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Measuring Complexity of Iteration

Let X be an object in some category, and let

h : End(X) −→ R≥0

be a function that measures the complexity of endomor-
phisms of X .

The Endomorphism Complexity Problem.
Describe the growth rate of h(fn) as n→∞.

Suppose that our objects are sets, and that for every
object X we have a function

hX : X −→ R≥0

that measures the complexity of the elements of X .

The Orbit Complexity Problem. For x ∈ X , de-
scribe the growth rate of hX

(
fn(x)

)
as n→∞. Clas-

sify the subsets of X exhibiting various growth rates.

That’s all very abstract. On to some classical examples.
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The Endomorphism Complexity Problem for PN

Let’s start with projective space:

f : PN −−→ PN a dominant rational map.

Measure complexity by degree,

deg : End(PN ) −→ N≥1.

If f is a morphism, then deg(fn) = deg(f )n. In general:
Definition: The dynamical degree of f is

δ(f ) := lim
n→∞

(
deg(fn)

)1/n
.

Inuition: deg(fn) is roughly δ(f )n.

Conjecture. (Bellon–Viallet) δ(f ) ∈ Z.

True for various cases for P2 (Diller, Favre, Jonsson, . . . ).
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The Endomorphism Complexity Problem for Varieties

Let X be a smooth projective variety of dimension N ,
let H be an ample divisor on X , and measure the com-
plexity of f ∈ End(X) by

degH : End(X) −→ N≥1, degH(f ) := f∗H ·HN−1.

Definition: The dynamical degree of f is

δ(f ) := lim
n→∞

(
degH(fn)

)1/n
.

• N.B. For rational maps f , in general (fn)∗ 6= (f∗)n

as maps on Pic(X).
• The limit δ(f ) exists and is independent of H .
• It is enough to take X normal and H to be a nef and

big Cartier divisor.
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Variation of the Dynamical Degree in Families

Let f : PNQ 99K PNQ . For each prime p, we can reduce to

obtain a map f̃p : PNFp 99K PNFp. Note that δ(f̃p) ≤ δ(f ).

Conjecture. lim
p→∞

δ(f̃p) = δ(f )?

Let f : X/T 99K X/T be a family of dominant rational
maps parameterized by a variety T . This gives a dynam-
ical degree δ(fη) of f on the generic fiber, i.e., over k(T ),
and also for each t ∈ T , a dynamical degree δ(ft).

Conjecture. For all ε > 0, we have{
t ∈ T : δ(ft) ≤ δ(fη)− ε

}
6= T.

Theorem. (Xie) Both conjectures are true for P2.
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Refined Estimates for Degree Growth

For
f : X −−→ X,

the definition of δ(f ) is equivalent to

log degH(fn) = n log δ(f ) + o(n).

Question: For which f is it true that

log degH(fn) = n log δ(f ) + O(nε) for an 0 < ε < 1?

Question: For which f and H is it true that

log degH(fn) = n log δ(f ) + O(log n)?

And for those who want to the stars and the moon!!
Question: For which f : X 99K X and H does the
limit

lim
n→∞

degH(fn)

δ(f )n · n`(f )
exist for some `(f ) ∈ Z≥0?
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The Arithmetic Degree of an Orbit

For X/Q̄ and f : X 99K X , let

X(Q̄)f :=
{
Q ∈ X(Q̄) : fn(Q) is defined for all n ≥ 1

}
,

and let
hX : X(Q̄) −→ [1,∞)

be a height function relative to an ample line divisor.
Intuition: hX(P ) = # of bits to describe P .

Definition: The arithmetic degree of P ∈ X(Q̄)f
is

α(f, P ) := lim
n→∞

hX
(
fn(P )

)1/n
.

Theorem. (Kawaguchi–Silverman, Matsuzawa)

α(f, P ) := lim sup
n→∞

hX
(
fn(P )

)1/n ≤ δ(f )

(
Arithmetic complexity

of an orbit

)
≤
(

Dynamical complexity
of the map

)
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Arithmetic Degree Versus Dynamical Degree

Conjecture. (Kawaguchi–Silverman)
The limit defining α(f, P ) converges.

The convergence is known in many situations, including
for morphisms and for many types of maps of surfaces.

Density Conjecture. (Kawaguchi–Silverman)

Of (P ) Zariski dense in X =⇒ α(f, P ) = δ(f ).

(
Maximal geometric

complexity of an orbit

)
=⇒

(
Maximal arithmetic

complexity of the orbit

)
The density conjecture is known in some cases, including:
(1) Monomial maps of PN .

(2) Many classes of rational maps of P2.

(3) Maps of abelian varieties. More generally, translated isogenies of semi-abelian varieties.

(4) Morphisms of surfaces.

(5) Morphisms of certain higher dimensional varieties having additional structure.

(6) Dominant rational maps of large topological degree.



Complexity of Orbits 8

Canonical Heights for Polarized Morphisms

Let f : X → X be a morphism and D ∈ Div(X)⊗R a
divisor, and suppose that

f∗D ∼ δD for some δ > 1.

The associated canonical height of P ∈ X(Q̄) is

ĥf,D(P ) := lim
n→∞

1

δn
hD
(
fn(P )

)
.

Properties of ĥf,D:

ĥf,D(P ) = hD(P ) + O(1); ĥf,D
(
f (P )

)
= δĥf,D(P );

D ample : ĥf,D(P ) = 0⇐⇒ P ∈ PrePer(f ).

Dynamical Lehmer Conjecture. For D ample, ∃
C(f,D) > 0 so that for all P ∈ X(Q̄) r PrePer(f ),

ĥf,D(P ) ≥ C(f,D)[
Q(P ) : Q

].
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Shibata’s Ample Canonical Height

Let f : X → X be a dominant morphism with δ(f ) > 1,
let hX : X(Q̄)→ [1,∞) be a height relative to an ample
divisor, and let `(f ) be the smallest non-negative integer
such that

sup
n≥1

hX
(
fn(P )

)
n`(f ) · δ(f )n

<∞ for all P ∈ X(Q̄).

Definition. The (lower ) ample canonical height is

ĥf : X(Q̄)→ [0,∞), ĥf (P ) := lim inf
n→∞

hX
(
fn(P )

)
n`(f ) · δ(f )n

.

Conjecture. (Shibata) For every number field K/Q,{
P ∈ X(K) : ĥf (P ) = 0

}
(∗)

is not Zariski dense in X .

The set (∗) is independent of the choice of hX .
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Shibata Conjecture =⇒ K-S Density Conjecture

If α(f, P ) < δ(f ), then for sufficiently large n,

hX
(
fn(P )

)1/n ≤ α(f, P ) + 1
2

(
δ(f )− α(f, P )

)
= δ(f )− 1

2

(
δ(f )− α(f, P )

)︸ ︷︷ ︸
call this ε(f, P )

.

Hence

ĥf (P ) ≤ lim inf
n→∞

(
δ(f )− ε(f, P )

)n
n`(f ) · δ(f )n

= 0.

Since α
(
f, fn(P )

)
= α(f, P ), we see that

α(f, P ) < δ(f ) =⇒
Of (P ) ⊆

{
Q ∈ X(K) : ĥf (Q) = 0

}︸ ︷︷ ︸
Shibata ⇒ not Zariski dense

.

Therefore Shibata’s conjecture implies the K-S density
conjecture (for morphisms).
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Other Types of Growth Rates for hX
(
fn(P )

)
?

The map

f : P2 99K P2, f (x, y, z) = [xy + xz, yz + z2, z2]

is interesting. It satisfies deg(fn) = n + 1, so δ(f ) = 1,
and the point P = [1, 0, 1] satisfies

fn(P ) = [n!, n, 1],

so
h
(
fn(P )

)
= log(n!) ∼ n log n.

Questions: For rational maps f : PN 99K PN , is it
possible to have:
(1) h

(
fn(P )

)
∼ ni(log n)j for some j ≥ 2?

(2) h
(
fn(P )

)
∼ δ(f )nni(log n)j with j ≥ 1 and δ(f ) > 1?

(3) what other sorts of growth rates?
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Canonical Heights and Critical Heights

Let MN
d := Endd(PN )//PGLN+1, and fix an ample

height hM onMN
d (Q̄).

Dynamical Lang Height Conjecture. Let K/Q.
There are Ci(K,N, d) > 0 so that for all f ∈MN

d (K)

and all P ∈ PN (K) with Zariski dense orbit,

ĥf (P ) ≥ C1hM(f )− C2.

Restricting to P1, the critical height of f ∈ M1
d(Q̄)

is
ĥcrit(f ) :=

∑
P∈Crit(f )

ĥf (P ).

ĥcrit(f ) = 0⇐⇒ Crit(f ) ⊂ PrePer(f )⇐⇒ f is PCF.

Theorem. (Ingram) ĥcrit(f ) � hM(f ).

Problem: Generalize toMN
d . What replaces ĥcrit? TBC. . .
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Higher Order Dynamical Degrees

Let X be a smooth projective variety of dimension N ,
let f : X 99K X be a dominant rational map, and let H
be an ample divisor.

Definition. The k’th dynamical degree of f is

δk(f ) := lim
n→∞

(
(fn)∗(Hk) ·HN−k

)1/n
.

Theorem. (Guedj) Dynamical degrees form a log con-
cave sequence, i.e., δi−1δi+1 ≤ δ2

i . In particular, for
some k we have

δ1(f ) ≤ δ2(f ) ≤ · · · ≤ δk(f ),

δk(f ) ≥ δk+1(f ) ≥ · · · ≥ δN (f ).

Favre–Wulcan & Lin describe δk(f ) for monomial maps.

Question. Are all δk(f ) algebraic integers?

Question. Generalize to arithmetic degree?
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Higher Order Arithmetic Degree

Let X/Q̄ be a smooth projective variety of dimension N ,
and let f : X → X be a morphism. For k ≥ 2, the “nat-
ural” way to define the k’th arithmetic degree αk(f, P )
of a point P (conjecturally) yields

αk(f, P ) = 1 for all P ,

so that’s not very interesting.

The problem is that scheme-theoretically, a point P has
dimension 1 and a divisor H has codimension 1, so their
arithmetic intersection is often large; but if we replace H
with something of higher codimension, then the intersec-
tion with P is likely to be small.

One solution is to replace the point P with a higher
dimensional subvariety:

αk(f, · ) : {k − 1 dim’l subvarieties} −→ R≥0.
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Higher Order Arithmetic Degrees

There is a theory that assigns a height to each subvariety

Z ⊆ X,

especially for X = PN . Indeed, there are several for-
mulations, including a height for Z ⊂ PN using the
Chow coordinates of Z, and heights using metrized line
bundles L and Arakelov theory due to Faltings, Zhang,
Bost–Gillet–Soulé, . . . ; see [BGS JAMS 1994].
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Higher Order Arithmetic Degree

Definition. Let f : X → X be a morphism. The
arithmetic degree of Z ⊆ X is

α(f, Z) := lim
n→∞

hX,L
(
fn(Z)

)1/n
.

Questions. (1) Does the limit α(f, Z) converge?

(2) Is there a natural upper bound for α(f, Z) in terms
of δ1(f ), . . . , δ1+dimZ(f )?

(3) When is this upper bound attained?

Example. (K-S unpublished) Let f : PN 99K PN be
a dominant monomial map, and let Z ⊂ PN be an irre-
ducible hypersurface 6= a coordinate hyperplane. Then

α(f, Z) ≤ min
{
δN−1(f ), δN (f )

}
.

Further, there are examples with N = 2 satisfying:
(1) α(f, Z) = δ1(f ) < δ2(f );

(2) α(f, Z) = δ2(f ) < δ1(f ).
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Height Lower Bounds and the Bogomolov Property

We fix a polarized dynamical system (X, f,D), i.e.,

f : X → X, D ample, f∗D ∼ δD for some δ > 1.

Definition. A subvariety Z ⊆ X has the Bogomolov
property (relative to f and D) if there is an ε > 0 s.t.

Zf,D(ε) :=
{
P ∈ Z(Q̄) : ĥX,f,D(P ) < ε

}
6= Z

Examples.
(1) X an abelian variety, Z not a translate of an abelian
subvariety by a torsion point (Ullmo, S. Zhang, David–
Philippon).
(2) X = (P1)N , f a dominant endomorphism (Ghioca–
Nguyen–Ye).

N.B. As shown by the construction of Ghioca–Tucker,

Z ∩ PrePer(f ) = Z 6=⇒ Z is f -preperiodic.
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The Bogomolov Canonical Height of a Subvariety

This suggests defining the Bogomolov height of Z to be
the largest ε that gives the Bogomolov property.

Definition The Bogomolov height of Z (relative
to f and D) is

ĥBX,f,D(Z) := sup
∅6=U⊆Z

inf
P∈U(Q̄)

ĥX,f,D(P ),

where U ranges over Zariski open subsets of Z. And if
Z =

∑
niZi is a formal sum of equidimensional subva-

rieties, we extend linearly, ĥB(Z) =
∑
niĥ
B(Zi).

Since ĥBX,f,D(Z) = sup
{
ε > 0 : Zf,D(ε) 6= Z

}
,

we see that

Z has the Bogomolov property ⇐⇒ ĥBX,f,D(Z) > 0.

Maybe: Z is formally preperiodic if ĥBX,f,D(Z) = 0?
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Addendum

Shouwu Zhang proved that

ĥZX,f,D(Z) := lim
n→∞

1

δn
hX,D

(
fn(Z)

)
converges, and that the Zhang height and the Bogomolov
heights,

ĥZX,f,D(Z) and ĥBX,f,D(Z),

are commensurate.
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The Critical Height of an Endomorphism of PN

Let f : PN → PN be an endomorphism, and let

Critf := (the critical locus of f ) ∈ Div(PN ).

Definition. The critical height of f : PN → PN
is

ĥcrit(f ) := ĥBX,f,O(1)(Critf ).

This gives a well-defined function

ĥcrit :MN
d (Q̄) −→ R≥0.

We might say that f is “formally PCF” if ĥcrit(f ) = 0.

Conjecture. As mapsMN
d (Q̄)→ R≥0, we have

ĥcrit�� hM.

The upper bound ĥcrit� hM is probably not too hard;
the lower bound, generalizing Ingram, seems harder.
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