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INTRODUCTION

Secure public key authentication and digital signatures are increasingly impor-
tant for electronic communications, commerce, and security. They are required
not only on high powered desktop computers, but also on devices with severely
constrained memory and processing capabilities, such as smart cards, cell phones,
and RFID tokens. The importance of public key authentication and digital signa-
tures is amply demonstrated by the large literature devoted to both theoretical and
practical aspects of the problem, see for example [1, 6, 11, 12, 19, 22, 26, 28, 29, 30].

At CRYPTO ’96 a highly efficient new public key cryptosystem called NTRU
was introduced. (See [8] for details.) Underlying NTRU is the hard mathematical
problem of finding short and/or close vectors in a certain class of lattices, called
convolution modular lattices or NTRU lattices. In this paper we present a comple-
mentary fast authentication and digital signature scheme, which we call NTRUSIGN,
based on the same underlying hard problem in the same lattices used by NTRU.
Henceforth the original NTRU public key encryption/decryption algorithm will be
referred to as NTRUENCRYPT.

The core idea of NTRUSIGN is as follows. The Signer’s private key is a short
generating basis for an NTRU lattice and his public key is a much longer generating
basis for the same lattice. (Notice that this is not quite the same as for NTRUEN-
CRYPT where we just had one short generating vector.) The signature on a digital
document is a vector in the lattice with two important properties:

e The signature is attached to the digital document being signed.
e The signature demonstrates an ability to solve a general closest vector prob-
lem in the lattice.

The way in which NTRUSIGN achieves these two properties may be briefly sum-
marized as follows:

Key Generation: The private key includes a short 2/N-dimensional vector
denoted (f,g). The public key is the large N-dimensional vector h that
specifies the NTRU lattice LN, that is, h is generated from f and g by
the usual NTRU convolution congruence h = f~! x g (mod ¢). The private
key also includes a complementary short vector (F,G) that is chosen so
that (f,g) and (F,G) generate the full NTRU lattice LY T.
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Signing: The digital document to be signed is hashed to create a random
vector (m1,ms) modulo q. The signer uses the (secret) short generating
vectors to find a lattice vector (s,t) that is close to (my,ms).

Verification: The verifier uses the public key h to verify that (s, t) is indeed in
the lattice LYT and he verifies that (s, ) is appropriately close to (my,ms).

Remark 1. An earlier digital signature scheme called NSS, also based on NTRU
lattices, was presented at Eurocrypt 2001 [9]. A number of cryptographers found
weaknesses in NSS due to the incomplete linkage between an NSS signature and
the underlying hard lattice problem. See Section 7 for details. These difficulties
have been solved in NTRUSIGN, since there is a direct and straightforward linkage
between NTRUSIGN signatures and the (approximate) closest vector problem in the
underlying NTRU lattice.

Remark 2. The principle upon which NTRUSIGN is based is very simple. The signer
has private knowledge of short basis vectors in the NTRU lattice. Given an arbitrary
point in space arising from a message digest, the signer uses this knowledge to find
a point in the NTRU lattice close to the message point. He then exhibits this
approximate solution to the closest vector problem (CVP) as his signature. This
basic idea was already proposed by Goldreich, Goldwasser and Halevi in [5].

The fundamental advance in this paper is the use of NTRU lattices for CVP-
based signatures. The cyclical nature of the NTRU lattices allows the public key
to be specified by just one or two vectors, and it is this property that allows secure
instances of NTRUENCRYPT and NTRUSIGN with practical key sizes. Thus for
lattices of dimension n, the GGH proposal [5] requires keys of size O(n?) bits, while
NTRUENCRYPT and NTRUSIGN use keys of size O(n logn) bits. At a practical level,
this means that a secure version of GGH requires keys with between 10° and 10°
bits (see [21]), while NTRUENCRYPT and NTRUSIGN achieve RSA 1024 bit security
with keys of under 2000 bits. Thus NTRUENCRYPT and NTRUSIGN use RSA-size
keys while achieving orders of magnitude speed and footprint advantages over RSA
and ECC.

It should be noted that the use of NTRU lattices for CVP-based signatures is not
completely straightforward. For the GGH scheme, the signer is free to choose any
basis of short vectors as his private key. For an NTRU lattice, the first short vec-
tor (f, g) and the public parameters N and g completely determine the lattice LY,
so the signer only has a short basis for half of the lattice. Thus he needs to use the
known short vector (£, g) to find a complementary short vector (F, G) that, together
with (f,g), generates LY. The efficient construction of an appropriate (F,G) is a
nontrivial task; we describe theoretical and practical algorithms in Section 5.

We will show that forgery of a signature implies the ability to solve an (approxi-
mate) closest vector problem in high dimension for the class of NTRU lattices. We
will also analyze the information contained in a long transcript of valid signatures
and show that the generic method used in signature creation dramatically reduces
the feasability of an attack from this direction. In particular, we will show that the
most efficient known method of transcript analysis is ineffective on transcripts of a
108 valid signatures created with a single private key.

We start in Section 1 with a very brief description of NTRUSIGN. The remainder
of the article (aside from the last section) then provides explanation, amplification,
and justification for the signature scheme described in this initial section.
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The body of the article thus begins in Section 2 with an overview of convolution
modular lattices and the hard lattice problems that are used by NTRUENCRYPT
and NTRUSIGN. In Section 3 we sketch the new aspects of the key creation process
and give the signing and verification protocols for NTRUSIGN. We also provide
specific parameter choices for a level of security equivalent to RSA 1024, and give
preliminary timing results associated with these parameters. In Section 4 we ana-
lyze the security of NTRUSIGN. We show that creating a valid NTRUSIGN signature
directly from the public key is closely tied to the classical closest vector problem,
analyze the requirements on the hash function, and consider what information is
available to an attacker who obtains a transcript of signatures. In Section 5 we
complete the discussion of key creation and describe a method for finding a com-
plete short basis for an NTRU lattice, given knowledge of the private vector (f, g).
In Section 6 we describe some potential ways in which NTRUSIGN might be made
even more efficient. Finally, in Section 7, we briefly review the history of an earlier
NTRU lattice based signature scheme called NSS and contrast its ad hoc document
encoding method via auxiliary congruences (which led to certain weaknesses) with
the direct linkage of NTRUSIGN signatures to the underlying CVP.

This is a second and still preliminary draft of the paper describing NTRUSIGN.
The first draft was distributed at the rump session of AsiaCrypt ’01. This draft
incorporates some helpful comments that were made by Craig Gentry, Jyrki Lah-
tonen, Ari Renvall and Mike Szydlo.

1. A BRIEF OVERVIEW OF NTRUSIGN

We very briefly describe NTRUSIGN. Further details are provided in the remain-
ing sections of this article. All polynomial products are modulo X*V — 1.

Public Parameters: Select a (prime) dimension N, a modulus ¢, key size
parameters dy and dy, and a verfication bound parameter NormBound.

Key Generation: Choose binary polynomials f and g with d; ones and d,
ones, respectively. Compute the public key h = f~! % g (mod ¢). Compute
small polynomials (F,G) satisfying f * G — g* F = q.

Signing: Hash the digital document D to create a random vector (mq,ms)
mod ¢q. Write

Gxmy —Fxmy=A+q* B,
—gxmy+ fxma=a+qxb,

where A and a have coefficients between —¢/2 and ¢/2. The signature on D
is the polynomial s given by

s=fxB+Fxb (modq).

Verification: Hash the digital document D to recreate (mi,ms). Compute
t = sx*h (mod ¢). Verify that

lls — m1]|* + ||t — m2||* < NormBound®.

Suggested Parameters: The following parameters appear to offer security
at least as great as that provided by RSA 1024, that is, an estimated
breaking time greater than 10?2 MIPS-years:

N =251, ¢=128, df=173, dy=71, NormBound = 300.
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2. NTRU LATTICES AND ASSOCIATED VECTOR PROBLEMS

The NTRU Public Key Cryptosystem (NTRUENCRYPT)and the related NTRU
Signature Scheme (NTRUSIGN) use two public parameters N and g. Typical choices
are (N,q) = (251,128) and (N, q) = (503,256). Basic operations take place in the
ring of convolution polynomials

R =7Z[X]/(XN -1).

A polynomial a(X) = ag+ a1 X +---+ay_1 XV ~! € R is identified with its vector
of coordinates (ag,as,...,an_1) € Z~. Note that the product of two polynomials
in R is simply the convolution product of their corresponding vectors

The obvious way to measure the size of an element a € Z[X]/(X" — 1) is by the
Euclidean norm (3" a;)'/? of its vector of coefficients. However, when working with
the ring R and its sublattices [8, 9], it is better to work with the centered norm,
which is defined in the following way. Let p, = (1/N)>_ a; denote the average of
the coefficients of the polynomial a(X) € R. Then the centered norm ||a|| of a is

defined by
N-1 N-1 1 N-1 2
ol = 3 (e = )? = Y- a2 - (X i) 0
i=0 i=0 i=0

For randomly chosen polynomials a and b, the norm is quasi-multiplicative,
lla bl ~ [lal| - [[b]].

When considering n-tuples of elements of R, there is no reason that they should
be centered around the same value. In general we define the centered norm of an
n-tuple (a,b,...,c) with a,b,...,c € R by the formula

ll(a;b,..., o)l = llall* + [l + -~ + lle]l*. (2)

Remark 3. Notice that the centered norm is simply the Euclidean norm after pro-
jecting the vector of coefficients into the space orthogonal to (1,1,...,1). The
reason that it is best to use the centered norm is because an attacker can always
work with centered vectors himself, so there is nothing to be gained by using non-
centered norms. Mathematically, the reduction to centered norms is reflected in
the decomposition
20X, 2[X]
(XN -1 (XN-1 4 XN-24...4 X +1)

which essentially allows the attacker to work in the second factor. This decomposi-
tion also illustrates why it is important that N should be prime, or at least should
have no small prime factors, since if N factors, then there is a further decomposition
of Z[X]/(X~ —1). This observation underlies Gentry’s attack [2] on the NTRU
lattice when N is highly composite.

Remark 4. In applications a polynomial (or vector) a is only known modulo ¢, so
some extra care must be taken to compute the centered norm. See Section 6.3 for
more details.

The Convolution Modular Lattice Lj associated to the polynomial
h(X)=ho+mX+hX>+--+hy 1 XV"'eR
is the set of vectors (u,v) € R x R = ZN satisfying
v(X) =h(X)*u(X) (mod g).
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It is easy to see that Ly is generated by the rows of the following matrix.

10 -+ 0| hgo hy - hyna

0 1 -~ 0lhyy ho -~ hy_s

B 0 0 -+« 1| hy hy --- ho
L, = RowSpan 00 0 p 0 0
00 --- 0 0 q - 0
00 --- 0 0 0 --- q

We note that a convolution modular lattice has a rotational invariance property,
since if (u,v) € Ly, then

(X'xu,X"xv)€ L, forall0<i<N.

Notice that each of the rotations (X? x u, X% % v) has the same (centered) norm
as (u,v). We write R * (u,v) for the sublattice of Lj, generated by (u,v) and all of
its rotations, or equivalently for the R-submodule of R? generated by (u,v).

Micciancio [20] has observed that the matrix for Ly is given in Hermite Normal
Form. Since any matrix can be put into Hermite Normal Form in polynomial
time, it follows that the matrix for Lj conveys the minimum possible amount of
information concerning short vectors in Ly,.

If the polynomial h has a decomposition of the form

h=f1xg (mod q)

with polynomials f and g having small coefficients (see below for the precise defi-
nition of small), then we say that Lj, is an NTRU Lattice and denote it by LYT.

Our goal is to directly relate both the NTRU Public Key Cryptosystem and the
NTRU Signature Scheme to lattice problems in Ll,jT. To do this, we make the
following definitions and assumptions:

(1) The security parameters N and q are related by
g = O(N).

In practice, we generally take %N <q< %N.

(2) A small polynomial is a polynomial whose coefficients are O(1), that is,
a polynomial whose coefficients are bounded independently of N. The
(centered) norm of a small polynomial a(X) satisfies

llall = O(VN).

Remark 5. The Gaussian heuristic provides a method for predicting properties of
a “random” lattice. We make a number of remarks concerning this heuristic which
will be useful in our subsequent work. See [8] or [9] for details.

(1) The Gaussian heuristic predicts that the shortest vector in a “random”
lattice L (of large dimension) has size approximately

AGauss (L) = v/dim(L)/2xe - Det(L)/ dim(L)

Similarly, most closest vector problems for L have a solution whose size is
approximately Agauss(L)-
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(2) A general convolution modular lattice Lj, has dimension 2N and deter-
minant ¢", so its probable shortest vector and closest vectors have size
approximately

AGauss(Ln) = v/ Ngq/me = O(N). (3)

Notice that Lj, contains N linearly independent vectors of length ¢ = O(N),
namely the bottom N rows of its matrix. Small linear combinations of these
“g-vectors” are the only obvious vectors of length O(N) in Ly,

(3) If (u,v) € Ly, then the vector obtained by reducing the coordinates of u
and v modulo ¢ is in Lj. Thus Lj; contains a large number of vectors of
length O(¢gv/N) = O(N?3/?). Further, it is easy to find vectors in L, whose
distance to a given vector is at most O(N?3/2).

(4) In an NTRU lattice LYY, the polynomial h has the form h = f~1xg mod ¢
for small polynomials f and g, so LT contains the short vector (f, g). More
generally, all of the rotations (X'« f, X'xg) are short vectors in L) T having
length O(v/N). Based on the Gaussian heuristic, these secret short vectors
are probably O(+v/N) smaller than any vector not in the subspace R * (£, g)
that they span.

See Section 4.1 for some further asymptotics.

Definition 1. Let LYT be an NTRU lattice. The NTRU Lattice Key Problem is
to find a vector of length O(v/N) in LNT.

Remark 6. The NTRU lattice Ll,:]T contains the subspace R * (f, g) generated by
vectors of length O(\/N), so the NTRU Lattice Key Problem always has solutions.
The Gaussian heuristic predicts that the shortest vector in Ll,:]T that is linearly
independent to the subspace Rx*(f, g) has length O(N). Hence it is highly probable
that all solutions of the NTRU Lattice Key Problem are given by short multiples
(ux* f,uxg),ie., with u € R a polynomial of size ||u|| = O(1).

3. NTrUSIGN: KEY CREATION, SIGNING, AND VERIFICATION

In this section we describe NTRUSIGN key generation and the NTRUSIGN signing
and verification protocols. In the next section we will explain how an NTRUSIGN
signature solves an approximate CVP.

3.1. Key generation. Recall [8] that in an NTRUENCRYPT public/private key
pair, the private key consists of two polynomials f and g having small coefficients
and satisfying || f|| = ||g|| = O(v/N), and the public key is the polynomial  defined
by the congruence

h=f"'%xg (modyq).

An NTRUSIGN public/private key pair is created in exactly the same way: the
key creator chooses (f,g) and forms h = f~! x g (mod ¢). However, as part of
his private key, the key creator also computes two additional polynomials F' and G
satisfying

fxG—gxF=gq, and [F|,[|G]|=O0(N).

We note that the rotations of (f, g) and (F, G) then form a basis for Ly, see Lemma 2
of Section 5.
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In Section 5 we describe a method for efficiently computing an (F,G) pair for
any given (f, g). More precisely, we show that if f and g are chosen to satisfy

Ifll % eVN and |jg]l ~ VN (4)

for a given constant ¢, then it is possible to find an associated (F,G) satisfying
I1Fll ~ [|G]| ~ eN/V12 ()

For the moment we will assume that the signer has such an (F,G) pair at his
disposal.

3.2. Signing. To sign a digital document D, the signer first hashes D to produce
a message digest m = (my,m2) composed of two random mod ¢ polynomials m;
and ms. In section 4.4 we discuss in more detail the requirements on this hash
function. For now, we assume that it is a randomized mapping that fulfills the
necessary security requirements.

The signature on D is a vector (s,t) € LT that is very close to m. The signer
finds (s,t) by expressing (mj,ms) as a Q-linear combination of his short basis
vectors and then rounding the coefficients to the nearest integer. This standard
method of approximately solving a CVP using a “good basis” of a lattice was
already suggested for use in cryptography by [5].

Algorithmically, this procedure for the NTRU lattice can be described as follows:

e Compute polynomials a,b, A, B € Z[X]/(X"N — 1) by the formulas
Gsxmy —Fxmys=A+qxB,
—gsmi+ frxmy=a+qx*b,

(6)

where a and A are chosen to have coefficients between —¢g/2 and ¢/2.

e Compute polynomials s and t as
s=f*xB+Fxb (mod q), .
t=gxB+Gx+b (mod q). Q

The polynomial s is the signature on the digital document D for the public key h.

Remark 7. In practice, only b and B will be needed to create the signature, and
only s is needed to form the signature. We also observe that (s,¢) is in the NTRU
lattice Ll,jT, since we can write

(s,t)=Bx*(f,9) +bx (F,G) (mod q).

Remark 8. For a polynomial P(X) € Q[X] with rational coefficients, we use the
notation | P] to denote the polynomial obtained by rounding each coefficient of P to
the nearest integer. Then the full signing process may be summarized by the follow-
ing matrix equation, which shows that we are using our short basis {(f, g), (F,G)}
in the standard way to find approximate solutions to CVP:

o= o(pg)=leom (5 T8 o

o (2 8) ] G 8
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Remark 9. Note that a signature on a document D with message digest m =
(my,ms) will also sign m' = (mf, m)}) as long as m’ is sufficiently close to m. This
forces some requirements on the choice of hash function which are discussed further
in section 4.4. Interestingly, the signer can also take advantage of this feature in
the following way. Rather than signing m, the signer perturbs m by a small amount
to obtain m’ and then signs m’ instead. The signature thus generated will still be
valid on m, while the perturbation makes it harder to extract useful information
from a transcript of signatures. Further, the introduction of appropriately gener-
ated perturbations may make transcript analysis many orders-of-magnitude more
difficult. See section 6.6 for some further details.

3.3. Verification. Let s be a putative NTRUSIGN signature for the message di-
gest m = (m1,ms) and public key h. The signature will be valid if it demonstrates
that the signer knows a lattice point in Ll,fT that is sufficiently close to the message
digest vector m. Verification thus consists of the following two steps:

e Compute the polynomial
t=hxs (mod q).

(Note that by definition, (s,t) is a point in the lattice LNT.)
e Compute the (centered) distance from (s,t) to (m1, ms) and verify that it
is smaller than a prespecified value NormBound.
In other words, check that

[|(s = my,t — my)|| < NormBound. 9)

3.4. Why Verification Works. A valid signature demonstrates that the signer
knows a lattice point that is within NormBound of the message digest vector m.
Clearly the smaller that NormBound is set, the more difficult it will be for a forger,
without knowledge of the private key, to solve this problem. It is thus important
to analyze how small we can set the bound NormBound, while still allowing valid
signatures to be efficiently generated by the signer.

From (6) and (7) (or using (8)), we can calculate

fg
(m1,ms) — (s,t) = (A/q a/q) (F G):
We recall that the coefficients of a and A are between —q/2 and ¢/2, and hence
my—s=e *xf+e*xF and mo—t=¢€ *xg+e*G, (10)
where ¢ = A/q and €5 = a/q are polynomials whose coefficients are between —1/2
and 1/2.

As my and ms vary across all mod ¢ polynomials, it is easy to check that A
varies uniformly across all mod ¢ polynomials, so to all intents and purposes, the
coeflicients of €; may be treated as independent random variables that are uniformly
distributed in the interval (—1/2,1/2). Hence on average we have ||e1|| = 1/N/12.
A similar remark applies to a and €9, so also ||ea|| & \/N/12. (See also Remark 14.)

We can now estimate the distance from (s,t) to (mi,m2) using ||e1]| = ||e2|| =
v/N/12 and the quasimultiplicativity of the norm:

2 N?3 12
Jms = s.ma = O = 1S + g + )~ o (142).
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3.5. A Sample Parameter Set for NTRUSIGN. As we will see in subsequent
sections, the following parameter set appears to require at least as much effort to
break as does an RSA 1024 bit key, that is, roughly 10'2 MIPS-years:

(N, q,c) = (251,128,0.45). (12)

Her ¢ is defined by equations (4) and (5). In practice, we choose f and g to be
binary polynomials with f having 73 ones and 178 zeros, and with g having 71 ones
and 180 zeros. (We need f(1) and g(1) to be relatively prime, or else we will not
be able to extend (f, g) to a full basis of LYT.)

The parameters (12) yield a bound of 46601 ~ 215.87% on the right hand side
of (11). This is the average expected distance. Thus it is quite feasible to find
signatures that satisfy a norm bound in (9) of, say, NormBound = 250.

However, in practice it is not necessary to set such a stringent norm bound.
We will see that neither lattice reduction nor other forgery methods are capable of
creating signatures whose norm is much under 400, so NormBound can be set much
higher, reducing the risk that validly generated signatures will fail verification. If
NormBound < 310, the strongest attack on NTRUSIGN is a direct lattice attack to
recover the private key from the public key. This attack has been thoroughly studied
for a number of years, since it is the same as the recovery of an NTRUENCRYPT
private key from its public key. In practice, for N = 251, we take NormBound = 300.

3.6. Prototype timing results. We have functioning prototype implementations
of the signing, verification, and key generation algorithms running in compiled C on
an 800MHz Pentium III processor. With parameters N = 251, ¢ = 128, dy = 73,
and d, = 71 as described above, our program can sign approximately 2000 docu-
ments per second and can verify approximately 3000 documents per second. Key
generation, which has not yet been fully optimized, takes approximately 1.5 seconds
with iteration factor B = 5000 (see Remark 15) to generate a key pair, with the
majority of the time used to compute a vector (F,G) with norm ||(F,G)|| =~ 45. We
expect that the running time of the key generation algorithm can be significantly
reduced.

4. SECURITY ANALYSIS OF NTRUSIGN

It is clear that to forge an NTRUSIGN signature, a forger must be able to produce
a lattice point sufficiently close to the message digest point, i.e., he must solve an
approximate CVP problem in the NTRU lattice. In this section we consider three
ways a forger might try to do this.

First, we consider the difficulty of producing a signature on a message directly
from the public key. That is, we consider the difficulty of producing a pair (s,t) €
LYT satisfying (9) without knowledge of f and g and without the availability of
a transcript of valid signatures. Thus we examine how hard it is to solve CVP in
these lattices within given approximation bounds. The only known approaches to
solving this problem are:

(A) Lattice reduction techniques to locate a close lattice point.

(B) Exhaustive search, i.e., guess a lattice point and hope it is close, or guess a
close point and hope it is a lattice point.

(C) Some combination of (A) and (B).

We analyze each of these in turn.
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Second, we consider attacks that may be made possible by relations between
message representatives. We demonstrate that a hash function that randomly maps
the message into [0,q)” is sufficiently strong to make any such attack infeasible.

Finally, we consider the information that an attacker gains from a long tran-
script of signatures. Over time, this will leak information about the geometry of
the lattice. Our analysis, summarized in this paper and presented in full in [7],
demonstrates that although some additional information becomes available to an
attacker after approximately 10,000 signatures, there are no effective transcript at-
tacks known that require fewer than 10® signatures. In section 4.5 we summarize
the general transcript analysis. In section 4.6 we provide more detail on the infor-
mation that becomes available after 10,000 signatures and show that it does not
appear to provide a realistic avenue of attack.

4.1. Attacking NTRUSIGN Using Lattice Reduction. An obvious way to use
lattice reduction is to try to find a very short nonzero vector in Ll,:]T, since (f, g) and
its rotations are probably the shortest such vectors. With the parameter choice (12),
this problem is identical to the problem of breaking an NTRUENCRYPT public key
with the same parameters. Experiments give an estimated breaking time greater
than 1012 MIPS years for the parameters (12).

Another way to use lattice reduction is to try to directly locate a valid signa-
ture (s,t). This problem is clearly an approximate closest vector problem (appr-
CVP), since the signature (s,t) is required to be a lattice point that is close to a
non-lattice point generated from the digital document via a hash function. It is
generally accepted that for a “reasonably random” lattice, the difficulty of appr-
CVP is measured by the dimension of the lattice and by the expected distance of
a randomly chosen point in space to the closest point of the lattice. The Gaussian
heuristic (3) suggests that the expected distance from a point in space to the closest
point in Ll,:]T is y/Ng/me . Thus a potential forger is presented with a random point
in space and he must locate a point in Ll,fT whose distance to the given point is at
most

NormBound

\/Ngq/me

times the expected distance to the actual closest point of L}YT.

For the particular parameters described in (12), the Gaussian value is \/N¢q/7me =
61.3. Hence setting NormBound = 300 means that the forger needs to find a
point that is no more than 4.89 times the expected shortest distance, while if
NormBound = 225, then this ratio goes down to 3.67. Extensive experiments have
shown that solving this approximate closest vector problem becomes more difficult
as the ratio tends toward 1. In particular, for the suggested parameters (12), solv-
ing this approximate CVP is more difficult than breaking the public key (i.e., than
finding (f, g) directly), even when the ratio is as high as 7.91, which corresponds
to NormBound = 485.

(13)

Remark 10. In the NTRU lattices used in practice, one has ¢ = O(N), typically
%N <g¢g< %N. In this case, one easily sees that the norm bound must satisfy

NormBound = O(N?/?).
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Thus the signer is presented with a random target point in space and his task is to
find a lattice point whose distance from the target point is at most

0 (N2) =0 (m @> .
me

Notice that this last expression is the square root of the dimension of the lattice
multiplied by the expected shortest distance to a lattice vector (as predicted by the
Gaussian heuristic (3)). Thus an NTRUSIGN signature solves appr-CVP up to a
factor of O(v/dim L), but as we have seen, it does so with quite a small constant.
Interestingly, as is shown in the next section, an attacker with no knowledge of the
private key can also solve appr-CVP up to the same factor O(v/dim L), but with a
much larger constant. The security of NTRUSIGN is based upon the fact that as the
constant decreases, all known methods of solving appr-CVP (without knowledge
of the private basis) become exponentially more difficult. This includes the use
of exhaustive or collision searches, lattice reduction methods, or any combination
thereof.

Remark 11. An important issue is whether the (approximate) shortest and closest
vector problems in convolution modular lattices are as difficult as in more general
classes of lattices. This is certainly an interesting question. The principal method
for approximating shortest or closest vectors in a general lattice is the LLL algo-
rithm [17] and its generalizations and enhancements such as [14, 15, 16, 24, 25, 27].
The evidence to date is that there are no special algorithms for convolution modu-
lar lattices that work significantly better than standard LLL-type lattice reduction
algorithms (although see [18] for work in this area), and lattice reduction algo-
rithms do not appear to work better on convolution modular lattices than they do
on general lattices.

4.2. Attacking NTRUSIGN Using Exhaustive Search. To analyze the diffi-
culty of using an exhaustive search to forge an NTRUSIGN signature, we first observe
that an integer point chosen at random in space has only a ¢~ probability of being
in L. A more effective method for attempting to solve appr-CVP in a convolution
modular lattice Ly, and thus to forge an NTRUSIGN signature, was noted indepen-
dently by Craig Gentry, Jakob Jonsson and Jacques Stern (see [3]). They observe
that an attacker may preselect half of the coefficients of s and t to have any desired
values and then solve

t=hx*xs (mod q)

for the remaining N coefficients. This creates a point (s,t) in the lattice Ly, half
of whose coordinates are freely chosen by the attacker. Of course, the other N co-
ordinates will generally be randomly and uniformly distributed modulo gq.

Thus the attacker can easily create a lattice point (s, t) so that half of the coordi-
nates of the difference (my,ms) — (s, t) vanish, and the other half are independently
uniformly distributed modulo ¢. The probability of success of this approach is thus
measured by the probability that the sum of the squares of N integers chosen ran-
domly and uniformly from the interval [—q/2,q/2] is less than NormBound?. It is
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surprisingly hard to obtain a precise estimate for this probability.! The following
elementary upper bound will suffice for our purposes.

Proposition 1. Let Q be a finite set of real numbers, let ¢ = #Q, let X1,..., XN
be independent random variables that are uniformly distributed on Q, and let Y =

VX + -+ X%. Then for all A>0 and all t > 0,
N
Prob(Y < A) < et ( Se > .

z€Q
In particular,

Prob(Y < A) (‘[ See N/W)

q z€Q

Proof. We estimate the number of points in the sphere ||x|| < A that have coordi-
nates chosen from the set Q. Thus

#{xe Qx| <Ay < Y M forant > o,
x€QN

N
2
t (Z e ® t) ]
z€Q

Since the coordinates of x are chosen independently and uniformly in the set Q, we
have
#{x € QN : x| < A}
#ON
which completes the proof of the first part of the proposition.
The second estimate follows from the first estimate by setting t = N/2A42. O

Prob(||x|| < A4) =

We apply the proposition with the parameters
N =251, ¢=128, Q={-64,-63,...,63}.

The results are listed in Table 1. It is clear from examining the table that even
if NormBound is chosen as large as 380, the chances of a successful forgery by this
method are negligable.

Remark 12. The analysis given in Proposition 1 is only an approximation, because
it uses the standard norm, rather than the centered norm. However, this makes
only a small difference, because for the vast majority of random mod g vectors,
the average value of the coefficients will be very small. A rigorous mathematical
analysis is fairly complicated, so we use the following experiment to illustrate. We
computed 10000 random mod ¢ vectors with N = 251 and ¢ = 128, and for each
vector we computed the standard norm and the centered norm. Table 2 shows that
there is only a small difference. Since Proposition 1 is an upper bound and since we
have chosen parameters so that this upper bound is far smaller than is necessary,
the small effect of using centered norms instead of standard norms does not affect
our security estimates.

1One might think that this problem could be easily solved by esimating volumes. The difficulty
is that one must compute the volume of the intersection of an N-sphere of radius R with an N-
cube of side 2B, where B < R < BV N. Thus some parts of the sphere stick out of the sides of
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| A | Upper Bound for Prob(|[x]| < 4) |

300 2—178.44
310 27166.69
320 27155.36
350 2—123.72
380 2-95.33
400 2778.10
420 2762.09
480 2-2076

TABLE 1. Upper Bound for Forgery Probability — NV = 251, ¢ = 128

| || Minimum | Mean | Maximum || Standard Deviation |
Standard Norm 515.013 | 585.478 | 642.626 16.5245
Centered Norm || 513.174 | 584.244 | 640.476 16.5747

TABLE 2. Comparison of Standard Norm and Centered Norm

Remark 13. The upper bound in Proposition 1 can be slightly improved by applying
the functional equation of the classical theta function. The result is as follows, we
omit the proof.

aN/2 AN
Prob(||x|| < 4) < T 1 N/2) . <q> (1+0(1)). (14)
4.3. Attacking NTRUSIGN by Combining Lattice Reduction with Ex-
haustive Search. There remains the possiblity of combining the two methods.
Thus a forger could preselect somewhat fewer than N coordinates and use lattice
reduction techniques on a lower dimensional lattice to find the remaining coordi-
nates. Thus suppose that a forger preselects a/N coordinates of s and ¢ for some
choice of 0 < a < 1. He then uses lattice reduction techniques on a lattice of
dimension (2 — a)N and determinant ¢™(**+®) to make the remaining (1 — a)N
coordinates as small as possible. Notice that & = 0 corresponds to pure lattice
reduction and o = 1 corresponds to pure exhaustive search. As « increases, the
fundamental ratio (cf. (13))

NormBound
(2—a)N
2Te

decreases, and when it passes below 1, the Gaussian heuristic says that it is very
unlikely for any solutions to exist. Table 3 gives the largest allowable value of o and
the corresponding lattice dimension for various values of NormBound. For example,
NormBound = 300 gives a value of a = 0.3835, which corresponds to a lattice of
dimension 407. Thus a lattice reduction attack cannot hope to be reduced below
dimension 407 (down from 502). Further, as the dimension is reduced towards 407,

- q+e)/(2-0)

the cube. Fortunately, for our applications it suffices to use the entire volume of the sphere as an
upper bound for the volume of the intersection.
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| NormBound | a | Lattice Dim |

300 0.3772 407
310 0.3835 405
320 0.3895 404
350 0.4062 400
380 0.4213 396
400 0.4305 393
420 0.4392 391
480 0.4624 385
TABLE 3. Minimum Usable Lattice Dimension — N = 251, ¢ = 128

the advantage gained from the reduction in dimension is at least partially eliminated
due to the decrease in the Gauss ratio.

4.4. Hash Function Requirements. The hashing of the document D to produce
a message digest m = (mj,m2) is actually a two stage process. First a standard
secure hash function H; is applied to D to give an output H; (D) consisting of S bits
for an appropriate choice of 5. (Typical choices would be 8 = 160 or 8 = 256. In
any case, # should be sufficiently large so as to make it infeasible to search a set
containing 26/ elements.) Next a (public) function

H, : (Z.)22)° — (Z.]qZ)*N

is applied to H; (D) to yield the message digest m = Hy(H;(D)). The function Hs
should map the 27 possible H; hash values in a reasonably uniform manner into
the set of ¢?V possible message digests.

One point that must be examined carefully is the possibility that two points m
and m’' in the image of H = H» o H; might be very close together. Two potential
attacks arise here.

First, if a very close pair exists and if the signer can be induced to sign the
corresponding digital documents D and D', then there is a small, but nontrivial,
possiblity that the difference of the signatures s — s’ is a small element of the
underlying lattice, which might reveal the private key. In practice, experiments
have shown [23] that if m and m/' differ by one bit, there is a 5% chance that s — '
is a rotation of the private polynomial f. Thus the existence of documents D and D’
having small difference m —m' could endanger all NTRUSIGN implementations using
a common mapping H. We refer to this as a “key recovery attack”, because it
enables the attacker to recover the private key.

Second, if m and m’ are close together, but not so close that they endanger the
private key, then there is still a chance that a valid signature s on m will also be a
valid signature on m’. This is true because

lls = m'|| & V/[ls = ml|? + [[m — m/||2.

An attacker who can obtain the signature of m can then fraudulently present it as
the signature of m’. We refer to this as a “collision attack”, because it corresponds
to attacks based on finding collisions in hash functions.
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We now consider each attack in turn and explain why it is highly unlikely that
there is even a single useful (to the attacker) pair of documents D and D’, and thus
why neither potential attack is of practical significance.

First, let us consider then the probability that two points m and m' are suffi-
ciently close to each other to enable the key recovery attack. To simplify compu-
tations (and aid the attacker), we make the assumption that my = 0, so m has the
form m = (0,m2). Thus the map H> has the form

H, : (Z./27)° — (Z./q7)N.
We identify (Z/qZ)" with the set of N-tuples
(Z/qZ)N = {(a'la"'aaN) € ZN : _Q/2 <a; S Q/2} - ]RNa

and we will suppose first that the mapping H- is close to uniform with respect to
the usual measure on RY . For u,u' € (Z/27)", we will use the notation m = Ho(u)
and m' = Hy(u'). We compute

#{(u,u) € (2/22)° : |m —m'|| < B} < 22% - Prob(|jm — m'|| < B)
< 928 Volume of an N-ball of radius B

Volume of an N-box of side ¢
N 4B 71'N/2 <E> N
T TA+N/2)\q)
For example, taking N = 251 and ¢ = 128 as usual, we find that when 8 = 160 and
(coincidentally) B = 160, the expected number of bad pairs (u, u') is less than 2731,
In other words, if Hs is reasonably uniform, there is virtually no chance that there
are any pairs sufficiently bad to endanger the private key.

Second, we consider the resistance of a random mapping H> to collision attacks.
The measure of this resistance is the number of points that need to be generated
by this mapping before there is a chance of greater than 50% that two image
points exist within a distance By, of each other. This can be done by a similar
easy calculation as follows. Consider where a mapping H» can place a succession of
points. The first point can go anywhere. So long as the second point is at least Beon

from the first point, there is no collision. The third point needs to avoid (at worst)
two balls of radius Beoy- Continuing with this reasoning, we find:

Prob(no collision on

—~

n + 1)st random point)

1k Volume of an N-ball of radius By
Volume of an N-box of side ¢

s

<

k=0

=

/2 Beon N
1-k-0), WhereC—F(1+N/2)< . ) ,

k=0

n
~1-— Z k-C, assuming that C < n,
k=0

_C-n2
2

~1
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In order for the probability of collision to be %, therefore, we have the familiar
birthday paradox formula:

TA+N/2) [ ¢ \V?
> = .
neon 2 V1/C =\ =57 <Bco11

For example, taking (N, ¢, NormBound) = (251,128, 300), we find:

Avg(Beon) = \/NormBound2 — Avg(||ls — m||)?

= /3002 — 215.872

= 208.32,
giving
Neon(Ha, N, g, NormBound) > 9152

If we instantiate H; with a standard hash function such as SHA-1, neon (H;) = 28°.
The collision-resistance of a random H, is therefore more than suitable for the
expected security of the system.

In summary, the probability that a given public mapping contains in its image
two points m = Hs(u) and m' = Hs(u') that are close enough to one another to
risk compromising the private key is extremely small. Further, even if our aim is
simply to prevent collisions that allow a signature on one message to be presented
as a signature on another, a random mapping into [0, g — l]N is sufficiently secure
for our purposes.

Finally, we note that the proposed attacks assume that all signers are using the
same public function H;. The potential gain to an attacker from inverting Hj
can be further reduced by appending the public key of the signer to the digital
document before calling the function H; and/or including the public key as an
additional argument in the public function Hs.

4.5. Transcript Analysis. In this section we analyze what information an at-
tacker gets from each signed message. Recall that the difference between the sig-
nature vector and the message digest vector is a short vector of norm at most
NormBound. The signature vector is a lattice vector, while the message digest vec-
tor is a random point in Z?" mod ¢q. We view a transcript as the list of differences
(my,msy) — (s,t), each of which is a short vector.

(1) Since we are assuming that the message digest is created using a hash
function that behaves as a random oracle, an active attacker (one who asks
for signatures for chosen messages) will have no more information than a
passive one (one who only analyzes a transcript of signed messages).

(2) If the signature difference vectors were uniformly distributed on (or in) a
sphere of radius NormBound, then a transcript would yield no useful infor-
mation for solving appr-CVP.

The second point is a very strong statement and deserves some justification.
Essentially it is true because an attacker can himself create a transcript of this
form. He simply chooses random lattice points ai,as, ..., chooses random vec-
tors 71,72, . .. of length equal to (or less than) NormBound, and takes as his transcript
the “signatures” ai,as, ... on the “message digests” ai + r1,a2 + 72, .. ..
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Thus under the assumption (2), if an efficient algorithm exists for solving appr-
CVP using a transcript, then an efficient algorithm exists for solving appr-CVP
that does not require a transcript (which is believed not to be true).

Taking the above two points into consideration means that the only transcript
information that an attacker can attempt to exploit is due to the fact that our
signature differences are not randomly distributed on (or within) a ball of radius
NormBound.

As we noted in Section 3.4, the method that we are using to solve appr-CVP
using our good basis (f, g) and (F,G) leads to the equation

(mum) = (1) = W/asafa) (1 4). (15)

where A and a are mod ¢ vectors with coordinates chosen between —q/2 and ¢/2.
More precisely, they are determined by the congruences

A=Gx*m; —Fxmy (mod q), (16)
=—g*mq+ fxmy (mod q).
It is clear from (16) that as my and ma vary over all mod ¢ vectors, the value of A
will vary uniformly over all mod ¢ vectors, and similarly for a.

Remark 14. Tt is not true that a and A are independent of one another. In fact, it
is easy to check that

f*A=—-Fxa (mod q), (17)

So for a given (f, F'), we see that a determines A, and vice versa. This is not a
security issue, since the congruence (17) is simply a restatement of the fact that
the formula for m; — s in (15) has integer coefficients.

The information that an attacker can obtain from a transcript is a collection of
polynomials

A
s—mp=—xf+ Y% F not reduced modulo q,
q q

where the coefficients of A and a are random mod ¢ polynomials subject to the
relation (17). (This is the information from s; similar information about g and G is
obtained from ¢.) Thus a transcript may be viewed as a collection of polynomials

61*f+62*F,

where the coefficients of €; and e; are more-or-less randomly distributed in the
interval [—1/2,1/2]. Equivalently, a transcript is a random collection of points
in a (centered) fundamental domain for the NTRU lattice spanned by the basis
vectors (f,g) and (F,QG).

Taking a simple average of a collection of signatures is not useful, since the
average will be zero (or some other simple expression that reveals no useful in-
formation). However, there are other ways to take averages that introduce higher
moments. The subject of moment averaging attacks was discussed in [9, 11, 12],
and it is natural to ask what success similar attacks would have in this context.

A useful tool in studying moments is the notion of the reversal ¢(X) := ¢(X 1)
of a polynomial ¢(X). More precisely, the product of a polynomial with its reversal
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will often have a nontrivial average. We denote this product by

N-1 ,N—1
eX)=c(X)*e(XY) = Z < ciciJrk)Xk.
k=0 =0
Since the coeflicients of ¢(X) involve products ¢;c;1, the polynomal ¢(X) is a second
moment polynomial. Similarly, its square ¢(X)? is a fourth moment polynomial.
The first piece of information available to an attacker from a long transcript of
signatures s(X) is the average of the second moment polynomials s —my. Notice

that these second moment polynomials are equal to
s—my =(e1*ft+e*xF)x(E xf+eéxF)
=G xf+é&xF+texé*fxF+exéxfxF.

As the number of signatures in the transcript goes to infinity, it turns out that ¢;
and € (essentially) approach constants. Further, and somewhat curiously, the cross
terms in this expression (essentially) average out to zero, despite the fact that €;
and ey are not independent. Hence by averaging the second moment polynomials
over a sufficiently long transcript, an attacker may be able to recover the quantity

f+F=fxf+FxF. (18)

Experiments indicate that in order to reconstruct this value, using either direct or
lattice assisted averaging, it is necessary to compile a transcript consisting of 10,000
signatures, and possibly substantially more.

However, the quantity (18) does not appear to provide sufficient information to
either obtain the private key or to forge a signature. This is because (18) combines
information about the two quantities f and F', and there is no known way to directly
untangle them. See Section 4.6 for some further comments on this problem.

Thus an attacker needs to go further and use fourth moment polynomials. As
observed by Coppersmith in the case of [11] and independently noted by Gentry
and Szydlo for NTRUSIGN [4], a transcript long enough to yield accurate limiting
averages of fourth power moments should contain enough information to compro-

mise the private key. In fact, the limiting value of an average of (s/—R)Q is a
very complicated expression involving a linear combination of the three quantities
f2, }%2’ and f « F. If this limiting value can be determined sufficiently accurately,
then it can be combined with the value of (18) to separate and recover f and F.
Finally, the attacker would apply a method of Gentry and Szydlo [4] to fand fxh
to recover f in polynomial time.

Note that in order for this attack to proceed, it is necessary to obtain the limit-

ing average value of (s/—El)2 quite closely. And it is clear that averages of these
fourth moment polynomials will converge quite slowly. In [11] it was remarked that
a transcript length of 100 million was certainly far too short. More extensive exper-
iments and a more refined analysis, detailed in [7], has confirmed that a practical
attack would require more than 100 million signatures. (There are potentially some
further problems to overcome having to do with taking of square roots; see [7] for
details. If an attacker cannot take the correct square root, the transcript length
required appears to be considerably longer even than this.)

We would like to thank Craig Gentry and Mike Szydlo for pointing out that
the fourth moment analysis needed to be extended and included in the present
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discussion. They also suggested some possible variations on second moment attacks
by restricting to subtranscripts where the norms (or coefficients) of signatures meet
certain boundary conditions. We have investigated this approach; it appears to have
worse characteristics than fourth moment attacks, and thus to require transcripts
of similar length.

4.6. Gram matrices. Recall (18) that the quantity

f +F= fxf+FxF
can be obtained from a successful second moment attack on an unperturbed tran-
script. (See section 6.6 for remarks on perturbations.) The analogous expression
built from (g, G) can also be obtained, and after multiplication by h and reduction
modulo ¢ the cross terms g * f + G * F and g * f + G x F' can be obtained. Let

extra variables k, K be defined by g = fxh+ kq and G = F x h+ Kq. The private
information available only to the signer can be summarized in two secret matrices:

_(f g _ (K -k
s=(r &) v=(% 7)

where fxG —g+xF=qand Kx f —k*xF = 1.
For a matrix A with coefficients in R, let A* denote the conjugate transpose of

A. Then the public information after a successful second moment attack is given
by

cta_ a1y (fxf+FxF gxf+GxF
SS_M_(g*f+G*F gxg+ GG

and by
UU'=HM *H?,

where H is the matrix corresponding to the public key:

-3

Note that SS* and U'U are not revealed.

Let the Gram matrix corresponding to A be defined as Gram(A4) = AA?!. The
question of extracting information available from a successful second moment attack
thus translates into the following problem, which we call the Gram Factorization
problem:

Let A be as above. How difficult is it to recover A from knowledge of its Gram
matrix Gram(A4) = AA!?

One way of looking at this problem is to view it as a generalization of the problem
solved in [4]. In that paper, knowledge of a basis for an ideal (f) generated by a
secret f and knowledge of f % f is shown to be sufficient to recover f (up to
rotation and sign) in polynomial time. Here H = US would play the part of (f)
and M = S*S would play the part of f * f. Thus the problem has a similar form.
However, the technique of [4] relies heavily on the fact that polynomials in R have
representations as N by N circulant matrices, and these matrices commute with
eachother. The corresponding objects here are non-commuting 2/NV by 2N matrices.
This appears to present a significant obstacle to generalizing the method of [4] to
this context.
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We can also look directly at the system of equations that must be solved in
integers to recover the secret information. Let a, b, c,d € R satisfy

axd—bxec=1. (19)
Suppose that the quantities
axa+bxb, axc+bxd, axc+bxd, cxé+dxd (20)

are known. How difficult is it to find (a, b, ¢, d)?
A first observation is that the relation (19) and the four quantities (20) are not
independent. An obvious relation is

axc+bxd=axc+bxd
s0 (20) really only gives three values. A less obvious relation is given by the formula
(axa+bxb)(cxé+dxd) = (axd—bxc)(axd—Dbxc)+ (axc+bxd)(axc+bxd).

Thus (19) and (20) really only contain two independent pieces of information and
we can rephrase the problem as follows.
Let r, s € R and suppose that the simultaneous equations

TxZ+yrw=r, ZxZ+wWxW =35, rrw—yxz=1 (21)

have a solution (z,y, z,w) = (a, b, c,d) € R*. How difficult is it to find a solution?
If we embed the ring R into the larger ring

R[X]
(XN =1)

and identify R} with RV, then the equations (21) for the Gram Factorization
Problem describe a certain subvariety of R*Y. The Gram Factorization Problem is
then equivalent to finding a point in this variety having integer coordinates. Thus
it appears that any method of solving these equations must rely heavily on number
theoretic properties of R.

For each fixed pair (r,s) € Rg, the three equations (21) define an affine variety
in R*V. We denote this variety by V, that is,

Rp =

V={(z,y,z,w) e R™WN :xxi+yxw=r, zxitwsxw=s zrw—y*z=1}

The equations defining V' appear to be nonlinear, but we can find a linear relation
by eliminating one of the variables, for example by eliminating z. To do this, we
use the identity

(zxZ+w*xw)xy— (z*xZ+y*xwW)xw+Z*x(xxw—yx*xz)=0
and substitute in the values given by (21) to obtain
sxy—rxw+Z=0. (22)

This says that the variety V lies in the plane defined by the linear equation (22),
but of course it is not equal to that entire plane. What we find is that V' can be
defined by the equations

V={(y,z,w) ERS :sxy—r*xw+2=0, zxZsr+wxw=1}.

The first equation shows that V lies in a vector subspace of dimension 2N inside
the vector space RV . The second equation is also quite interesting, but it is highly
nonlinear.
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Using the linear relation (22), we can formulate an SVP problem that will (prob-
ably) solve Gram Factorization. Suppose that r,s € R are given. We consider the
lattice L,s generated by the rows of the following matrix, where as usual we can
either work over R or we can express everything in terms of circulant matrices and

work over Z.
r 0 1
=11 5)

The lattice L,s has dimension 2N. Its determinant is given roughly by

Det(L,s) ~ /det(r)2 + det(s)2 + det(r — s)2.

Here det(r) means the determinant of the circulant matrix associated to 7, or
equivalently, the absolute value of the image of r under the map

N-1
R—17, aX)— [] a(¢).
i=0

Let (z,y,z,w) = (a,b,c,d) € R* be the solution to the Gram Factorization
Problem that we are seeking. Multiplying the matrix of L, on the left by (d,b),
we see that the lattice L, contains the vector

t=(¢,—b,d) € L,s.
We will call t the target vector. The length of t satisfies

where A\qauss(Lrs) denotes, as before, the length of the expected shortest vector in
L, as predicted by the Gaussian heuristic. Thus we see that the target vector is
probably the shortest vector in the lattice. The factor of 1/v/N means that t bears
roughly the same relationship to the length of the expected shortest vector in L,
as the target does in the usual NTRU lattice of dimension 2.

We have performed experiments using LLL to extrapolate the block size and
length of time necessary for lattice reduction techniques to locate the target t. The
lattice L,s; appears to be more difficult to reduce than the usual NTRU lattice,

which is reasonable as the constant in the O (1 VN ) relation is rather large. The

predicted breaking time with this approach significantly exeeds 10*2 MIPS years.

It should be noted that the attacker has a further piece of information. He knows
that within the 2N-dimensional lattice L,s, the sought for short vector lies on the
subset defined by the nonlinear equation

zZ 4+ ww = 1. (23)

(In terms of the coordinates, this is really N nonlinear equations in the 2V variables
(204 .-+, ZN—1,W0, ..., wn—_1). Thus in principle, he only needs to work on the N-
dimensional variety given by the intersection of the lattice hyperplane and the
set (23). However, it is generally considered to be a very difficult problem to find
integer points on nonlinear sets of high dimension, and in particular, there is no
known way to take signficant advantage of nonlinear information in lattice reduction
algorithms such as LLL.
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5. A SAMPLE METHOD FOR GENERATING NTRUSIGN KEYS

In this section we show how to generate the keys necessary for the signing al-
gorithm, i.e., how to find two vectors whose rotations form a basis for the NTRU
lattice. It is important to note that we will describe only one of several ways to
find such vectors. It is a current research problem to make this process as efficient
as possible.

In the following we consider 2 x 2 matrices with entries in the ring Z[X] or
Z[X]/(XN — 1), where it will be clear from context which ring we are using. The
determinant of such a matrix is then an element of Z[X] or Z[X]/(X" —1). Our
goal is to take a given top row for the matrix and to find a bottom row so that the
determinant is equal to g.

To achieve this goal, we suppose that we are given two polynomials f and g. For
example, f and g might be binary polynomials having d; and d, coefficients equal
to one, respectively, and the remaining coefficients equal to zero. Let Fy,G; € Z[X]
be such that the matrix

_(f g
M, = ( F1 G1> (24)
is unimodular over Z[X]/(X"N — 1), i.e.,
det(My)=f*Gy —g+xFi =1 (mod X —1). (25)

We will use resultants to find such an F; and G4, but we note that this is certainly
not the only way, nor even the most efficient way, to find F; and G;.
We begin by using standard methods to find polynomials u,v € Z[X] satisfying

fro+k (XN —1) = Ry, (26)
g*xu+kyx (XN —1)=R,, (27

)
where R; and R, are the (integer) resultants of (f, X" — 1) and (g, X" — 1)
respectively. The resultant of f can be straightforwardly calculated as Hf\;l F(XH
modulo the cyclotomic polynomial ¢(N) =1+ 2 + 22 + ... + 2N L.

Assuming that the resultants Ry and R, are coprime, we then apply the (integer)
extended Euclidean algorithm to obtain integers a and [ satisfying

aRy + R, = 1.
Combining these relations gives the formula
(aw) * f + (Bu)xg=1 (mod XV —1).

Hence as long as gcd(Ry, R,) = 1, we have found polynomials F; = —fu and G1 =
av so that the matrix My defined by (24) satisfies the unimodularity condition (25).

If the resultants are not coprime, then one can choose different f and g. It is
also possible to rapidly perform initial tests on f and g to check if it is likely that
their resultants might not be coprime. One important observation is that f(1) will
divide Ry and g¢(1) will divide Ry, so a necessary condition for gcd(Rys, Ry) = 1 is
that

ged(f(1),9(1)) = 1.

We also observe that if N is prime and if p is a prime satisfying p = 1 (mod N),
then

NN
Prob(p divides Ry) ~ 1 — <1 - 5) .
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In particular, if p = 2V + 1 is prime, then Ry and R, each have approximately
a 39.3% chance of being divisible by p, so it may be worthwhile to check that at
least one of them is not divisible by 2N + 1 before proceeding with the rest of the
calculation.

Once we have a unimodular matrix (24), it is a trivial matter to get any deter-
minant we want, since we may multiply the second row by a constant. Thus to
produce a matrix with determinant ¢, we set

Fy=qF and G, = qGy

and form the matrix 5
_ g
M, = <Fq Gq> . (28)

det(M,)=f+xG, —g«F, =q. (29)

Proposition 2. The rows of the matriz M, defined by (28) generate the NTRU
lattice Ly associated to h, that is, they generate the same lattice as the rows of the

matrix L
(1
M = (O q).

Here h = f~' % g (mod q) in Z[X]/(XN — 1) as usual.

Then

Proof. 1t suffices to show that the transformation matrix H = M'M ! has determi-
nant 1 and that H has entries in Z[X]/(X™ —1). We know det(M,) = det(M') = g,
so det(H) = 1. Next we compute

=G0 &) -GG )
(o o) (& 70

:<G1—F1*h (—g+f*h)/q>
—qF f
It is clear that this last matrix has entries in Z[X]/(X™ —1), since fxh = g (mod q)

by construction. Thus H is a unimodular transformation matrix, so the rows of M,
and M’ generate the same lattice. O

The rows of the matrix A, generate the NTRU lattice Lp, but they are not
useful for directly finding close vectors, because the resultant construction leads to
polynomials F, and G, whose coefficients are very large. We will make (F,,Gy)
smaller by reducing the centered norm (2).

The key to reducing the norm of the second row of M, is to observe that we
may alter it by any multiple of the first row, since this doesn’t change the lattice
generated by the rows. The polynomials f and g are already very small, and their
centered rotations are reasonably orthogonal to one another, and so this reduction
works quite well. (One may view this process as solving appr-CVP with a partial
good basis.)

To explain how this reduction works and measure its effectiveness, we reuse some
information from the earlier resultant computation (26,27). We begin with the first
column of M,. We would like to subtract a multiple k£ * f of f from F, to make
it small. The “inverse technique” for solving appr-CVP says to take k ~ F, * f~1,
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where f~! is the inverse of f in Q[X]/(X~ —1). Using the resultant relation (26),
we see that

_ u

7= 2 e QX (XN - 1),
f

so we set k = |u/R;]. That is, k € Z[X]/(X™ — 1) is obtained by rounding the
coefficients of u/R; to the nearest integer. With this choice of k, we set F =
F, — k=« f. Then F satisfies

F:Fq—k*f:Fq—LFq*fflw*f:(Fq*ffl—LFq*f’l'D*f:ef*f,

where €, has coefficients in the interval [-1/2,1/2]. Further, the coefficients of ¢
will be more-or-less uniformly and independently distributed within this interval,
so on average we have ||es|| ~ \/N/12. Hence

N
Fl|| ~ . =] —.
IEN = flesll - A= 1171/ 15

This shows that we can make the lower lefthand entry of A/, small, but we want
to simultaneously do the same thing for the lower righthand entry. In other words,
we want to subtract a multiple of g from G, to get a small result. The problem
is that if we replace Fj, with F, — k % f, then we are required to replace GG, with
G4 — k x g, and we must use the same k. On the other hand, we know that the
“right” k to use for G, is k = G, * g~'. It turns out that the right k for F, and the
right k for G, are almost equal to one another. To see why this is true, we divide
the relation (29) by f * g, which yields

Go _Fo, 0
g f [fxg
Hence the difference between G, * g=! and F, x f~! has size approximately

Gy Fy q

-
g f Fxgll 1If11- Mgl
For practical sets of parameters (12), this quantity is equal to 2.49, which means

that on average, the coefficients of G,*g~! and F, * f~* differ by 0.157. Combining
the results of this section, we have proven the following result:

Proposition 3. Let f,g € Z[X]/(XY —1) and h = f~ ! % g (mod q) be as usual.
Let F,,G, € Z[X]/(XN — 1) satisfy

fxGg—gxFy=q.
Set

2

Then the rows of the matriz

—1 -1
k:{Fq*f TGurs 1 F=F,~k«f G=G,—kxg (30

vt 2)

generate the NTRU lattice Ly, and F' and G have norms

N N
Fl|| ~ — =] —.
1P~ I 5 16~ lglly/ 35
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Remark 15. The size of the private basis determines how well we can solve the
approximate CVP. For this reason, it is useful in practice to further subtract mul-
tiples of (f, g) from (F,G) to try to reduce the norm. We thus perform a last stage
of reduction by testing, for i = 0,1, 2, ..., B, whether the vector

(F.G) = X"*(f,9)

is smaller than (F,G). If it is, we replace (F, G) by this smaller vector and continue.
Note that we may find improvements even with B > N, since the modifications
made by the subsequent values of ¢ may mean that a previously used value of i is
again able to reduce the norm.

Remark 16. The resultant calculation yields a large vector (F, G). We have made
this vector much smaller by modifying it using the formulas given in (30). This
corresponds to treating F' and G separately. In practice, one obtains a smaller result
by treating them together, although this does require some additional resultant
calculations. We omit the derivation and simply note that the desired value for k
is
b= { f-F+g: GW
ff+g9l

where f and § denote the reversals of f and g, that is f(X) = f(X~1) and §(X) =
g(xX 1.

6. OPTIMIZATIONS AND ENHANCEMENTS

In this section we discuss various methods that can be used to make NTRUSIGN
even more efficient. Some of these methods have security implications, so they must
be anaylzed with care before being used in any particular application.

6.1. Reduced message digest. Rather than use message digests of the form
(m1,msz) it turns out to be more efficient to use ones of the form (0,m). In this
section we explain the basic properties of the NTRU lattice that mean that such a
change has no detrimental impact on security; indeed it may be preferred.

Thus we ask whether a transcript of signatures on message digests of the form
(0,m) might leak more information that signatures on arbitrary points (m1,ms).
The key observation is to note that if (s,t) is an NTRUSIGN signature on a point
(my,ms), then for any lattice point (z,y), the lattice point (s+z, t+y) is a signature
on the point (m; + =, ms + y). Taking

(may) = _(mlaml * h mod q):

we see that any signature can be transformed into a signature on a message digest
of the form (0,m). Thus signing message digests of the form (0,m) provides no
more information to the attacker than does signing general message digests of the
form (mq,ms).

We also observe that although the space of pairs (mj,ms) has size ¢*V, the
corresponding set of pairs (a, A) that determine the signature only has size ¢",
as explained in Remark 14. Using message digests of the form (0,m) means that
the message digests are in one-to-one correspondence with the signatures that are
created using a given basis (f, g, F, G).
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6.2. Product forms for message digests and keys. For the original NTRU
public key cryptosystem, significant efficiency gains can be achieved by taking some
polynomials (e.g., m, f,g) to be products of several sparse binary polynomials,
see [13]. Such an approach clearly reduces the search space, but if implemented
properly, it appears to give an attacker no other advanatge. Of course the search
space must be designed to be large enough to defeat meet-in-the-middle attacks.

In a similar way, it is possible to increase the efficiency of NTRUSIGNby taking
certain polynomials to be products. For example, one might take f, g and/or m to
be products of sparse binary polynomials.

6.3. Computation of centered norms with mod ¢ reduction. When com-
puting the centered norm of a “small” mod ¢ vector, it is important to center the
vector properly. Thus for example, the verifier only knows ¢ modulo ¢, and if the
center of the true t (i.e., the correct value of ¢ not reduced mod ¢) is near to ¢/2
or —¢/2, then the centered norm will not be correct unless the coefficients of ¢ are
shifted before being reduced modulo g. There are two ways to do this. An ineffi-
cient way is to look at all of the shifts of ¢, reduce each one modulo ¢, and check
which one gives the smallest norm. A better approach is to find the largest string
of consecutive values mod ¢ that do not appear as coefficients of ¢, and shift ¢ so
that the middle of this string becomes —q/2. A third approach would be to use the
fact that one knows the values of various polyomials at X = 1 to deduce where the
centering value should lie. This third approach is the one used in NTRUENCRYPT
during the decryption process.
The following is a practical definition of [|¢||, where we assume q is even.

e Compute kK = N~ x#(1) + £ (mod ¢) with 0 < & < ¢, where N~ is the
inverse of N modulo gq.
e Create a new polynomial ¢ with integer coefficients by the rule

- t; if t; <k,
Y Mt +q ift >k

e Define the centered mod q norm of t to be ||t]| = ||7]|-

6.4. Ensuring Valid Signatures. Because signatures lie in a parallelopiped whose
longest diagonal is greater than NormBound, it is theoretically possible for a validly
generated signature to fail the verification test. The chance of this happening
appears extremely small: from experiments, extrapolating results from a set of
1,000,000 signatures and using NormBound = 300, the chance of failure ranges from
10~!2 with |F, G| = 45 to 107!8 with |F, G| = 40.

For greatest efficiency, a signer may choose to accept this small probability of
verification failure. Alternatively, the signer may use the following or a similar
algorithm to generate signatures:

(1) Initialize the counter ¢ to 0.

(2) Compute the hash h of the document using function H;.

(3) Generate (mq,my) using function Hs with input (h||c), “||” denoting con-
catenation.

(4) Generate the signature (s,t) on (my,ms2).

(5) Attempt to verify the signature (s, t). If verification succeeds, output s as
the signature. If it fails, increment ¢ by 1 and go to step 3.
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Even if ¢ is only a single byte long, this modified signature generation makes
the chance of failure negligibly small. The price paid is an additional verification
operation when signing. We anticipate that implementors will decide themselves
whether or not to include this additional check depending on application-specific
requirements.

6.5. Using the transpose lattice. If one uses the product optimization in Sec-
tion 6.2, then a further optimization may be possible by a simple modification of
the key generation algorithm described in Section 5. The idea is to use the trans-
pose of the matrix of determinant q. The advantage is that we can choose f and g
to have product structures, but we cannot force Fj, and G, to be products. Note
that we still end up with a public key i and the usual NTRU lattice Ly in Hermite
Normal Form.

In the earlier construction, we ended up with a basis consisting of one very
short vector (f,g) and one moderately short vector (F,G). In this new transpose
construction, we will obtain a basis (f, F') and (g, G) in which the two basis vectors
are about the same size, but their first coordinates are short and their second
coordinates are larger. Given such a basis, it would be natural to weight the norm
so as equalize the contributions of the two halves.

More work needs to be done examining the security of this new lattice, but
there are clear efficiency gains from using it. There may also be advantages for
security, since appr-CVP can be solved better with a “square” basis than with a
“rectangular” basis. However, we note that in the transpose lattice the quantities
on the left hand side are smaller than in the NTRU lattice case, and so averages
over these quantities will tend to converge faster. It might be possible to overcome
this problem by perturbing the message to be signed, as described in Section 6.6;
however, this requires further analysis.

6.6. Perturbations of m. We have seen that although a transcript of 10 to
20 thousand signatures will reveal some lattice information via the use of second
moments, the most effective known attack exploiting that information is at least
as hard as the original NTRU Lattice Key Problem. We now describe a simple
modification in the signing technique that, at a small efficiency cost, appears to
eliminate both the linearity and the matrix product structure from any second
moment, transcript analysis.

The method involves perturbing m and depends on our earlier observation that a
signature (s,t) on m will also sign all nearby points. The signer begins by choosing
a short (secret) vector w = (w1, wsz) and storing it as part of his private key. Then
the signer modifies the signing process as follows:

(1) Compute the vector m = (my,ms) as usual.

(2) Choose a random short vector r = (rq,r2) satisfying r (1) = r2(1) = 0.

(3) Let z = (z1,22) = (r1 *w1, 79 *w2) and compute the signature (s, t) for the

vector m + z.
If » and w are short, say so that ||z|| = O(v/N), then it is easy to check that the
signature (s,t) on m + z will also be a signature for m.
Now consider what information is revealed by averaging the second moments of

a transcript. The transcript consists of sample vectors of the form

erxfrepxF4+rixw; and e;xg+eqg* G+ 7o *ws.
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The first moments yield no information (since 71(1) = r2(1) = 0 and the rs are
randomly chosen). The second moments yield quantities of the form

cx(fxf+FxF)+coxwyxw; and ¢ x(g*g+ G xG) + ¢y xwy * Do

analogous to those described in Section 4.6, where ¢; and ¢o are known constants.
The appearance of the extra unknown quantities w; and w, means that the attacker
does not recover a Gram matrix. Thus even if it is possible to effectively solve the
Gram Factorization Problem, this method precludes its use in a second moment
attack.

Of course, if the attacker can compute fourth moments sufficiently accurately,
then he can eliminate w; and ws from the above equations. But we have seen that
fourth moment averages converge extremely slowly. And in order to directly extract
(say) f * f from the transcript, the attacker would actually need to compute sixth
moments.

Finally, we remark that the idea described in this section can be considerably
generalized, or otherwise altered to improve efficiency. A simple generalization is
to take several vectors w,w’,w"”,... and sign m+r*w +r' xw' +r" xw"” +---. In
full generality, one could select z from a large collection of vector-valued random
variables with the property that the moments of z conceal the lattice-information
revealed by the average moments of a transcript of signatures. Ideally, one would
like the signature vectors to be uniformly distributed on a sphere. It is not possible
to do this exactly, and possibly not even arbitrarily closely (remember that the z
vectors cannot be too long), but even a partial approximation to a sphere could
greatly reduce the effectiveness of transcript analysis.

7. HISTORY OF NSS

In this section we briefly review the history of an earlier digital signature scheme,
called NSS, that was based on NTRU lattices. We do so to illustrate how a flawed
method of attaching the digital document to the signature led to serious weaknesses
in NSS, and to explain how the direct and straightforward linkage of NTRUSIGN
signatures to the underlying appr-CVP differentiates NTRUSIGN from NSS and
frees it from the weaknesses of the the earlier scheme.

The NSS encoding method, as described at Eurocrypt 2001 [9], embedded the
digital document directly into the signature via the use of auxiliary congruence
conditions modulo a small prime p. It was discovered indepedently by Gentry,
Jonsson, and Stern (see [3]) that weakness in this encoding method could be used
to directly forge signatures without knowledge of the private key. At the same time,
Szydlo (also described in [3]) found another way to exploit congruence conditions
that allowed him recover the key from a long transcript of valid signatures.

The source of these weaknesses was an incomplete linking of the NSS method
with the (approximate) closest vector problem in the NTRU lattice. More precisely,
a signature exhibited a solution to a closest vector problem in the following sense:
a point in space was associated to a message digest and a point in the NTRU
lattice was constructed, using a knowledge of the private key (a short vector in the
lattice), that was reaonably close to the message digest point. To be accepted as
a valid signature a lattice point had to be sufficiently close to the message digest
point and its coordinates had to satisfy certain statistical properties modulo the
auxiliary prime p.
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In [9] the specified distance was small enough to rule out forgery by lattice
reduction methods, but not small enough to rule out forgery by a different approach.
This approach, of Gentry, Jonsson, and Stern, also succeeded in bypassing the mod p
statistical condition. In addition, Szydlo noted that the specific method by which
the signature point was created allowed secret key information to be extracted from
a long transcript of signatures by analysis of certain frequency distributions.

At the presentation of [9], the authors described how simple modifications to the
encoding technique eliminated the possibility of attacks from these directions. In
particular, the relation between the signature point and the message digest point
was tied far more closely to the closest vector problem, effectively eliminating any
possibility of direct forgeries. However, a somewhat ad hoc method was still used
to force the signature point to satisfy the necessary mod p statistical properties.

At the rump session of Crypto '01, Gentry and Szydlo presented a result (since
published as [4]) demonstrating that a transcript of valid signatures produced by
the modified NSS method still leaked enough information to effectively cut the key
size in half. They also described a method that potentially exploited the leaked
information to recover the full key in polynomial time. Their method exploited a
weakness in the specific method by which an NSS signature vector was constructed
from the message digest and the private key. A special form was imposed on the
NSS private key f and public key h which allowed (approximate) CVP to be solved
quickly and efficiently. However, this meant that the signature was closely related
to a product f *w. Gentry and Szydlo succeeded in recovering f xw and a related
product f * f from the signature, and knowledge of these two products gave them
sufficient information to recover f in polynomial time.

The principle upon which NSS was based was very simple. The signer has private
knowledge of short vectors in the NTRU lattice. Given an arbitrary point in space
arising from a message digest, the signer uses this knowledge to find a point in the
NTRU lattice close to the message point. He then exhibits this solution to the
approximate CVP as his signature (cf. the GGH scheme [5]).

The weaknesses of NSS arose from the fact that the signer did not possess a
complete basis of short vectors for the NTRU lattice Ll,jT. Instead he possessed
knowledge of one short 2/ N-dimensional vector (f, g) whose rotations spanned half
the lattice. Because his knowledge was only partial, the signer created a rather
weak solution to the approximate CVP by a specific construction. The non-general
nature of this construction opened the door to the attacks described earlier.

In direct contrast to NSS, the link in NTRUSIGN between the signature and the
underlying appr-CVP is clear and direct. The private (f,g) vector of a general
NTRU lattice is first used to construct a complete short basis for the lattice. A
message digest is then mapped to an arbitrary point in 2/ N-dimensional space. The
signature is a lattice point that is very close to the message digest point and is
found in a generic way using the full basis of short vectors for the NTRU lattice.
Thus the signature provides a direct and very sharp answer to the general (approx-
imate) closest vector problem in the NTRU lattice. There are no additional tests
to perform, no auxiliary mod p conditions to verify. Verification consists simply of
checking that the signature point is in the NTRU lattice and that it is within the
required distance of the message digest point.
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