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What is Arithmetic Dynamics?

Arithmetic Geometry: Study solutions to polyno-
mial equations (points on algebraic varieties) over non-
algebraically closed fields.

(Discrete) Dynamical Systems: Study orbits of
points under iteration of a function.

Arithmetic Dynamics: Study number theoretic prop-
erties of orbits of points on algebraic varieties.

A lot of arithmetic dynamics comes by analogy from
arithmetic geometry. Sometimes the analogy is quite di-
rect, sometimes less so, and there are parts of arithmetic
geometry that still lack dynamical analogues. Today’s
talk will be a survey of what arithmetic dynamics is all
about, with details on its connections to the arithmetic
geometry that we all know and love. Then in tomorrow’s
talk I’ll delve more deeply into some specific topics.
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In Arithmetic Geometry We Study . . .

Elliptic curves / higher dim’l abelian varieties

Torsion points
Torsion points defined over a fixed K.
Fields generated by torsion points.
Image of Galois G(K̄/K)→ Aut(Ators).
Torsion points on subvarieties (dimA ≥ 2).

Mordell–Weil groups
Rank of K-rational points . . .

for fixed A and varying K;
for fixed K and varying A.

Intersection with subvarieties (dimA ≥ 2).

Moduli spaces of elliptic curve and abelian varieties
Geometry of moduli spaces, e.g., X0(N) and Ag.
Distribution of “special” points (CM moduli).
Modular forms, L-series, Hecke operators, . . . .
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In Discrete Dynamics We Study . . .

A Space X , a Self-Map f : X → X , and Iteration

f◦n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
nth iterate of f

.

Orbit of x ∈ X

Of (x) :=
{
x, f (x), f◦2(x), f◦3(x), . . .

}
.

Preperiodic Point

x ∈ X with finite orbit Of (x).

Periodic Point

x ∈ X with f◦n(x) = x for some n ≥ 1.

Moduli spaces of dynamical systems

Classify (X, f ) up to “dynamical equivalence.”
Post-critically finite (PCF) maps
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In Discrete Dynamics We Study . . .

A Space X , a Self-Map f : X → X , and Iteration

f◦n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
nth iterate of f

.

Orbit of x ∈ X ! “Mordell–Weil group”

Of (x) :=
{
x, f (x), f◦2(x), f◦3(x), . . .

}
.

Preperiodic Point ! “torsion point”

x ∈ X with finite orbit Of (x).

Periodic Point ! “torsion point”

x ∈ X with f◦n(x) = x for some n ≥ 1.

Moduli spaces of dynamical systems

Classify (X, f ) up to “dynamical equivalence.”
Post-critically finite (PCF) maps ! “CM points”
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Two Examples

Let A be an abelian variety and P ∈ A. Then

P is a torsion point⇐⇒ P is preperiodic for doubling.

In other words, Ators = PrePer
(
A, [2]

)
.

Let TP (Q) = Q+ P . Then ZP = OTP (0) ∪OT−P (0).

Let f (x) ∈ Q(x) be the polynomial

f (x) = x2 +
29

16
.

Then f has 8 preperiodic points in Q:

−3
4

3
4

−5
4 −1

4
5
4

−7
4

7
4

1
4

That’s a lot of rational preperiodic points!!
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Uniform Boundedness in Arithmetic Geometry

Let E/Q be an elliptic curve.

Theorem. (Mazur) E(Q) contains at most 16 torsion
points.

More generally:

Uniform Boundedness Theorem. (Mazur, Kami-
enny, Merel) Let K/Q be a number field and E/K an
elliptic curve. Then

#E(K)tors ≤ C
(
[K : Q]

)
.

And even more generally:

Uniform Boundedness Conjecture. LetK/Q be
a number field and A/K an abelian variety. Then

#A(K)tors ≤ C
(
[K : Q], dim(A)

)
.
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Uniform Boundedness in Arithmetic Dynamics

Recall our dictionary:

Mordell–Weil group ! orbit of a point

torsion point ! preperiodic point

Dynamical Uniform Boundedness Conjec-
ture. (Morton–Silverman) LetK/Q be a number field,
and f : PN → PN a morphism of degree ≥ 2. Then

# PrePer
(
f,PN (K)

)
≤ C

(
[K : Q], deg f,N

)
.

• Northcott: PrePer
(
f,PN (Q)

)
is a set of bounded ht.

Here’s a very special case that is still far from resolved:

Conjecture. (Poonen) Let c ∈ Q. Then

# PrePer(x2 + c,Q) ≤ 8.

• Fakhruddin: Dynamical UBC for PN =⇒ UBC for A
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Arithmetic Geometry: Elliptic Modular Curves

To study points of order N on elliptic curves, one looks
at the set of pairs

Y1(N) :=

{
(E,P ) :

E is an elliptic curve, and
P ∈ Etors is a point of order N

}
As is well known, Y1(N) has a natural structure as an
affine curve, and

(E,P ) ∈ Y1(N)(K) ⇐⇒ E/K and P ∈ E(K).

As usual, we let

X1(N) = smooth completion of Y1(N) = Y1(N) ∪ {cusps}.
Then Mazur’s theorem (and proof) say that

N > 16 ⇐⇒ X1(N)(Q) = {cusps}.
(True more generally if genusX1(N) ≥ 1.)
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Dynamical Modular Curves (for x2 + c)

Let fc(x) = x2 + c
We want to classify pairs

Y
dyn

1 (N) :=
{

(α, c) : α has (formal) period N for fc
}

Y
dyn

1 (N) has a natural structure as an affine curve. Let

X
dyn
1 (N) = smooth completion = Y

dyn
1 (N) ∪ {cusps}.

Conjecture. N ≥ 4 =⇒ X
dyn
1 (N)(Q) = {cusps}.

In other words, for all c ∈ Q, the map x2 + c has no
Q-rational points of period 4 or larger. This is true for:

N = 4 (Morton), N = 5 (Flynn–Poonen–Schaefer),

N = 6∗ (Stoll) ∗assuming B-SwD for a certain abelian 4-fold.

Remark: Jac
(
X

dyn
1 (N)

)
tends to be irreducible and

have positive MW rank over Q, so no Eisenstein quotient!
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Dynamical Modular Curves (for x2 + c)

The curve Y
dyn

1 (N) is given explicitly by the equation

Φ
dyn
N (x, y) :=

∏
d|N

(
f◦dy (x)− x

)µ(N/d)
= 0.

The inclusion/exclusion is needed to get rid of points of
period smaller than N , just as in the formula for the
cyclotomic polynomials. Two complications:

(1) One needs to prove that Φ
dyn
N (x, y) is a polynomial.

(2) Even if Φ
dyn
N (α, c) = 0, it may not be true that α

has exact period N for fc. For example, c = −3
4 gives

Φ
dyn
1 (x,−3

4) = (2x + 1)(2x− 3), Φ
dyn
2 (x,−3

4) = (2x + 1)2.

Following Milnor, one says that α has formal period N .

Theorem. (Bousch) X
dyn
1 (N) is geometrically irre-

ducible, and there is an explicit formula for its genus.
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Unlikely Intersections in Arithmetic Geometry

Many theorems and conjectures in arithmetic geometry
fall into the “unlikely intersection” paradigm:

If an algebraic subvariety has a Zariski dense
set of special points, then the subvariety is
itself special, i.e., there is a geometric reason
that it contains so many special points.

Let A be an abelian variety and Y ⊆ A a subvariety.

Theorem. (Faltings, née Mordell–Lang Conjecture)
Let Γ ⊂ A be a finitely generated subgroup.
If Γ ∩ Y = Y , then Y is a finite union of translates of
abelian subvarieties of A.

Theorem. (Raynaud, née Manin–Mumford Conj.)
If Ators ∩ Y = Y , then Y is a finite union of translates
of abelian subvarieties of A.
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Unlikely Intersections in Arithmetic Dynamics 1

Our dictionary says that:

finitely generated subgroup Γ ! orbit Of (x).

Dynamical Mordell–Lang Conjecture.
(Bell, Denis, Ghioca, Tucker) Let X/C be a smooth
projective variety, let Y ⊆ X , let f : X → X be a
morphism, and let P ∈ X . Then

Of (P ) ∩ Y = Y =⇒ Y is periodic for f .

The extensive literature proving special cases includes:

Theorem. Dynamical Mordell–Lang is true if:

(a) (Xie): f : A2→ A2 is a morphism defined over Q.

(b) (Bell-Ghioca-Tucker) f : X → X is étale and de-
fined over Q, e.g., f : AN → AN is an polynomial auto-
morphism. [Proof uses Skolem–Mahler–Lech method.]
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Unlikely Intersections in Arithmetic Dynamics 2

Our dictionary also says that:

torsion subgp Ators ! preperiodic pts PrePer(f,X).

Dynamical Manin–Mumford Conjecture. Let
X/C be a smooth projective variety, let Y ⊆ X , and
let f : X → X be a polarized morphism (∃ ample L
with f∗L ∼= L⊗d with d > 1). Then

PrePer(f ) ∩ Y = Y =⇒ Y is periodic for f .

Ghioca–Tucker: This statement is FALSE!

• There is a partial fix due to Ghioca–Tucker–Zhang.
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Arithmetic Geometry: The Image of Galois

Classical Case: Let fm(x) = xm. We consider cyclo-
tomic fields and their Galois groups,

Qm := Q
(
f−1
m (1)

)
= Q(µm), Gm := Gal(Qm/Q).

A fundamental theorem on cyclotomic fields says that

ρm : Gm −→ Aut(µm) = (Z/mZ)∗ is surjective.

Iwasawa theory gives information about the ideal class
groups in the tower of fields Q ⊂ Qp ⊂ Qp2 ⊂ Qp3 . . . .

Elliptic Curves: Let E/K and [m] : E → E. Let

Km := K
(
[m]−1(0)

)
= K

(
E[m]

)
, Gm := Gal(Km/K).

Theorem. (Serre) If E does not have CM, then

Image of ρE,m : Gm −→ Aut
(
E[m]

)
= GL2(Z/mZ)

has index that is bounded independent of m.
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Arithmetic Dynamics: Arboreal Representations

Let K/Q be a number field, let

f : PNK → PNK
be a map of degree d ≥ 2, and let P ∈ PN (K). We look
at the backward orbit

O−f (P ) :=
{
Q ∈ PN (K̄) : Q ∈ f−n(P ) for some n ≥ 0

}
.

Assumption: #f−n(P ) = dn for all n ≥ 0.

O−f (P ) looks like a complete rooted d-ary tree Td.

• • • • • • • •

• • • •

• •

•
The complete binary inverse image tree T2

Key Observation: Gal(K̄/K) acts on O−f (P ), and
the action respects the tree structure.
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Arboreal Representations — Fundamental Problems

Let
Kf,P := K

(
Q : Q ∈ O−f (P )

)
be the field generated by the inverse orbit of P .

Analogue: Iwasawa tower K
(
[p]−n(0) : n ≥ 1

)
.

Natural Question: How big is Gal(Kf,P/K)? Note:

Gal(Kf,P/K) ↪−→ Aut(Td) ∼= lim←−
n→∞

Sd o Sd o · · · o Sd︸ ︷︷ ︸
n-fold wreath product

.

Definition: The Odoni index is

ιK(f, P ) :=
[
Aut(Td) : Gal(Kf,P/K)

]
.

Fundamental Problems.
(1) Characterize (f, P ) such that ιK(f, P ) = 1.
(2) Characterize (f, P ) such that ιK(f, P ) is finite.
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Arboreal Representations — Recent Progress

We restrict attention to N = 1, i.e., f (x) ∈ K(x).

Theorem. (Looper, Specter, Benedetto, Juul, Kadets;
née Odoni Conjecture) Let K/Q. For all d ≥ 2 there is
a monic f (x) ∈ K[x] with ιK(f, P ) = 1.

Conjecture. ιK(f, P ) <∞ unless (f, P ) is “special.”

A complete definition of “special” is still lacking, but we
do know that ιK(f, P ) =∞ in the following situations:
• P is a periodic point for f .
• f ◦φ = φ ◦ f and φ(P ) = P for some φ ∈ PGL2(K).
• f is postcritically finite (PCF), i.e., its critical

points (points satisfying f ′(α) = 0) are preperiodic.

Question. For a given d ≥ 2 and number field K,
is it true that “most” polynomials f (x) ∈ K[x] satisfy
ιK(f, P ) = 1 for all (most) P ∈ K?
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Algebro-Geometric Moduli Spaces

Fix g ≥ 1. The set of (principally polarized) abelian
varieties of dimension g has the natural structure of an
algebraic variety:

Ag := {principally polarized A}/isomorphism.

And if desired, one may add level structure, for example:

Ag[N ] :=

(A,P ) :
A is a principally polarized
abelian variety and P ∈ A
is a point of order N


/
∼ .

Classical Theorem.

dimA1[N ] = 1 and genusA1[N ] ≈ N/12.

Theorem. For all sufficiently large g, the moduli space
Ag is a variety of general type.
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Dynamical Moduli Spaces

A degree d rational map of PN is given by an (N + 1)-
tuple of homogeneous polynomials

f : PN −→ PN , f = [f0, . . . , fN ].

We identify f with its list of coefficients,

f ←→ (coeffs. of f ) ∈ Pν, ν =

(
N + d

d

)
(N + 1)− 1.

Not every f ∈ Pν is a morphism, or even a rational map
of degree d. We let

EndNd = {f ∈ Pν : f is a morphism},

The dynamics of f is unchanged if we change coordi-
nates. So for φ ∈ PGLN+1 = Aut(PN ), we define

fφ := φ−1 ◦ f ◦ φ. Note that (fφ)n = (fn)φ.
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Dynamical Moduli Spaces

Isomorphism classes of algebraic dynamical systems on
PN are classified by the points of the quotient space

MN
d := EndNd /PGLN+1 .

Analogue: The moduli space Ag of abelian varieties of
dimension g.

Theorem. (Levy, Milnor, Petsche, Silverman, Szpiro,
Tepper) Let N ≥ 1 and d ≥ 2.

(a) MN
d := EndNd // SLN+1 exists as a GIT-stable

quotient scheme over Z.

(b) M1
2
∼= A2.

(c) M1
d ⊗Q is a rational variety for all d ≥ 2.

Remark/Question: MN
d is unirational for all (N, d),

since it is a quotient of an open subset of Pν. Is it always
rational?
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Dynamical Moduli Spaces with Level Structure

The natural structure to add to a dynamical system is a
periodic point,

MN
d [n] :=

{
(f, P ) : f ∈MN

d , P ∈ PN period n
}
.

Analogue: X1(n) :=
{

(E,P ) : P ∈ E[n]∗
}
/ ∼.

Conjecture.

n ≥ n0(N, d) =⇒ MN
d [n] is of general type.

More generally, we might specify a list of points and
their f -orbits, possibly with associated multiplicities. In
dynamics, these are called portraits, for example:

P : • uu • 2
//• • 2

//• LL•3��

Theorem. (Doyle–Silverman) The dynamical portrait
moduli spaceMN

d [P ] exists as a GIT-quotient scheme
over Z.
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Arithmetic Geometry: Integer Points on Varieties

We start with a classical, but deep and beautiful, result.

Theorem. (Thue) Let f (X, Y ) ∈ Z[X, Y ] be a ho-
mogeneous form of degree d ≥ 3 with Disc(f ) 6= 0.
Then for all non-zero m ∈ Z, the equation

f (X, Y ) = m has finitely many solutions in Z2.

This was vastly generalized by Siegel and Faltings. Let
K/Q be a number field andRS a ring of S-integers inK.

Theorem. (Siegel) Let C/K be a curve of genus g ≥
1, and let f ∈ K(C) be non-constant function. Then{

P ∈ C(K) : f (P ) ∈ RS
}

is a finite set.

Theorem. (Faltings) Let A/K be an abelian variety,
and let H ⊂ A be an ample effective divisor. Then
(ArH)(RS) is finite.
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Arithmetic Dynamics: Integer Points in Orbits

Let f (x) ∈ Q(x) with deg(f ) ≥ 2, and let α ∈ Q.

Dynamical Siegel Theorem : Of (α) ∩ Z is finite.

This is clearly false, for example f (x) = x2 and α = 2.

More generally, it is false for all f (x) ∈ Z[x] and α ∈ Z.

But there are other counterexamples, for example:

f (x) =
1

x2
, α = 2, Of (α) =

{
2,

1

4
, 16,

1

256
, 65536, . . .

}
.

Half the points are in Z, because f◦2(x) = x4 ∈ Z[x].
And there is a similar problem if f◦n(x) ∈ Z[x] for some
larger n.

Amusing Proposition/Exercise. If f (x) ∈ C(x)
satisfies f◦n(x) ∈ C[x] for some n ≥ 1, then already
f◦2(x) ∈ C[x].



Arithmetic Dynamics and Arithmetic Geometry 24

Arithmetic Dynamics: Integer Points in Orbits

This leads to the correct statement.

Theorem. (Silverman) Let f (x) ∈ Q(x) satisfy
f◦2(x) /∈ Q[x], and let α ∈ Q. Then

Of (α) ∩ Z is finite.

A stronger version of Siegel’s theorem says that if P ∈
C(Q) and one writes f (P ) = AP/BP ∈ Q, then AP
and BP have roughly the same number of digits. Here
is the dynamical analogue:

Theorem. Assume further that Of (α) is infinite, and

that 1/f◦2(1/x) /∈ Q[x]. Write f◦n(α) = An/Bn ∈ Q.
Then

lim
n→∞

log |An|
log |Bn|

= 1.

Problem: Generalize these results to PN .
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Topics for Tomorrow’s Lecture

• Geometric and arithmetic complexity of orbits
• Canonical heights
• Dynamical degrees and arithmetic degrees
• . . .
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Additional Creatures in the Arithmetic Dynamics Barnyard

• Stability of Iterates: Let f (x) ∈ K(x). To what
extent does fn(x) factor as n→∞?

• Primes in Orbits: Let f (x) ∈ Z[x] and α ∈ Z.

1. Is Of (α) ∩Primes always finite? E.g., 22n + 1.

2. What is the density of

SupportOf (α) :=
⋃
n≥0

{
p : fn(α) ≡ 0 (mod p)

}
.

• Dynamical Shafarevich Conjecture: What is
the dimension in MN

d (K) of the Zariski closure of
the set of maps having good reduction outside S? For
N = 1 and d ≥ 3, it is known that this Shafarevich
dimension is between d + 1 and 2d− 2.
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Additional Topics (continued)

• Local–Global Questions in Dynamics: For f :
X → X and Y ⊂ X , is the Dynamical Brauer–
Manin Obstruction the only obstruction to the
existence of points in Of (P ) ∩ Y ?

• André–Oort Unlikely Intersections: Unlikely
intersection problems that take place in moduli space.
Sample (deep) result:

Theorem. (Baker–DeMarco) Fix a, b ∈ C with a2 6=
b2. Then{

c ∈ C : a and b are both in PrePer(x2 + c)
}

is finite.
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Additional Topics (continued)

• Non-archimedean (p-adic) Dynamics: This is
a huge field in its own right, with theorems/conjectures
on invariant measures, Lyapunov exponents, wander-
ing domains, etc. Most work these days takes place
on Berkovich spaces.

• Finite Field Dynamics: Again, a field in its own
right, with many ties to p-adic dynamics. Sample
(deep) result:

Theorem. (Jones)

lim
n→∞

#{c ∈ Fpn : 0 is periodic for x2 + c}
pn

= 0.
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Complexity

A Rough Working Definition. The complexity
of an object α is:

Complexity(α) = number of bits needed to describe α.

Examples.

Complexity(α ∈ Z) = log2 |α| + 1 ≈ log |α|.
Complexity(p(x) ∈ C[x]) = # of monomials = deg(p).

Fancier Examples.
Number theory : height of points on varieties

Algebraic geometry : dimension of cohomology spaces
Dynamics : entropy of maps

Fundamental Problem. Given a set S, a way to
measure complexity, and a function f : S → S:

How fast does Complexity
(
f◦n(α)

)
grow as n→∞?
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Dynamical Complexity of Maps on PN

Let

f : PN −−→ PN

be a dominant rational map. A coarse measure of its
complexity is its degree. What happens when we iterate?

Example: Let f (X, Y, Z) = [Y Z,XY, Z2]. Then

f = [Y Z,XY, Z2] deg f = 2

f◦2 = [XY Z,XY 2, Z3] deg f◦2 = 3

f◦3 = [XY 2Z2, X2Y 3, Z5] deg f◦3 = 5

f◦4 = [X2Y 3Z3, X3Y 5, Z8] deg f◦4 = 8

Exercise: deg f◦n = Fibonaccin+2 ≈
(

1+
√

5
2

)n
.

In general, how fast does deg f◦n grow?

The dynamical degree of f : PN 99K PN is

δf := lim
n→∞

(deg f◦n)1/n.
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Dynamical Degree on PN

Exercise: The limit

δf := lim
n→∞

(deg f◦n)1/n exists.

Hint. Use convexity deg(f ◦ g) ≤ (deg f )(deg g).

Intuition: deg(fn) ≈ δnf .

Here is a suprising arithmetic conjecture about the values
of dynamical degrees.

Conjecture. (Bellon–Viallet 1999) The dynamical de-
gree δf is always an algebraic integer.

Oops! Twenty years later . . .

Theorem. (Bell–Diller–Jonsson, 2019) There exists a
dominant rational map f : P2 99K P2 whose dynamical
degree is transcendental.
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A Transcendental Dynamical Degree

The Bell–Diller–Jonsson construction is very explicit. For
example, let

φ = [X(X − Y − Z), Y (−X + Y − Z),

Z(−X − Y + Z)],
ψ = [X3Y, Y 2Z2, Z4],

f = ψ ◦ φ.

Then δ−1
f is the unique real positive solution T to the

equation
∞∑
n=1

deg(ψn)Tn = 1,

and this value is transcendental.
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Dynamical Degree on Varieties

More generally, we consider a dominant rational map

f : X −−→ X

of a smooth projective variety of dimension N . Let H
be an ample divisor on X .

The dynamical degree of f is

δf := lim
n→∞

(
(f◦n)∗H ·HN−1)1/n

.

A few remarks are in order:
• The limit defining δf exists and is independent of H .
• The action of rational maps on Pic(X) is not functo-

rial, so generally

(f◦n)∗H 6∼ (f∗)◦nH.

• Intuition: As with PN , the idea is that

Geometric Complexity of f◦n ≈ δnf .
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Heights and Arithmetic Complexity of Points

Let point P ∈ PN (Q). We write its coordinates as

P = [a0, . . . , aN ] with ai ∈ Z and gcd(a0, . . . , aN ) = 1.

Then the (logarithmic) height of P is

h(P ) := log max
{
|a0|, |a1|, . . . , |aN |

}
.

It measures the “arithmetic complexity of P .”

More generally, for

P = [a0, . . . , aN ] ∈ PN (K) ⊂ PN (Q),

the height of P is

h(P ) :=
1

[K : Q]

∑
v∈MK

log max
0≤i≤N

‖ai‖v.

What does it all mean? Just keep in mind the intuition:

h(P ) � # of bits needed to describe the point P .
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A Height Finiteness Theorem

We would expect there to be finitely many objects of
bounded complexity. This is certainly true for points in
PN (Q), since

h(P ) ≤ B =⇒ P = [

integers︷ ︸︸ ︷
a0, . . . , aN ] with |ai| ≤ eB.

Theorem. (Northcott) For all K/Q and all B ≥ 0,{
P ∈ PN (K) : h(P ) ≤ B

}
is finite.

More generally, for all D ≥ 1,{
P ∈ PN (Q) : h(P ) ≤ B and [Q(P ) : Q] ≤ D

}
is finite.

In words, there are only finitely many points in PN (Q)
of bounded height and bounded degree.
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A Height Transformation Formula

Let f : PN −−→ PN be a rational map of degree d.

f is given by degree d polynomials, and roughly speaking,

(# of bits in ad) ≈ d× (# of bits in a).

So we’d expect h
(
f (P )

)
to be roughly dh(P ). This turns

out to be correct — sort of!

Theorem.

h
(
f (P )

)
≤ dh(P ) + C(f ) for all P ∈ PN (Q).

If f is a morphism, then also

h
(
f (P )

)
≥ dh(P )− C(f ) for all P ∈ PN (Q).

The proof (of the lower bound) uses the Nullstellensatz.

Intuition: f complicated︸ ︷︷ ︸
high degree

=⇒ h
(
f (P )

)
complicated︸ ︷︷ ︸

lots of bits

.
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Arithmetic Degree of Points in PN (Q)

For P ∈ PN (Q),

h(P ) = “arithmetic complexity of P” � # of bits in P .

Let f : PN 99K PN , and assume that the orbit Of (P )
is well-defined. Then

h
(
f◦n(P )

)
= “arithmetic complexity of f◦n(P )”.

Each time we iterate, the number of bits in f◦n(P ) is
multiplied by (at most) d, just as the degree of f◦n is
multiplied by at most d. This suggests looking at the
following arithmetic analogue of the dynamical degree:

αf (P ) := lim
n→∞

h
(
f◦n(P )

)1/n
.

The quantity αf (P ) is called the arithmetic degree
of the f -orbit of P . It measures the average growth of
arithmetic complexity in the orbit Of (P ).
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Heights on (Abelian) Varieties

The next step is to generalize the height construction to
arbitrary algebraic varieties X/Q. For each such variety,
we fix a projective embedding

ι : X ↪−→ PN ,
and we use ι to define a height function on X ,

hX : X(Q) −→ [0,∞), hX(P ) := h
(
ι(P )

)
.

Clearly hX depends on the embedding. There is a beau-
tiful general theory, called the Weil Height Machine,
that associates a height function to each divisor on X .
But for our purposes, it suffices to use one embedding.

For abelian varieties A/Q, it will be convenient later if
we take a symmetric embedding, i.e., an embedding

ι : A ↪−→ PN satisfying (ι ◦ [−1])∗H ∼ ι∗H.

This allows us to assume that hA(−P ) = hA(P )+O(1).
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Arithmetic Degree of Points on Varieties

Definition/Conjecture. LetX/Q be a smooth pro-
jective variety, let

hX : X(Q) −→ [0,∞)

be the height associated to an embedding ι : X ↪→ PM ,
let

f : X −−→ X

be a dominant rational map defined over Q, and let

P ∈ Xf (Q) :=
{
P ∈ X(Q) : Of (P ) is well-defined

}
.

The
arithmetic degree of the f-orbit of P ,

which is defined by the limit

αf (P ) := lim
n→∞

hX
(
f◦n(P )

)1/n
,

converges for all such P .
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Dynamical Degree versus Arithmetic Degree

We have:

δnf ≈ geometric complexity of f◦n,

αf (P )n ≈ arithmetic complexity of f◦n(P ).

It makes sense that if f◦n(P ) is complicated, it should
force f◦n to be complicated.

Theorem. (Kawaguchi–Silverman, Matsuzawa) Let
f : X 99K X and P ∈ Xf (Q). Then

αf (P ) ≤ δf .

This gives a precise quantitative formulation to:Arithmetic Complexity
of the Points in the
Orbit {f◦n(P )}n≥1

 ≤
Geometric Complexity

of the Dynamical
System {f◦n}n≥1


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Dynamical Degree Equals Arithmetic Degree

An inequality such as αf (P ) ≤ δf immediately suggests
a question. When is there equality, i.e., for which points
does the orbit have maximal complexity?

Density Conjecture. (Kawaguchi–Silverman) Let
f : X 99K X and P ∈ Xf (Q). Then

Of (P ) Zariski dense in X =⇒ αf (P ) = δf .(
Maximal geometric

complexity of an orbit

)
=⇒

(
Maximal arithmetic

complexity of the orbit

)
The density conjecture is known in various cases, including:

(1) Monomial maps of PN .

(2) Many classes of rational maps of P2.

(3) Maps of abelian varieties. More generally, translated isogenies of semi-abelian varieties.

(4) Morphisms of surfaces.

(5) Morphisms of certain higher dimensional varieties having additional structure.

(6) Dominant rational maps of large topological degree.

A variety of tools are used in the proofs, including: linear-forms-in-logarithms, the canonical
height pairing, resolution of singularities, the minimal model program,. . . .
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The Canonical Height on Abelian Varieties

The height on an abelian variety A transforms quite
nicely relative to the group law. For example:

Theorem. Let m ≥ 1. Then for all P ∈ A(Q),

hA
(
[m]P

)
= m2hA(P ) + O(1).

This plays a vital role in the proof of the Mordell–Weil
theorem. But that O(1) is kind of annoying, right?

Theorem. (Néron–Tate) For all P ∈ A(Q), the limit

ĥA(P ) := lim
n→∞

4−nhA
(
[2n]P

)
exists and satisfies:

ĥA
(
[m]P

)
= m2ĥA(P ). (No more O(1).)

ĥA(P ) = hA(P ) + O(1). (ĥA measures complexity.)

• The function ĥA is called the canonical height.
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Dynamical Height Functions

Let
f : PN −→ PN

be a morphism of degree d ≥ 2 defined over Q. Tate’s
construction of ĥA carries over to iteration of f .

Theorem. For all P ∈ PN (Q), the limit

ĥf (P ) := lim
n→∞

d−nh
(
f◦n(P )

)
exists and satisfies:

ĥf
(
f (P )

)
= dĥf (P ).

ĥf (P ) = h(P ) + O(1).

ĥf (P ) = 0⇐⇒ P ∈ PrePer(f ).

The function ĥf is called the

dynamical canonical height associated to f .

ĥf (P ) measures the arithmetic complexity of Of (P ).
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Lang’s Height Lower Bound Conjecture

Let’s start with an elliptic curve E/K. It is reasonable
to expect that:

E arithmetically complicated

=⇒ P ∈ E(K) is arithmetically complicated.

We measure the arithmetic complexity ofE via the height
of its j-invariant, while arithmetic complexity of P ∈
E(K) is measured by its canonical height.

Conjecture. (Lang Height Conjecture) There are
constants c1 > 0 and c2, depending only on K, such
that for all E/K and all non-torsion P ∈ E(K),

ĥE(P ) ≥ c1h
(
j(E)

)
− c2.

• Theorem: ABC =⇒ Lang’s height conjecture.

• The conjecture generalizes to abelian varieties.
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A Dynamical Height Lower Bound Conjecture

We use our usual dictionary:

abelian variety A! morphism f : PN → PN .

moduli space Ag ! moduli spaceMN
d .

canonical height ĥA ! canonical height ĥf .

height hA on Ag(Q) ! height hM onMN
d (Q).

Dynamical Lang Height Lower Bound Con-
jecture. Fix N ≥ 1 and d ≥ 2 and K/Q. There are
constants c1 > 0 and c2, depending only on (N, d,K)
and the choice of height function hM, so that

for all f ∈ EndNd (K) and

for all P ∈ PN (K) with Zariski dense Of (P ),
we have

ĥf (P ) ≥ c1hM(f )− c2.
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What is the Dynamical Analog of Complex Multiplication

There are dynamical systems f : PN → PN that have
automorphisms, in the sense that

Aut(f ) :=
{
φ ∈ PGLN+1 : φ−1 ◦ f ◦ φ = f

}
6= {1}.

But a theorem of Levy says that the set of such maps
inMN

d is a Zariski closed subset. So Aut(f ) 6= 1 is not
a good analogue for CM.

If we interpret CM more loosely as “abelian varieties with
special geometric properties,” then we should look at
“dynamical systems with special geometric properties.”
Definition. A map f : P1 → P1 of degree d ≥ 2 is
said to be post-critically finite (PCF) if all of its
critical points are preperiodic, i.e.,

Crit(f ) :=
{
α ∈ P1 : f ′(α) = 0

}
,

PCFd :=
{
f ∈M1

d : Crit(f ) ⊂ PrePer(f )
}
.
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Some (Mostly Geometric) Properties of PCF Maps

• The PCF locus PCFd is Zariski dense inM1
d.

• PCF maps are very important in the study of complex
dynamics on P1(C).

• PCF points are algebraic, i.e., PCFd ⊂M1
d(Q).

• If f ∈ PCFd, then the f -orbit of its 2d − 2 critical
points forms a finite graph (portrait).

• Thurston gives a combinatorial method to determine
if a given portrait is the portrait of a PCF map.

• Thurston also proved that critical point relations are
“transversal” inM1

d.
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Some Arithmetic Properties of PCF Maps

Definition. The critical height of f ∈ M1
d(Q) is

ĥcrit(f ) :=
∑

α∈Crit(f )

ĥf (α).

We recall that

ĥf (α) ≥ 0, and ĥf (α) = 0 ⇐⇒ α ∈ PrePer(f ).

Hence

ĥcrit(f ) ≥ 0, and ĥcrit(f ) = 0⇐⇒ φ ∈ PCFd .

Does ĥcrit(f ) measure arithmetic complexity of the map f?

Theorem. (Ingram) Fix a height hM on M1
d(Q).

There are constants c1, c2, c3, c4 > 0 so that for all
f ∈M1

d(Q),

c1hM(f )− c2 ≤ ĥcrit(f ) ≤ c3hM(f ) + c4.
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How Much Can a Rational Map Decrease Complexity?

Let f : PN 99K PN be a dominant rational map of de-
gree d ≥ 2 defined over Q. Then there is an upper bound
that comes, more-or-less, from the triangle inquality:

h
(
f (P )

)
≤ dh(P ) + c(f ), valid for all P ∈ PN (Q).

For morphisms, there is a corresponding lower bound,
but in general there cannot be a lower bound for rational
maps. For example, a rational map can fix an entire
hyperplane.

However, we might hope that for “most” points, the
arithmetic complexity of f (P ) can’t be “a lot smaller”
than the complexity of P .

Theorem. There are a non-empty Zariski open set
Uf ⊂ PN and positive constants c1(f ), c2(f ) so that

h
(
f (P )

)
≥ c1(f )h(P )− c2(f ) for all P ∈ Uf (Q).
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A Uniform Bound for Height Contraction

In the inequality,

h
(
f (P )

)
≥ c1(f )h(P )− c2(f ) for all P ∈ Uf (Q),

how small can c1(f ) get as we vary f? We have to be
careful, since Uf also depends on f .

Definition. The height contraction coefficient
of f is the quantity

µ(f ) := sup
∅6=U⊂PN

lim inf
P∈U(Q)
h(P )→∞

h
(
f (P )

)
h(P )

.

The theorem asserts that µ(f ) > 0.

Theorem. There is a lower bound for µ(f ) that de-
pends only on N and d.
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A Uniform Bound for Height Contraction

In other words, the following universal height con-
traction coefficient for degree d maps of PN is
positive:

µd(PN ) := inf
f :PN99KPN

deg(f )=d
f is defined over Q
f is dominant

µ(f ) > 0.

Question. What is the value of µd(PN )? This seems
like a very interesting question. We do have an estimate:

Theorem.

µd(PN ) ≤ 1

dN−1
for all N ≥ 2 and all d ≥ 2.

This is proved using the theory of canonical heights as-
sociated to regular affine automorphisms AN → AN .
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I want to thank you for your attention.
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I want to thank you for your attention.

And please join me in thanking the organizers,
Wei Ho, Roman Holowinsky,
Jennifer Park, Kevin Tucker,

for this inaugural MAGNTS conference.
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