Dynamical Degrees, Arithmetic Degrees, and Canonical Heights: History, Conjectures, and Future Directions Joseph H. Silverman Brown University Algebraic, Complex and Arithmetic Dynamics Simons Symposium, Schloss Elmau, Germany Monday, 19 May 2019, 11:30–12:30

Measuring Complexity of Iteration

Let X be an object in some category, and let $h: \operatorname{End}(X) \longrightarrow \mathbb{R}_{>0}$

be a function that measures the complexity of endomorphisms of X.

The Endomorphism Complexity Problem. Describe the growth rate of $h(f^n)$ as $n \to \infty$.

Suppose that our objects are sets, and that for every object X we have a function

$$h_X: X \longrightarrow \mathbb{R}_{\geq 0}$$

that measures the complexity of the elements of X.

The Orbit Complexity Problem. For $x \in X$, describe the growth rate of $h_X(f^n(x))$ as $n \to \infty$. Classify the subsets of X exhibiting various growth rates.

That's all very abstract. On to some classical examples.

The Endomorphism Complexity Problem for \mathbb{P}^N Let's start with projective space:

 $f: \mathbb{P}^N \longrightarrow \mathbb{P}^N$ a dominant rational map.

Measure complexity by degree,

$$\deg: \operatorname{End}(\mathbb{P}^N) \longrightarrow \mathbb{N}_{\geq 1}.$$

If f is a morphism, then $\deg(f^n) = \deg(f)^n$. In general: **Definition**: The **dynamical degree of** f is

$$\delta(f) := \lim_{n \to \infty} \left(\deg(f^n) \right)^{1/n}.$$

Inuition: $\deg(f^n)$ is roughly $\delta(f)^n$.

Conjecture. (Bellon–Viallet) $\delta(f) \in \overline{\mathbb{Z}}$.

True for various cases for \mathbb{P}^2 (Diller, Favre, Jonsson, ...).

The Endomorphism Complexity Problem for Varieties

Let X be a smooth projective variety of dimension N, let H be an ample divisor on X, and measure the complexity of $f \in \text{End}(X)$ by

$$\deg_H : \operatorname{End}(X) \longrightarrow \mathbb{N}_{\geq 1}, \quad \deg_H(f) := f^* H \cdot H^{N-1}.$$

Definition: The **dynamical degree of** f is

$$\delta(f) := \lim_{n \to \infty} \left(\deg_H(f^n) \right)^{1/n}.$$

- N.B. For rational maps f, in general $(f^n)^* \neq (f^*)^n$ as maps on $\operatorname{Pic}(X)$.
- The limit $\delta(f)$ exists and is independent of H.
- It is enough to take X normal and H to be a nef and big Cartier divisor.

Variation of the Dynamical Degree in Families Let $f : \mathbb{P}^{N}_{\mathbb{Q}} \dashrightarrow \mathbb{P}^{N}_{\mathbb{Q}}$. For each prime p, we can reduce to obtain a map $\tilde{f}_{p} : \mathbb{P}^{N}_{\mathbb{F}_{p}} \dashrightarrow \mathbb{P}^{N}_{\mathbb{F}_{p}}$. Note that $\delta(\tilde{f}_{p}) \leq \delta(f)$.

Conjecture.

$$\lim_{p \to \infty} \delta(\tilde{f}_p) = \delta(f)?$$

Let $f: X/T \to X/T$ be a family of dominant rational maps parameterized by a variety T. This gives a dynamical degree $\delta(f_{\eta})$ of f on the generic fiber, i.e., over k(T), and also for each $t \in T$, a dynamical degree $\delta(f_t)$.

Conjecture. For all $\epsilon > 0$, we have

$$\{t \in T : \delta(f_t) \le \delta(f_\eta) - \epsilon\} \neq T.$$

Theorem. (Xie) Both conjectures are true for \mathbb{P}^2 .

Refined Estimates for Degree Growth

For

$$f: X - - \to X,$$

the definition of $\delta(f)$ is equivalent to

$$\log \deg_H(f^n) = n \log \delta(f) + o(n).$$

Question: For which f is it true that

 $\log \deg_H(f^n) = n \log \delta(f) + O(n^{\epsilon})$ for an $0 < \epsilon < 1$?

Question: For which f and H is it true that

 $\log \deg_H(f^n) = n \log \delta(f) + O(\log n)?$

And for those who want to the stars and the moon!! **Question**: For which $f : X \dashrightarrow X$ and H does the limit

$$\lim_{n \to \infty} \frac{\deg_H(f^n)}{\delta(f)^n \cdot n^{\ell(f)}} \quad \text{exist for some } \ell(f) \in \mathbb{Z}_{\geq 0}?$$

The Arithmetic Degree of an Orbit For $X/\bar{\mathbb{Q}}$ and $f: X \dashrightarrow X$, let $X(\bar{\mathbb{Q}})_f := \{Q \in X(\bar{\mathbb{Q}}) : f^n(Q) \text{ is defined for all } n \ge 1\},\$ and let $h_X: X(\bar{\mathbb{Q}}) \longrightarrow [1,\infty)$

be a height function relative to an ample line divisor. **Intuition**: $h_X(P) = \#$ of bits to describe P. **Definition**: The **arithmetic degree** of $P \in X(\overline{\mathbb{Q}})_f$ is $\alpha(f, P) := \lim_{n \to \infty} h_X (f^n(P))^{1/n}.$

Theorem. (Kawaguchi–Silverman, Matsuzawa)
$$\overline{\alpha}(f, P) := \limsup_{n \to \infty} h_X (f^n(P))^{1/n} \le \delta(f)$$

 $\left(\begin{array}{c} \text{Arithmetic complexity} \\ \text{of an orbit} \end{array}\right) \leq \left(\begin{array}{c} \text{Dynamical complexity} \\ \text{of the map} \end{array}\right)$

Arithmetic Degree Versus Dynamical Degree

Conjecture. (Kawaguchi–Silverman) The limit defining $\alpha(f, P)$ converges.

The convergence is known in many situations, including for morphisms and for many types of maps of surfaces.

Density Conjecture. (Kawaguchi–Silverman)

 $\mathcal{O}_f(P)$ Zariski dense in $X \Longrightarrow \alpha(f, P) = \delta(f).$

 $\begin{pmatrix} \text{Maximal geometric} \\ \text{complexity of an orbit} \end{pmatrix} \Longrightarrow \begin{pmatrix} \text{Maximal arithmetic} \\ \text{complexity of the orbit} \end{pmatrix}$

The density conjecture is known in some cases, including:

(1) Monomial maps of \mathbb{P}^N .

(2) Many classes of rational maps of \mathbb{P}^2 .

- (3) Maps of abelian varieties. More generally, translated isogenies of semi-abelian varieties.
- (4) Morphisms of surfaces.
- (5) Morphisms of certain higher dimensional varieties having additional structure.
- (6) Dominant rational maps of large topological degree.

Canonical Heights for Polarized Morphisms Let $f: X \to X$ be a morphism and $D \in \text{Div}(X) \otimes \mathbb{R}$ a divisor, and suppose that

 $f^*D \sim \delta D$ for some $\delta > 1$.

The associated **canonical height of** $P \in X(\overline{\mathbb{Q}})$ is

$$\hat{h}_{f,D}(P) := \lim_{n \to \infty} \frac{1}{\delta^n} h_D(f^n(P)).$$

Properties of $\hat{h}_{f,D}$:

$$\begin{split} \hat{h}_{f,D}(P) &= h_D(P) + O(1); \quad \hat{h}_{f,D}\big(f(P)\big) = \delta \hat{h}_{f,D}(P); \\ D \text{ ample} : \hat{h}_{f,D}(P) = 0 \Longleftrightarrow P \in \operatorname{PrePer}(f). \end{split}$$

Dynamical Lehmer Conjecture. For D ample, $\exists C(f, D) > 0$ so that for all $P \in X(\overline{\mathbb{Q}}) \smallsetminus \operatorname{PrePer}(f)$, $\hat{h}_{f,D}(P) \geq \frac{C(f, D)}{[\mathbb{Q}(P) : \mathbb{Q}]}.$

Shibata's Ample Canonical Height

Let $f: X \to X$ be a dominant morphism with $\delta(f) > 1$, let $h_X: X(\overline{\mathbb{Q}}) \to [1, \infty)$ be a height relative to an ample divisor, and let $\ell(f)$ be the smallest non-negative integer such that

$$\sup_{n\geq 1} \frac{h_X(f^n(P))}{n^{\ell(f)}\cdot\delta(f)^n} < \infty \quad \text{for all } P \in X(\bar{\mathbb{Q}}).$$

Definition. The (lower) ample canonical height is

$$\underline{\hat{h}}_f: X(\overline{\mathbb{Q}}) \to [0,\infty), \quad \underline{\hat{h}}_f(P) := \liminf_{n \to \infty} \frac{h_X(f^n(P))}{n^{\ell(f)} \cdot \delta(f)^n}.$$

Conjecture. (Shibata) For every number field K/\mathbb{Q} , $\{P \in X(K) : \underline{\hat{h}}_f(P) = 0\}$ (*)

is not Zariski dense in X.

The set (*) is independent of the choice of h_X .

Shibata Conjecture \implies K-S Density Conjecture If $\alpha(f, P) < \delta(f)$, then for sufficiently large n,

$$h_X(f^n(P))^{1/n} \le \alpha(f,P) + \frac{1}{2}(\delta(f) - \alpha(f,P))$$
$$= \delta(f) - \underbrace{\frac{1}{2}(\delta(f) - \alpha(f,P))}_{\text{call this } \epsilon(f,P)}.$$

Hence

$$\underline{\hat{h}}_{f}(P) \leq \liminf_{n \to \infty} \frac{\left(\delta(f) - \epsilon(f, P)\right)^{n}}{n^{\ell(f)} \cdot \delta(f)^{n}} = 0.$$

Since $\alpha(f, f^n(P)) = \alpha(f, P)$, we see that

$$\begin{aligned} \alpha(f,P) < \delta(f) &\Longrightarrow \\ \mathcal{O}_f(P) \subseteq \underbrace{\{Q \in X(K) : \underline{\hat{h}}_f(Q) = 0\}}_{\text{Shibata} \Rightarrow \text{ not Zariski dense}}. \end{aligned}$$

Therefore Shibata's conjecture implies the K-S density conjecture (for morphisms).

Other Types of Growth Rates for $h_X(f^n(P))$? The map

$$f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2, \quad f(x, y, z) = [xy + xz, yz + z^2, z^2]$$

is interesting. It satisfies $\deg(f^n) = n + 1$, so $\delta(f) = 1$, and the point P = [1, 0, 1] satisfies

$$f^n(P) = [n!, n, 1],$$

SO

$$h(f^n(P)) = \log(n!) \sim n \log n.$$

Questions: For rational maps $f : \mathbb{P}^N \dashrightarrow \mathbb{P}^N$, is it possible to have: (1) $h(f^n(P)) \sim n^i (\log n)^j$ for some $j \ge 2$? (2) $h(f^n(P)) \sim \delta(f)^n n^i (\log n)^j$ with $j \ge 1$ and $\delta(f) > 1$? (3) what other sorts of growth rates? Canonical Heights and Critical Heights Let $\mathcal{M}_d^N := \operatorname{End}_d(\mathbb{P}^N) / / \operatorname{PGL}_{N+1}$, and fix an ample height $h_{\mathcal{M}}$ on $\mathcal{M}_d^N(\overline{\mathbb{Q}})$.

Dynamical Lang Height Conjecture. Let K/\mathbb{Q} . There are $C_i(K, N, d) > 0$ so that for all $f \in \mathcal{M}_d^N(K)$ and all $P \in \mathbb{P}^N(K)$ with Zariski dense orbit,

 $\hat{h}_f(P) \ge C_1 h_{\mathcal{M}}(f) - C_2.$

Restricting to \mathbb{P}^1 , the **critical height** of $f \in \mathcal{M}^1_d(\bar{\mathbb{Q}})$ is

$$\hat{h}^{\operatorname{crit}}(f) := \sum_{P \in \operatorname{Crit}(f)} \hat{h}_f(P).$$

 $\hat{h}^{\operatorname{crit}}(f) = 0 \iff \operatorname{Crit}(f) \subset \operatorname{PrePer}(f) \iff f \text{ is PCF.}$

Theorem. (Ingram) $\hat{h}^{\text{crit}}(f) \asymp h_{\mathcal{M}}(f)$.

Problem: Generalize to \mathcal{M}_d^N . What replaces \hat{h}^{crit} ? TBC...

Higher Order Dynamical Degrees

Let X be a smooth projective variety of dimension N, let $f: X \dashrightarrow X$ be a dominant rational map, and let Hbe an ample divisor.

Definition. The k'th dynamical degree of f is

$$\delta_k(f) := \lim_{n \to \infty} \left((f^n)^* (H^k) \cdot H^{N-k} \right)^{1/n}.$$

Theorem. (Guedj) Dynamical degrees form a log concave sequence, i.e., $\delta_{i-1}\delta_{i+1} \leq \delta_i^2$. In particular, for some k we have $\delta_1(f) \leq \delta_2(f) \leq \cdots \leq \delta_k(f),$ $\delta_k(f) \geq \delta_{k+1}(f) \geq \cdots \geq \delta_N(f).$

Favre–Wulcan & Lin describe $\delta_k(f)$ for monomial maps. Question. Are all $\delta_k(f)$ algebraic integers? Question. Generalize to arithmetic degree?

Higher Order Arithmetic Degree

Let $X/\overline{\mathbb{Q}}$ be a smooth projective variety of dimension N, and let $f: X \to X$ be a morphism. For $k \geq 2$, the "natural" way to define the k'th arithmetic degree $\alpha_k(f, P)$ of a point P (conjecturally) yields

 $\alpha_k(f, P) = 1$ for all P,

so that's not very interesting.

The problem is that scheme-theoretically, a point P has dimension 1 and a divisor H has codimension 1, so their arithmetic intersection is often large; but if we replace Hwith something of higher codimension, then the intersection with P is likely to be small.

One solution is to replace the point P with a higher dimensional subvariety:

 $\alpha_k(f, \cdot) : \{k - 1 \text{ dim'l subvarieties}\} \longrightarrow \mathbb{R}_{\geq 0}.$

Higher Order Arithmetic Degrees

There is a theory that assigns a height to each subvariety $Z \subseteq X$,

especially for $X = \mathbb{P}^N$. Indeed, there are several formulations, including a height for $Z \subset \mathbb{P}^N$ using the Chow coordinates of Z, and heights using metrized line bundles \overline{L} and Arakelov theory due to Faltings, Zhang, Bost-Gillet-Soulé, ...; see [BGS JAMS 1994].

Higher Order Arithmetic Degree

Definition. Let $f : X \to X$ be a morphism. The **arithmetic degree** of $Z \subseteq X$ is

$$\alpha(f,Z) := \lim_{n \to \infty} h_{X,\overline{L}} (f^n(Z))^{1/n}.$$

Questions. (1) Does the limit $\alpha(f, Z)$ converge?

(2) Is there a natural upper bound for $\alpha(f, Z)$ in terms of $\delta_1(f), \ldots, \delta_{1+\dim Z}(f)$?

(3) When is this upper bound attained?

Example. (K-S unpublished) Let $f : \mathbb{P}^N \dashrightarrow \mathbb{P}^N$ be a dominant <u>monomial</u> map, and let $Z \subset \mathbb{P}^N$ be an irreducible hypersurface \neq a coordinate hyperplane. Then

$$\overline{\alpha}(f,Z) \le \min\{\delta_{N-1}(f),\delta_N(f)\}.$$

Further, there are examples with N = 2 satisfying: (1) $\alpha(f, Z) = \delta_1(f) < \delta_2(f);$ (2) $\alpha(f, Z) = \delta_2(f) < \delta_1(f).$ Height Lower Bounds and the Bogomolov Property We fix a polarized dynamical system (X, f, D), i.e., $f: X \to X$, D ample, $f^*D \sim \delta D$ for some $\delta > 1$.

Definition. A subvariety $Z \subseteq X$ has the **Bogomolov property** (relative to f and D) if there is an $\epsilon > 0$ s.t.

$$\overline{Z_{f,D}(\epsilon)} := \left\{ P \in Z(\bar{\mathbb{Q}}) : \hat{h}_{X,f,D}(P) < \epsilon \right\} \neq Z$$

Examples.

(1) X an abelian variety, Z not a translate of an abelian subvariety by a torsion point (Ullmo, S. Zhang, David–Philippon).

(2) $X = (\mathbb{P}^1)^N$, f a dominant endomorphism (Ghioca-Nguyen-Ye).

N.B. As shown by the construction of Ghioca–Tucker,

 $\overline{Z \cap \operatorname{PrePer}(f)} = Z \implies Z \text{ is } f\text{-preperiodic.}$

The Bogomolov Canonical Height of a Subvariety

This suggests defining the Bogomolov height of Z to be the largest ϵ that gives the Bogomolov property.

Definition The **Bogomolov height of** Z (relative to f and D) is

$$\hat{h}_{X,f,D}^{\mathcal{B}}(Z) := \sup_{\substack{\emptyset \neq U \subseteq Z \quad P \in U(\bar{\mathbb{Q}})}} \inf_{\hat{h}_{X,f,D}(P),$$

where U ranges over Zariski open subsets of Z. And if $Z = \sum n_i Z_i$ is a formal sum of equidimensional subvarieties, we extend linearly, $\hat{h}^{\mathcal{B}}(Z) = \sum n_i \hat{h}^{\mathcal{B}}(Z_i)$.

Since
$$\hat{h}_{X,f,D}^{\mathcal{B}}(Z) = \sup\{\epsilon > 0 : \overline{Z_{f,D}(\epsilon)} \neq Z\},\$$

we see that

Z has the Bogomolov property $\iff \hat{h}_{X,f,D}^{\mathcal{B}}(Z) > 0.$

Maybe: Z is formally preperiodic if $\hat{h}_{X,f,D}^{\mathcal{B}}(Z) = 0$?

Addendum

Shouwu Zhang proved that

$$\hat{h}_{X,f,D}^{\mathcal{Z}}(Z) := \lim_{n \to \infty} \frac{1}{\delta^n} h_{X,D}(f^n(Z))$$

converges, and that the Zhang height and the Bogomolov heights,

$$\hat{h}_{X,f,D}^{\mathcal{Z}}(Z)$$
 and $\hat{h}_{X,f,D}^{\mathcal{B}}(Z)$,

are commensurate.

The Critical Height of an Endomorphism of \mathbb{P}^N Let $f : \mathbb{P}^N \to \mathbb{P}^N$ be an endomorphism, and let $\operatorname{Crit}_f := (\text{the critical locus of } f) \in \operatorname{Div}(\mathbb{P}^N).$

Definition. The critical height of $f : \mathbb{P}^N \to \mathbb{P}^N$ is $\hat{h}^{\operatorname{crit}}(f) := \hat{h}^{\mathcal{B}}_{X, f, \mathcal{O}(1)}(\operatorname{Crit}_f).$

This gives a well-defined function

$$\hat{h}^{\operatorname{crit}}: \mathcal{M}_d^N(\bar{\mathbb{Q}}) \longrightarrow \mathbb{R}_{\geq 0}.$$

We might say that f is "formally PCF" if $\hat{h}^{\text{crit}}(f) = 0$.

Conjecture. As maps
$$\mathcal{M}_d^N(\bar{\mathbb{Q}}) \to \mathbb{R}_{\geq 0}$$
, we have
 $\hat{h}^{\text{crit}} \gg \ll h_{\mathcal{M}}.$

The upper bound $\hat{h}^{\text{crit}} \ll h_{\mathcal{M}}$ is probably not too hard; the lower bound, generalizing Ingram, seems harder.

I want to thank the organizers **Laura DeMarco and Mattias Jonsson** for inviting me to speak, the **Simons Foundation** for funding this Symposium, and all of you for your attention.

Dynamical Degrees, Arithmetic Degrees, and Canonical Heights: History, Conjectures, and Future Directions Joseph H. Silverman Brown University Algebraic, Complex and Arithmetic Dynamics Simons Symposium, Schloss Elmau, Germany Monday, 19 May 2019, 11:30–12:30