Math 520 Practice Problems for the Final

1. True or False: If A is a (square) diagonalizable matrix, then there is a matrix B so that $B^2 = A$. Explain. Let $A = \begin{bmatrix} 1 & -4 & 2 \\ 3 & -4 & 0 \\ 3 & -1 & -3 \end{bmatrix}$. Find B so that $B^2 = A$.

2. More T/F. If true, why? If false, provide a counterexample, and think about what changes would make the statement true.

 (a) The vectors $(2i, 2 + 3i)$ and $(2i - 2, -1 + 5i)$ are linearly independent.

 (b) If A is Markov and A^∞ exists, then A has exactly one eigenvalue λ (counted with algebraic multiplicity) with $|\lambda| = 1$.

 (c) If $A^T = -A$, then all eigenvalues of A are purely imaginary ($= bi, b \in \mathbb{R}$).

 (d) For any matrix A, $N(A) = N(A^T A)$.

 (e) For any matrix A, rank(A) = rank($A^T A$).

3. Let $A = \begin{bmatrix} 1 & -1 & 4 \\ 2 & -2 & 8 \end{bmatrix}$. Compute A^+ and $(AA^+)^2$.

4. Let $A = \begin{bmatrix} 0 & s \\ 1 & 1 - s \end{bmatrix}$. For which s with $0 \leq s \leq 1$ does $A^\infty = \lim_{k \to \infty} A^k$ exist?

5. Find a basis for the orthogonal complement of the one-dimensional subspace of \mathbb{C}^3 spanned by $(1 + i, 1, 2i)$.

6. Find a symmetric matrix A so that

$$\mathbf{x}^T A \mathbf{x} = 4 \left(\frac{x_1}{\sqrt{14}} + \frac{2x_2}{\sqrt{14}} + \frac{3x_3}{\sqrt{14}} \right)^2 + 2 \left(\frac{3x_1}{\sqrt{10}} - \frac{x_3}{\sqrt{10}} \right)^2.$$

7. Let $r(t)$ be the number of robins at time t, and let $w(t)$ be the number of worms at time t. Assume that the robins and worms are governed by the relationship

$$r' = r + 2w \quad \quad w' = -3r + 6w.$$

Initially, there are 160 robins and 210 worms. Compute the limit

$$\lim_{t \to \infty} \frac{r(t)}{w(t)}.$$

8. The Jibonacci numbers z_k are defined by the formula

$$z_{k+2} = 3z_{k+1} - 2z_k,$$

and $z_0 = 0, z_1 = 1$. Find z_{100}.

1
9. Find the intersection of the two spaces in \mathbb{R}^4:

$$X = \{(0, 1, 1, 0) + a(-3, 1, 0, 0) + b(1, 0, 1, 0) + c(0, 0, 0, 1)\}$$

$$Y = \{(1, 2, -1, 0) + d(1, 0, -2, 0) + e(0, 1, 1, 0) + f(0, 0, 2, 1)\}$$

(Here, a, b, c, d, e, and f run over all real numbers.)

10. For the following matrices A, B and C which matrix decompositions exist? Do not compute them.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Which of the following exist?

- LU
- QR
- SAS^{-1}
- $Q\Lambda Q^T$
- QH
- $R^T R$
- SVD