P ) ≥ 0, and

ĥφ(P ) = 0 ⇐⇒ P ∈ PrePer(φ).
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An Arithmetic Distance Function

An Arithmetic Distance Function

The canonical height function

ĥφ : PN (Q̄) −→ [0,∞)

encodes a large amount of arithmetic-dynamical infor-
mation about the map φ. It is natural to measure the
arithmetic-dynamical “distance” between two maps φ
and ψ by

δ(φ, ψ) = sup
P∈PN (Q̄)

∣∣ĥφ(P )− ĥψ(P )
∣∣.

In particular, this raises the natural

Question. When does δ(φ, ψ) = 0, i.e., for what maps
φ and ψ is it true that

ĥφ(P ) = ĥψ(P ) for all P ∈ PN (Q̄)?
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An Arithmetic Distance Function

Maps with Identical Canonical Heights

Theorem. (SK–JS) Let φ, ψ : PN → PN be mor-
phisms of degree ≥ 2 defined over Q̄ and fix an
embedding Q̄ ↪→ C. Suppose that

ĥφ = ĥψ.

Then

Julia(φ) = Julia(ψ) in PN (C).

Proof Sketch. Write the canonical height ĥφ as a sum

ĥφ(P ) =
∑

v
Gv,φ(P )

of v-adic Green functions (local heights). Use weak ap-
proximation to prove that Gv,φ = Gv,ψ for every ab-
solute value v. Finally use the fact that Julia(φ) is the
support of the current attached to G∞,φ.
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An Arithmetic Distance Function

Polynomials with Identical Canonical Heights

In some cases, we can say considerably more.

Corollary. Let φ, ψ ∈ Q̄[z] be polynomials satis-
fying

ĥφ = ĥψ.

Then after a change of variables (conjugation by
Az + B), one of the following is true:

(a) φ(z) = azd and ψ(z) = bze are monomials.

(b) φ(z) = ±Td(z) and ψ(z) = ±Te(z) are Cheby-
shev polynomials.

(c) There is a λ(z) ∈ Q̄[z] so that φ(z) = λn(z)
and ψ(z) = λm(z).
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An Arithmetic Distance Function

Power Maps and Canonical Heights

Another case in which we can say more is the dth power
map

[x0, . . . , xN ] 7−→ [xd
0, . . . , x

d
N ].

The ordinary height h is already canonical for this map.

Theorem. (SK–JS) A map φ : PN → PN satisfies

ĥφ = h

if and only if there is a change of variables (con-
jugation by an element of Aut(PN ) = PGLN+1) so
that some iterate of φ has the form

φn = [ξ0x
e
0, . . . , ξNxe

N ]

with roots of unity ξ0, . . . , ξN .
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Moduli Spaces for Dynamical Systems

Rational Maps and PGL2 Conjugation

Consider the set of rational maps of degree d,

Ratd =
{
degree d rational maps φ : P1 → P1}.

For φ ∈ Ratd and f ∈ Aut(P1) = PGL2, we write

φf = f−1 ◦ φ ◦ f.

Notice that iteration of φf is given by

(φf )n = (f−1φf ) · · · (f−1φf ) = f−1φnf = (φn)f ,

so the dynamics of φ and its conjugate φf are identical.

This makes it natural to look at the space of rational
maps modulo the conjugation action of PGL2. We de-
note this set by

Md = Ratd / PGL2 .
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Moduli Spaces for Dynamical Systems

Ratd and Md as Algebraic Varieties

If we write φ ∈ Ratd as

φ(z) =
adz

d + ad−1z
d−1 + · · · + a1z + a0

bdz
d + bd−1z

d−1 + · · · + b1z + b0
=

Fa(z)

Fb(z)
,

then Ratd is naturally an algebraic variety,

Ratd =
{
[a0, . . . , bd] ∈ P2d+1 : Res(Fa, Fb) 6= 0

}
.

Theorem. (a) (Milnor) The quotient

Md(C) = Ratd(C)/ PGL2(C)

has a natural structure as a complex orbifold.
(b) (JS) The quotient

Md = Ratd / PSL2

has a natural structure as a scheme over Z.
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Moduli Spaces for Dynamical Systems

The Geometry of the Variety Md

The construction of Md as a variety, or more generally
as a scheme over Z, uses Mumford’s geometric invariant
theory.

This theory provides two larger quotient spaces Ms
d

and Mss
d with the following useful properties:

Ms
d(C) =

Ratsd(C)

PGL2(C)
and Mss

d (C) is compact.

Proposition. If d is even, then

Ms
d = Mss

d ,

so in this case there is a geometric quotient space,
that is a natural compactification Md.

For even d, we write Md for Ms
d = Mss

d .
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Moduli Spaces for Dynamical Systems

The Moduli Space of Rational Maps of Degree 2

The geometry of Md is not well understood, but for
d = 2 we have. . .

Theorem.
(a) (Milnor) M2(C) ∼= C2 and M2(C) ∼= CP2.

(b) (JS) M2
∼= A2 and M2

∼= P2 as varieties
over Q, and in fact as schemes over Z.

The isomorphism (σ1, σ2) : M2 → A2 is quite explicit,
but rather complicated:

σ1 =

a3
1b0 − 4a0a1a2b0 − 6a2

2b
2
0 − a0a

2
1b1 + 4a2

0a2b1 + 4a1a2b0b1 − 2a0a2b
2
1

+ a2b
3
1 − 2a2

1b0b2 + 4a0a2b0b2 − 4a2b0b1b2 − a1b
2
1b2 + 2a2

0b
2
2 + 4a1b0b

2
2,

a2
2b

2
0 − a1a2b0b1 + a0a2b

2
1 + a2

1b0b2 − 2a0a2b0b2 − a0a1b1b2 + a2
0b

2
2

σ2 =

− a2
0a

2
1 + 4a3

0a2 − 2a3
1b0 + 10a0a1a2b0 + 12a2

2b
2
0 − 4a2

0a2b1 − 7a1a2b0b1

− a2
1b

2
1 + 5a0a2b

2
1 − 2a2b

3
1 + 2a2

0a1b2 + 5a2
1b0b2 − 4a0a2b0b2

− a0a1b1b2 + 10a2b0b1b2 − 4a1b0b
2
2 + 2a0b1b

2
2 − b2

1b
2
2 + 4b0b

3
2.

a2
2b

2
0 − a1a2b0b1 + a0a2b

2
1 + a2

1b0b2 − 2a0a2b0b2 − a0a1b1b2 + a2
0b

2
2
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Moduli Spaces for Dynamical Systems

The Structure of Md and Othe Moduli Spaces

Very little is known about the geometry of Md.

The space Ratd is rational, which means that there is
a generically 1-to-1 rational map

P2d+1 −→ Ratd .

This is clear, since Ratd is an open subset of P2d+1.

It follows thatMd is unirational, i.e., there is a gener-
ically finite-to-1 rational map

P2d−2 −→Md.

Questions. 1. M2
∼= A2 is rational. Is M3 rational?

2. What do the singularities of Md look like?
3. Let Md(n) classify rational maps of degree d with a
marked periodic point of period n. For fixed d, isMd(n)
of general type for sufficiently large n?
4. Same questions for maps PN → PN for N ≥ 2.
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Moduli Spaces for Dynamical Systems

Other Directions for Arithmetic Dynamics

The preceding has touched on only a few areas of current
research in arithmetic dynamics. Among the topics not
mentioned are:
• p-adic Dynamics There is a burgeoning field of

p-adic dynamics that studies dynamical systems over
fields such as Qp and Cp and and iteration of maps
φ : X → X of varieties and of Berkovich spaces.

• Iteration of Formal and p-adic Power Series
A fundamental problem is to classify commuting pow-
er series and describe their relationship to endomor-
phisms of formal groups.

• Arithmetic Dynamics of Rational Maps
There are a number of results and conjectures regard-
ing the arithmetic behavior of affine automorphisms
φ : AN ∼−−→ AN . A classical example is the set of
Hénon maps φ(x, y) = (y, ax + by2 + c).
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Moduli Spaces for Dynamical Systems

Other Directions for Arithmetic Dynamics (continued)

• Higher Dimensional Varieties. There are many
varieties other than PN that admit interesting self-
morphisms. An important example is the set of K3
surfaces admitting noncommuting involutions. The
composition φ = ι1 ◦ ι2 yields interesting dynamics
whose arithmetic has been studied to some extent.

• Dynamics over Finite Fields. Iteration of poly-
nomial and rational functions over finite fields is an
older and much studied subject. For example, the
theory of permutation polynomials is well established,
with 250+ reviews in MR mentioning the term (inl-
cuding 5 papers of Carlitz from 1953–62).

• Twists Maps admitting nontrivial automorphisms
φf = φ have nontrivial twists, analogous to twists
of elliptic curves. These are maps in K(z) that are
PGL2(K̄)-conjugate, but not PGL2(K)-conjugate.
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Moduli Spaces for Dynamical Systems

Other Directions for Arithmetic Dynamics

• Dynamical Equidistribution for preperiodic points
and for points of small canonical height, analogous
to Raynaud’s theorem (Manin–Mumford conjecture)
and the Ullmo-Zhang theorem (Bogomolov conjec-
ture) saying that subvarieties of group varieties con-
tain few torsion points and few points of small canon-
ical height.

• And last, but far from least, are the many beauti-
ful interactions of number theory and dynamics in
the study of Lie Groups and Homogeneous
Spaces and in Ergodic Theory.
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Moduli Spaces for Dynamical Systems

And In Conclusion, . . . A Blantant Advertisement

For those who are
interested in learning
more about arithmetic
dynamics, I’ve written
an introductory
graduate textbook
that will be available
sometime in the next
couple of months.

Graduate Texts
in Mathematics

Joseph H. Silverman

The Arithmetic of
Dynamical Systems

Springer–Verlag

www.math.brown.edu/~jhs/ADSHome.html
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