Areas + Indefinite Integrals

We can approximate the area under the curve $y = f(x)$ from a to b with rectangles.

Here we are using left hand endpoints to find the heights of our rectangles.

$[a, b]$ has been divided into n subintervals of (equal) length $\frac{b-a}{n}$. Let $\Delta = \frac{b-a}{n}$.

The sum of the areas of our n rectangles is:

$$\sum_{i=0}^{n} f(x_i) \Delta$$

where Δ is the width of any rectangle and $f(x_i)$ is the height of the i^{th} rectangle.

If we used right hand endpoints instead, the sum would be $\sum_{i=1}^{n} f(x_i) \Delta$.

Definition

We define the integral $\int_{a}^{b} f(x) \, dx$ of $f(x)$ from a to b to be

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta,$$

where $\Delta = \frac{b-a}{n}$, $x_0 = a$, $x_n = b$, $x_i = a + i \Delta$.

If this limit exists,

If the limit exists, f is called integrable.
- Just like \(f'(x) \) may not exist, \(\int_a^b f(x) \, dx \) may not exist either.
- When the graph of \(y = f(x) \) is above the \(x \)-axis:

 \[
 \int_a^b f(x) \, dx = \text{area under the curve } y = f(x)
 \]
 from \(x = a \) to \(x = b \).

Example

\(y = x \), from \(x = 1 \) to \(x = 3 \):

\[
\Delta = \frac{3-1}{n}
\]

\[
x_i = 1 + \frac{2i}{n}
\]

\[
\text{Area} = \lim_{n \to \infty} \frac{n}{n} \sum_{i=1}^{n} f\left(1 + \frac{2i}{n}\right) \frac{2}{n}
\]

\[
= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(1 + \frac{2i}{n}\right) \frac{2}{n}
\]

\[
= \lim_{n \to \infty} \frac{3}{n} \left[\frac{n^2}{2} + \frac{n}{2} \frac{2}{3} \right]
\]

Can also compute this area using geometry.
Example
- Express the area under the curve from $x=0$ to $x=1$ as an integral.

\[y = 1 - x^2 \]
\[\int_0^1 (1 - x^2) \, dx \]

Ex What is \[\int_{-1}^1 \sqrt{1-x^2} \, dx \]?

Answer

Area = \[\frac{1}{2} \pi (1)^2 \]
\[= \pi/2 \]

Properties of the Definite Integral

\[\int_a^b k f(x) \, dx = k \int_a^b f(x) \, dx \]

\[\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \]

If \(f(x) \geq 0 \) for all \(x \) in \([a, b]\), then \(\int_a^b f(x) \, dx \) is the area under the graph of \(f \) from \(a \) to \(b \).

\[\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx \] if \(f(x) \leq g(x) \) for all \(x \) in \([a, b]\).

\[\int_a^a f(x) \, dx = 0 \]

\[\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \]