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Abstract

We generalize to the bidisc a theorem of Garnett and Jones relating the space BMO

of functions of bounded mean oscillation to its martingale counterpart, dyadic BMO.

Namely, translation-averages of suitable families of dyadic BMO functions belong to

BMO. As a corollary, we deduce a biparameter version of a theorem of Burgess Davis

connecting the Hardy space H
1 to martingale H

1. We also prove the analogues of the

theorem of Garnett and Jones in the one-parameter and biparameter VMO spaces of

functions of vanishing mean oscillation.
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1 Introduction

Garnett and Jones [GJ] introduced a method for obtaining decomposition theorems for

the space BMO of functions of bounded mean oscillation by a reduction to the dyadic

space BMOd, involving averaging over the translations of a family of functions. Specifically,

they concluded the following theorem.

Theorem 1 (Garnett–Jones). Suppose that α 7→ ϕα is a measurable mapping from R
m

to the space BMOd(R
m) of functions of dyadic bounded mean oscillation such that all ϕα(x)

have support a fixed dyadic cube, such that ‖ϕα‖d ≤ 1 and such that

∫
ϕα(x) dx = 0.

Then

ϕN(x) :=
1

(2N)m

∫

|αj |≤N

ϕα(x + α) dα

is in BMO(Rm) and ‖ϕN‖∗ ≤ C.

In this paper we work in the setting of the circle T, and later the bidisc T ⊗ T, rather

than R
m. For instance, in the circle setting the object of interest is the translation-average

ϕ(x) :=

∫ 1

0

ϕα(x+ α) dα

of a family of BMOd(T) functions. Here x + α is to be understood as x+ α mod 1.

Theorem 1 (unnumbered in [GJ]) follows implicitly from a stopping-time argument in

their proof of a theorem of Carleson. We present in Section 3 a proof, for the circle, which

does not require a stopping-time argument. Our method, together with Journé’s lemma,

allows us to prove a biparameter version of Theorem 1 for the Chang–Fefferman space of

BMO functions on the bidisc (Theorem 2). We also prove similar results for the VMO spaces

of functions of vanishing mean oscillation on the circle and on the bidisc. As a corollary of

Theorem 2, we obtain a biparameter version (Theorem 6) of a theorem of Davis [D], namely

that almost every translate of an H1 function belongs to dyadic H1.
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The inherent difficulty in working with the multiparameter BMO and VMO spaces is the

structure (or rather, the lack of structure) of the open sets. In the one-parameter setting

open sets reduce to unions of disjoint intervals, but an open set in R
2 has no canonical

decomposition in terms of collections of disjoint rectangles. However, the geometric decom-

position in Journé’s lemma can permit a reduction to rectangles for certain estimates, and

for ours in particular.

The paper is organized as follows. We recall some definitions (Section 2) and give a proof

of the BMO result on the circle (Theorem 2 in Section 3). We prove the analogous result

for VMO in Section 4. In Section 5 we prove the averaging result in the setting of BMO of

the bidisc, as well as the generalization of Davis’s theorem to H1 functions on the bidisc.

Section 6 contains our proof of the averaging theorem for VMO of the bidisc.

We thank Sergei Treil for helpful conversations about Davis’s theorem.

2 Definitions

A real-valued function f ∈ L1(T) is in the space BMO(T) of functions of bounded mean

oscillation on the circle if its BMO norm is finite:

‖f‖∗ := sup
I⊂T

1

|I|

∫

I

|f(x) − (f)I | dx <∞.

Here (f)I := (1/|I|)
∫

I
f(x) dx is the average value of f on the interval I, and the circle T

is the interval [0, 1] with endpoints identified. Dyadic BMO of the circle, written BMOd(T),

is the space of functions which satisfy the corresponding estimate where the supremum is

taken over all I ∈ D, where D = D[0, 1] is the collection of dyadic subintervals of [0, 1]. The

dyadic BMO norm of f is denoted ‖f‖d.

We use a characterization of the dyadic BMO functions on the circle in terms of the size
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of Haar coefficients. The Haar function associated with the dyadic interval I is

hI(x) :=





|I|−1/2, if x ∈ Il;

−|I|−1/2, if x ∈ Ir;

0, otherwise.

As usual Il and Ir are the left and right halves, respectively, of the interval I. The Haar

coefficient over I of f is

fI = (f, hI) :=

∫

I

f(x)hI(x) dx,

the Haar series for f is

f(x) :=
∑

I∈D

(f, hI) hI(x),

and the L2-norm of f is

‖f‖d,2 =
∑

J∈D

(f, hJ)2.

It follows from the John–Nirenberg Theorem [G, p.230] that for each p ≥ 1, for f ∈ L1(T)

the expression

‖f‖d,p := sup
I∈D

(
1

|I|

∫

I

|f(x) − (f)I |
p dx

)1/p

is comparable to the dyadic BMO norm ‖f‖d.

In particular, a function f ∈ L1(T) of mean value zero is in BMOd(T) if and only if there

is a constant C such that for all I ∈ D,

∑

J⊂I,J∈D

(f, hJ)2 ≤ C|I|. (1)

Moreover, the smallest such constant C is equal to ‖f‖2
d,2.

Note that since the sum in (1) ranges over dyadic intervals only, there is no need to

restrict the interval I itself to be dyadic. Here the notation J ⊂ I includes the case J = I if

I is dyadic; we will also use the notation
∑

J⊆I and
∑

J⊃I for clarity.

A function is in BMO if and only if it satisfies (1) with a continuous wavelet expansion

replacing the Haar series. When we define BMO on the bidisc, we will make use of the

particular representation employed in Chang–R. Fefferman [CF1980].

4



On the bidisc T ⊗ T, we have an expansion of functions in terms of a double Haar series

f(x) =
∑

R∈D⊗D

(f, hR)hR(x),

where R denotes a dyadic rectangle R = I × J and hR = hI ⊗ hJ .

Definition 1 (Dyadic product BMO). A function f ∈ L1(T⊗T) belongs to BMOd(T⊗T)

if there exists a constant C such that for every open set Ω,

∑

R⊂Ω,R∈D⊗D

(f, hR)2 ≤ C|Ω|. (2)

See [B], and also [BP] for equivalent definitions.

We now define BMO on the bidisc, recalling first the concept of the Carleson region

associated to an open set. For an interval I, the associated Carleson box in the upper half-

plane is T (I) := I × (0, length(I)). For a rectangle R = I × J , the associated Carleson box

in the product upper half-plane is T (R) := T (I) × T (J). For an open set Ω in the bidisc,

define T (Ω) :=
⋃

R⊂Ω T (R).

Let ψ(x) be a smooth function supported on [−1, 1] with mean value zero, and define

the usual dilation ψy(x) := y−1ψ(x/y) for y > 0. In what follows we write x = (x1, x2),

y = (y1, y2), and t = (t1, t2), and abbreviate the product ψy1
(x1)ψy2

(x2) by ψy(x). Thus for

f defined on the bidisc, the expression f ∗ ψy(x) denotes the iterated convolution

f ∗ ψy1
(x1)ψy2

(x2) =

∫∫
f(x1 − t1, x2 − t2)ψy1

(t1)ψy2
(t2) dt1dt2.

When the function ψ is radial and satisfies the additional property

∫ ∞

0

|ψ̂(t)|2
dt

t
= 1,

one has the Calderón–Torchinsky representation for f ∈ L2:

f(x) =

∫∫
f ∗ ψy(t)ψy(x− t)

dt1dt2dy1dy2

y1y2
.

See [CF1980]. This representation in turn leads to a wavelet expansion of f , by decomposing

the product upper half-plane into disjoint dyadic regions corresponding to top halves of
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Carleson boxes. Specifically, if for I dyadic of length |I| we set I+ = I × (|I|/2, |I|), and for

R = I × J we set R+ = I+ × J+, then

f(x) =
∑

R∈D⊗D

∫∫

R+

f ∗ ψy(t)ψy(x− t)
dt1dt2dy1dy2

y1y2
.

The following definition, from [C], therefore gives the (continuous) wavelet analogue BMO

of BMOd.

Definition 2 (Product BMO). A function f belongs to BMO(T ⊗ T) if there exists a

constant C such that, for all open sets Ω, the Carleson-measure condition holds:

∫∫

T (Ω)

|f ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2
≤ C|Ω|. (3)

We defer the definitions of VMO(T), VMOd(T), VMO(T ⊗ T), and VMOd(T ⊗ T) to

Sections 4 and 6.

3 BMO(T) from averaging BMOd(T)

We give a proof of the Garnett–Jones theorem on the circle T.

Theorem 2. Suppose that ϕα ∈ BMOd(T) for each α ∈ [0, 1], α 7→ ϕα is measurable, and

the BMOd norms of the functions ϕα are uniformly bounded: there is a constant Cd such

that

‖ϕα‖d ≤ Cd

for all α ∈ [0, 1]. Suppose also that

∫

T

ϕα(x) dx = 0 for all α ∈ [0, 1].

Then the translation-average

ϕ(x) :=

∫ 1

0

ϕα(x+ α) dα

is in BMO(T).
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Proof of Theorem 2. Using the Haar expansions of the functions ϕα, we write the translation-

average ϕ(x) as

ϕ(x) =

∫ 1

0

ϕα(x + α) dα =

∫ 1

0

∑

I∈D

(ϕα, hI) hI(x + α) dα

=

∫ 1

0

∑

n∈N

∑

I∈Dn

(ϕα, hI) hI(x+ α) dα

=
∑

n∈N

∫ 1

0

∑

I∈Dn

(ϕα, hI) hI(x+ α) dα

=
∑

n∈N

∫ 1

0

ϕα
n(x + α) dα

=
∑

n∈N

ϕn(x).

Here Dn := {I ∈ D
∣∣ |I| = 2−n} for n ∈ N, and we have set

ϕα
n(x) :=

∑

I∈Dn

(ϕα, hI) hI(x)

and

ϕn(x) :=

∫ 1

0

ϕα
n(x+ α) dα =

∫ 1

0

∑

I∈Dn

(ϕα, hI) hI(x + α) dα.

Fix an interval Q ⊂ T, not necessarily dyadic. Let N be the unique non-negative integer

such that

2−N−1 < |Q| ≤ 2−N .

We split the sum, at the scale of |Q|, into two parts ϕA and ϕB in which the dyadic intervals I

are respectively small and large compared with Q:

ϕ = ϕA + ϕB, ϕA(x) :=
∑

n:2−n<|Q|

ϕn(x), ϕB(x) :=
∑

n:2−n≥|Q|

ϕn(x).

To prove that ϕ belongs to BMO, it suffices to show that there are constants CA and CB

independent of Q, and a constant cQ depending on Q, such that

1

|Q|

∫

Q

|ϕA(x)|2 dx ≤ CA, (4)

1

|Q|

∫

Q

|ϕB(x) − cQ| dx ≤ CB. (5)

7



We begin with inequality (4). The left hand side is

−

∫

Q

|ϕA(x)|2 dx = −

∫

Q

∣∣∣∣
∑

n:2−n<|Q|

∫ 1

0

ϕα
n(x + α) dα

∣∣∣∣
2

dx

≤

∫ 1

0

−

∫

Q

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x + α)

∣∣∣∣
2

dx dα. (6)

Fix an α ∈ [0, 1]. We shall provide a uniform estimate of the α-integrand in the last line

of inequality (6). Let Qα := Q−α be the translate of Q to the left by α. So 2−N−1 < |Qα| ≤

2−N . Now Qα may be covered by at most two adjacent dyadic intervals Q1, Q2 of length

|Q1| = |Q2| = 2−N , so that |Q1 ∪Q2| ≤ 4|Qα|. We obtain

1

|Q|

∫

Q

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x + α)

∣∣∣∣
2

dx

=
1

|Qα|

∫

Qα

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x)

∣∣∣∣
2

dx

≤
1

|Qα|

∫

Q1∪Q2

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x)

∣∣∣∣
2

dx

=
|Q1 ∪Q2|

|Qα|
−

∫

Q1∪Q2

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x)

∣∣∣∣
2

dx

≤ 2 −

∫

Q1

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x)

∣∣∣∣
2

dx+ 2 −

∫

Q2

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x)

∣∣∣∣
2

dx.

The interval Q1 is dyadic and the functions ϕα are uniformly bounded in BMOd, so as

in our discussion of equation (1) there is a constant Cd independent of Q1 such that for all

α ∈ T
∑

I⊂Q1,I∈D

(ϕα, hI)
2 ≤ Cd |Q1|. (7)

Therefore

−

∫

Q1

∣∣∣∣
∑

n:2−n<|Q|

ϕα
n(x)

∣∣∣∣
2

dx =
1

|Q1|

∥∥∥∥
∑

I∈D(Q1)

(ϕα, hI)hI

∥∥∥∥
2

=
1

|Q1|

∑

I∈D(Q1)

(ϕα, hI)
2

≤ Cd.
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Applying the same argument to Q2 and integrating over α ∈ [0, 1], we obtain inequality (4).

We turn to inequality (5). Recall that Q is a fixed interval in the circle T, not necessarily

dyadic. Also

ϕB(x) =
∑

n:2−n≥|Q|

ϕn(x).

Fix a point x0 ∈ Q. For instance, let x0 be the left endpoint of Q. Let

cQ := ϕB(x0) =
∑

n:2−n≥|Q|

ϕn(x0).

Then, writing Iα := I − α when I ∈ Dn, we have

−

∫

Q

|ϕB(x) − cQ| dx = −

∫

Q

∣∣∣∣
∑

n:2−n≥|Q|

∫ 1

0

∑

I∈Dn

(ϕα, hI)
[
hI(x + α) − hI(x0 + α)

]
dα

∣∣∣∣ dx

≤
∑

n:2−n≥|Q|

−

∫

Q

∣∣∣∣
∫ 1

0

∑

I∈Dn

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα

∣∣∣∣ dx. (8)

We must show that this last expression is bounded by some CB, independent of Q. Let

gn(x, x0) :=

∫ 1

0

∑

I∈Dn

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα.

For fixed x ∈ Q, x0 ∈ Q, the expression hIα
(x) − hIα

(x0) will be zero for many values of α.

We have |x − x0| ≤ |Q| ≤ |I|. We consider two cases: (i) when |x − x0| ≤ |I|/2, and (ii)

when |I|/2 < |x−x0| ≤ |I|. In case (i), the expression hIα
(x)−hIα

(x0) can only be non-zero

in two situations. First, hIα
(x) − hIα

(x0) is non-zero when α is such that the midpoint of

Iα falls between x and x0. This happens exactly when α lies in a particular interval, call it

Ax,x0,I, of length |x − x0|. Second, hIα
(x) − hIα

(x0) is non-zero when one of the endpoints

of Iα falls between x and x0. This happens exactly when α lies in a set, call it Bx,x0,I ,

consisting of the union of two intervals each of length |x − x0|. In the first situation, the

value of |hIα
(x) − hIα

(x0)| is 2|I|−1/2, and in the second situation it is |I|−1/2. In short,

|hIα
(x)− hIα

(x0)| ≤ 2|I|−1/2 when α ∈ Ex,x0,I := Ax,x0,I ∪Bx,x0,I , and |hIα
(x)− hIα

(x0)| = 0

for all other α. Here |Ex,x0,I | ≤ 3|x− x0|.
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In case (ii), |I|/2 < |x−x0| ≤ |I|, and so x and x0 never fall in the same half of Iα. Then

hIα
(x)−hIα

(x0) can only be non-zero when α lies in one single interval, call it Ex,x0,I , of length

|Ex,x0,I| = |I|+ |x− x0| ≤ 3|x− x0|. When α ∈ Ex,x0,I, we have |hIα
(x)− hIα

(x0)| ≤ 2|I|−1/2

as in case (i).

We also note the following estimate on Haar coefficients of BMOd functions: for each

α ∈ T and for each I ∈ D,

|(ϕα, hI)| |I|
−1/2 ≤ −

∫

I

|ϕα(x) − (ϕα)I | dx ≤ ‖ϕα‖d ≤ Cd, (9)

where Cd is the uniform bound on the dyadic BMO norms of the functions ϕα.

Now we can estimate |gn(x, x0)|, using inequality (9) in the last line:

|gn(x, x0)| =

∣∣∣∣
∫ 1

0

∑

I∈Dn

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα

∣∣∣∣

=

∣∣∣∣
∑

I∈Dn

∫ 1

0

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα

∣∣∣∣

=

∣∣∣∣
∑

I∈Dn

∫

Ex,x0,I

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα

∣∣∣∣

≤
∑

I∈Dn

∫

Ex,x0,I

|(ϕα, hI)|

∣∣∣∣
[
hIα

(x) − hIα
(x0)

]∣∣∣∣ dα

≤
∑

I∈Dn

∫

Ex,x0,I

|(ϕα, hI)| 2 |I|
−1/2 dα

≤ 2n · 2 · Cd · 3|x− x0|. (10)

Therefore, using inequalities (8) and (10), we obtain

−

∫

Q

|ϕB(x) − cQ| dx ≤
∑

n:2−n≥|Q|

−

∫

Q

|gn(x, x0)| dx

≤
∑

n:2−n≥|Q|

−

∫

Q

6 · 2n · Cd · |x− x0| dx

= 6Cd

∑

n:2−n≥|Q|

2n −

∫

Q

|x− x0| dx

≤ 6Cd

∑

n:2−n≥|Q|

2n |Q|

2

≤ 6Cd.
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This proves inequality (5), and hence Theorem 2.

4 VMO(T) from averaging VMOd(T)

In this section we define the space VMO(T) of functions of vanishing mean oscillation on the

circle, and the corresponding dyadic space VMOd(T). Then we state and prove the averaging

theorem for VMO, namely that translation-averages of suitable VMOd(T) functions belong

to VMO(T).

The space VMO was introduced by Sarason in [S]. A function belongs to VMO if its BMO

norm goes to zero uniformly as the intervals shrink to zero, or equivalently if the function

belongs to the closure of the continuous functions C∞
0 in BMO.

Definition 3 (VMO). A function f ∈ BMO(T) belongs to VMO(T) if for each ε > 0 there

exists a δ such that for all intervals I with |I| < δ,

1

|I|

∫

I

|f(x) − (f)I | dx ≤ ε|I|.

Definition 4 (Dyadic VMO). A function f belongs to VMOd(T) if for each ε > 0 there

exists a δ such that the BMO norm of

∑

J∈D,
|J |<δ

(f, hJ)hJ(x)

is at most ε.

Theorem 3. Suppose that the functions ϕα satisfy the hypotheses of Theorem 2 and in

addition belong to VMOd(T) uniformly: for each ε > 0 there is a δ such that for all α ∈ [0, 1],
∥∥∥∥

∑

|J |<δ,
J∈D

(ϕα, hJ)hJ(x)

∥∥∥∥
∗

≤ ε.

Then the translation-average

ϕ(x) :=

∫ 1

0

ϕα(x+ α) dα

is in VMO(T).
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Proof. The proof follows the same lines as that of the BMO result: we split ϕ into two

functions, one corresponding to the part of the expansion over small intervals (this part has

small BMO norm), and the remaining function which is controlled by averaging. Fix an

ε > 0. For this ε, we have on hand a δ that is guaranteed by the uniform VMO condition

on the functions ϕα. Pick a large N = N(ε, δ) satisfying 2−N < δ. We aim to find a K such

that if |Q| < 2−K then
1

|Q|

∫

Q

|ϕ(x) − (ϕ)Q| dx ≤ ε.

Split ϕ = ϕ1 + ϕ2 where

ϕ1(x) :=

∫ 1

0

∑

I∈D,
|I|<2−N

(ϕα, hI)hI(x + α) dα

and

ϕ2(x) :=

∫ 1

0

∑

I∈D,
|I|≥2−N

(ϕα, hI)hI(x+ α) dα.

We claim that for |Q| < 2−K and K sufficiently large,

1

|Q|

∫

Q

|ϕ1(x) − (ϕ1)Q| dx ≤ ε. (11)

To see this, fix such a Q and make a further split of ϕ1 as in the proof of Theorem 2:

ϕ1 = ϕ1,A + ϕ1,B, where

ϕ1,A(x) =

∫ 1

0

∑

I∈D,
|I|≤2−K

(ϕα, hI)hI(x + α) dα

and

ϕ1,B(x) =

∫ 1

0

∑

I∈D,
2−K<|I|<2−N

(ϕα, hI)hI(x+ α) dα.

Then exactly the same argument as in the BMO situation proves that

1

|Q|

∫

Q

|ϕ1,A(x)|2 dx ≤ 2ε

as long as 2−K < δ.
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Now, following the argument of equation (8) and with the same notation, we have

1

|Q|

∫

Q

|ϕ1,B(x) − cQ| dx ≤
∑

n:2−K<2−n<2−N

1

|Q|

∫

Q

|gn(x, x0)| dx

where cQ =
∑

n:2−K<2−n<2−N ϕn(x0).

As before, |hIα
(x)−hIα

(x0)| ≤ 2|I|−1/2, while the difference is only nonzero for α ∈ Ex,x0,I ,

and |Ex,x0,I | is approximately |x− x0| and therefore bounded by 2−K. Note that

|gn(x, x0)| ≤

∫

Ex,x0,I

∑

I∈Dn

|(ϕα, hI)|2|I|
−1/2 dα,

and this expression is bounded by C2nε|x− x0|, since 2−n < δ. Thus

1

|Q|

∫

Q

|ϕ1,B(x) − cQ| dx ≤
∑

n:2−K<2−n<2−N

C2nε
1

|Q|

∫

Q

|x− x0| dx

= Cε
∑

n:2−K<2−n<2−N

2n |Q|

2

≤ Cε|Q|
K∑

n=N

2n

= Cε.

This completes the proof of (11).

To estimate ϕ2(x), for cQ =
∑

n≤N ϕn(x0) we have

1

|Q|

∫

Q

|ϕ2(x) − cQ| dx ≤
∑

n≤N

1

|Q|

∫

Q

|gn(x, x0)| dx

and |gn(x, x0)| ≤ C2n|x− x0|. Thus

1

|Q|

∫

Q

|ϕ2(x) − cQ| dx ≤ C
∑

n≤N

2n|Q|

≤ C2−K
∑

n≤N

2n

≤ C2−K2N ≤ ε,

if K is chosen sufficiently large.

13



5 BMO(T ⊗ T) from averaging BMOd(T ⊗ T)

We work on the bidisc T⊗T; in other words on [0, 1]× [0, 1] with appropriate faces identified.

Theorem 4. Suppose that ϕα ∈ BMOd(T⊗T) for each α = (α1, α2) ∈ [0, 1]× [0, 1], α 7→ ϕα

is measurable, and the BMOd norms of the functions ϕα are uniformly bounded: there is a

constant Cd such that

‖ϕα‖d ≤ Cd

for all α ∈ [0, 1] × [0, 1]. Let x = (x1, x2). Suppose also that

∫
ϕα(x) dx = 0 for all α ∈ [0, 1] × [0, 1].

Then the translation-average

ϕ(x) :=

∫ 1

0

∫ 1

0

ϕα(x + α) dα

is in BMO(T ⊗ T).

In [J1985], Journé defined a wide class of multiparameter Calderón–Zygmund singular

integrals, and proved a T (1) theorem characterizing boundedness of these operators. His

geometric observations were synthesized into a covering lemma for open sets in R
2 [J1986],

which was extended to open sets in R
n, n > 2, in [P]. For several recent variants of Journé’s

lemma, see [CLMP] and the references therein.

We begin with some definitions.

Definition 5 (Dyadic rectangles in Ω). Let Ω be an open set in T⊗T. From now on, let

D (rather than D ⊗D as used earlier) denote the collection of dyadic rectangles R = I × J

in T⊗T, where I and J are dyadic intervals in T. For a dyadic interval I, let 2I denote the

dyadic parent of I. Define the subcollections M1(Ω) and M2(Ω) of D to be the collections

of dyadic rectangles in Ω which are maximal in the first and second components respectively:

M1(Ω) := {R = I × J ∈ D
∣∣ I × J ⊂ Ω but 2I × J 6⊂ Ω },

M2(Ω) := {R = I × J ∈ D
∣∣ I × J ⊂ Ω but I × 2J 6⊂ Ω }.

14



We use the notation M to denote the strong maximal operator:

Mf(x) := sup

{
1

|R|

∫

R

f(x) dx

∣∣∣∣ R ∈ D, x ∈ R

}
.

If Ω is an open set in T ⊗ T, Ω̃ denotes the following enlargement of Ω:

Ω̃ :=

{
MχΩ >

1

2

}
.

Thus Ω ⊂ Ω̃, and there is a constant C such that |Ω̃| ≤ C |Ω| for all open Ω ⊂ T ⊗ T.

Later we will also consider enlargements of enlargements:

˜̃
Ω :=

{
MχeΩ >

1

2

}
.

Definition 6 (Fk). To each rectangle R = I × J in M2(Ω) we associate a natural number

k = k(R) ∈ N ∪ {0} as follows. Let 2kI denotes the unique dyadic interval of length 2k|I|

that contains I, and set

k(R) := the largest nonnegative integer such that 2kI × J ⊂ Ω̃

and

Fk = Fk(Ω) := {R = I × J ∈ M2(Ω)
∣∣ k(R) = k}.

In other words, R = I × J ⊂ Ω is in Fk if I × J̃ 6⊂ Ω and k is the unique integer such

that 2kI × J ∈ M1(Ω̃). Each R ∈ M2(Ω) lies in exactly one Fk, so M2(Ω) can be written

as the disjoint union

M2(Ω) =

∞⋃

k=0

Fk.

Theorem 5 (Journé’s Lemma). Let Ω be an open set in T⊗T. Then there is a constant C

such that
∑

R:R∈M2(Ω),
R∈Fk

|R| ≤ Ck|Ω|.

Let

M(Ω) := M1(Ω) ∩M2(Ω)

denote the dyadic rectangles in Ω which are maximal in both directions.
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Definition 7 (Gl). For l ∈ N, define

Gl = Gl(Ω) := {R = I × J ∈ M2(Ω)
∣∣ for the unique k such that R ∈ Fk, l is the largest

nonegative integer such that 2kI × 2lJ ⊂
˜̃
Ω}.

Then M2(Ω) can also be written as the disjoint union

M2(Ω) =

∞⋃

l=0

Gl.

As a corollary of Journé’s lemma, we have an analogous result for the sets Gl.

Proposition 1 (Journé’s Lemma for Gl). Let Ω be an open set in T ⊗ T. Then there is

a constant C such that
∑

R:R∈Gl

|R| ≤ Cl|Ω|.

Proof of Proposition 1. Writing R = I × J , we see that

∑

R:R∈Gl

|R| =
∑

k

∑

R:R∈Gl∩Fk

|R|

=
∑

k

∑

R:R=I×J∈Gl∩Fk

2−k|2kI × J |.

The inner sum is over a collection of distinct rectangles R, and the rectangle R′ = 2kI × J

belongs to M1(Ω̃). But more than one R can lead to the same rectangle 2kI × J ∈ M1(Ω̃).

Specifically, fix R′ = 2kI × J . For each dyadic subinterval Î of 2kI of length I, if Î × J ∈

M2(Ω), then the rectangle R = Î×J gives rise to R′ again. These are the only rectangles R

that can lead to R′, so there are at most 2k rectangles R in Fk that can give rise to a given

R′ = 2kI × J . Now, letting

Ml,k(Ω̃) := {R′
∣∣ R′ ∈ M1(Ω̃), R′ ∈ Gl(Ω̃), R′ = 2kI × J and I × J ∈ Fk},

we obtain

∑

k

∑

R:R=I×J∈Gl∩Fk

2−k|2kI × J | ≤
∑

k

∑

R′:R′∈Ml,k(eΩ)

2−k2k|R′|

≤ Cl|Ω̃| by Journé’s lemma

≤ C ′l|Ω|,
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as required.

Proof of Theorem 4. To show that the translation-average ϕ of the BMOd functions ϕα is

in BMO, it suffices to show that there is a constant C such that for all open sets Ω in the

bidisc T ⊗ T ∫∫

T (Ω)

|ϕ ∗ ψy(t)|
2 dt1 dt2 dy1 dy2

y1y2
≤ C|Ω|, (12)

where t = (t1, t2), y = (y1, y2), ψy(t) = ψy1
(t1)ψy2

(t2), ψ̂ has sufficient decay at the origin,

and T (Ω) is the union of those regions T (R0) such that R0 ∈ M(Ω).

For α = (α1, α2) ∈ [0, 1] × [0, 1], let

Rα = Iα1
× Jα2

:= (I − α1) × (J − α2)

be the α-translation of the dyadic rectangle R = I × J .

Note first that

ϕ ∗ ψy(t) =

∫ 1

0

∫ 1

0

∑

R:R∈D

(ϕα, hR) hRα
∗ ψy(t) dα.

Now hRα
∗ ψy(t) =

[
hIα1

∗ ψy1
(t1)

] [
hJα2

∗ ψy2
(t2)

]
is nonzero only if

Rα ∩
(
Iy1

(t1) × Iy2
(t2)

)
6= 0,

since Iy1
(t1) := [t1 − y1, t1 + y1] = suppψy1

(t1 − ·).

We split the integral over the Haar series into two parts: the part involving ϕ(1) that

sums over those rectangles Rα contained in
˜̃
Ω, and the part involving ϕ(2) that sums over

the remaining rectangles. Set

ϕ(1) ∗ ψy(t) :=

∫ 1

0

∫ 1

0

∑

R:Rα⊂
eeΩ

(ϕα, hR) hRα
∗ ψy(t) dα.

Then equation (12) with ϕ replaced by ϕ(1) holds by L2-theory. That is, because ‖ϕα‖d ≤ Cd

for all α, we obtain the estimate

∫∫

T (Ω)

∑

R:Rα⊂
eeΩ

|(ϕα, hR) hRα
∗ ψy(t)|

2 dt1 dt2 dy1 dy2

y1y2

≤
∑

R:Rα⊂
eeΩ

(ϕα, hR)2 ≤ C|Ω|,
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and the bound is unchanged when we integrate in α.

Set

ϕ(2) := ϕ− ϕ(1).

Since T (Ω) =
⋃
{T (R0)

∣∣ R0 ∈ M(Ω)}, to show that equation (12) holds for ϕ(2) it suffices

to show that
∑

R0:R0∈M(Ω)

∫∫

T (R0)

|ϕ(2) ∗ ψy(t)|
2 dt1 dt2 dy1 dy2

y1y2
≤ C|Ω|.

We use Journé’s lemma for this.

Fix k and l and a rectangle R0 ∈ Fk ∩ Gl, so that 2kI × 2lJ ⊂
˜̃
Ω. Consider the quantity

∫ 1

0

∫ 1

0

∑

Rα:Rα 6⊂
eeΩ,

Rα∩3R0 6=0

(ϕα, hR) hRα
∗ ψy(t) dα.

(Note that for each Rα in this sum, we have Rα ∩ 3R0 6= ∅, since Iy1
(t1)× Iy2

(t2) ⊂ 3R0.) At

this point, we would like to argue that if the integral is nonzero, then either

|Iα1
| > 2k|I0| or |Jα2

| > 2l|J0|,

or both.

In fact this is only true if in fact we are summing over those rectangles Rα not contained

in a (further) enlargement of
˜̃
Ω, obtained by doubling the size of rectangles contained in

˜̃
Ω

about their centers. To avoid introducing more notation, we’ll assume that
˜̃
Ω has been

so enlarged. Then, it suffices to estimate over each of the following four subcollections of

rectangles:

Case (i): |Iα1
| > 2k|I0| but |Jα2

| ≤ 2k|J0| ;

Case (ii): |Iα1
| > 2k|I0| and |Jα2

| > 2k|J0| ;

Case (iii): |Jα2
| > 2l|J0| but |Iα1

| ≤ 2l|I0| ;

Case (iv): |Jα2
| > 2l|J0| and |Iα1

| > 2l|I0| .
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Case (i). For fixed R0 = I0 × J0 in Fk ∩ Gl, we estimate
∫∫

T (R0)

[C(i)]
2 dt dy

y
,

where

C(i) :=

∣∣∣∣
∫ 1

0

∫ 1

0

∑

I:|Iα1
|>2k|I0|

∑

J :|Jα2
|≤2k|J0|

(ϕα, hR) hRα
∗ ψy(t) dα

∣∣∣∣.

Let

cJ :=
∑

I:|I|>2k|I0|

∫ 1

0

(ϕα1,α2 , hR) hIα1
∗ ψy1

(t1) dα1.

Then ∫∫

T (J0)

∣∣∣∣
∑

J :|Jα2
|≤2k|J0|

cJhJα2
∗ ψy2

(t2)

∣∣∣∣
2
dt2 dy2

y2
≤

∑

J :Jα2
⊂3·2kJ0

c2J , (13)

by L2-theory. It remains to estimate the quantity
∫∫

T (I0)

∑

J :Jα2
⊂3·2kJ0

c2J
dt1 dy1

y1
.

For fixed (t1, y1) ∈ T (I0), and fixed I, we have

∫ 1

0

(ϕα1,α2, hR)hIα1
∗ ψy1

(t1) dα1 =

∫

Ey1,t1,I

(ϕα1,α2 , hR)hIα1
∗ ψy1

(t1) dα1,

where

Ey1,t1,I :=
{
α1

∣∣ hIα1
∗ ψy1

(t1) 6= 0
}
.

By the argument we used in the one-parameter setting,

|Ey1,t1,I | ≤ Cy1.

Then, using Cauchy–Schwarz in the second line,

c2J =

∣∣∣∣
∑

I:|I|>2k|I0|

∫

Ey1,t1,I

(ϕα1,α2 , hR) hIα1
∗ ψy1

(t1) dα1

∣∣∣∣
2

≤

( ∑

I:|I|>2k|I0|

1

) ∑

I:|I|>2k|I0|

[∫

Ey1,t1,I

(ϕα1,α2 , hR) hIα1
∗ ψy1

(t1) dα1

]2

≤ C
1

2k|I0|

∑

I:|I|>2k|I0|

[∫

Ey1,t1,I

|(ϕα1,α2 , hR)| |Iα1
|−1/2 dα1

]2

.
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In the last line we have used the observation that the number of dyadic intervals I in T at

the k scales of length at least 2k−1I0 is 1/(2k|I0|), and also that

|hIα1
∗ ψy1

(t1)| ≤ |hIα1
| ≤ |I|−1/2.

Therefore, using the Cauchy–Schwarz inequality again,

c2J ≤
C

2k|I0|

∑

I:|I|>2k|I0|

y1

∫

Ey1,t1,I

|(ϕα1,α2 , hR)|2 |I|−1 dα1.

Returning to the sum in equation (13), we have

∑

J :Jα2
⊂2kJ0

c2J ≤
C

2k|I0|

∑

I:|I|>2k|I0|

y1 |I|
−1

∫

Ey1,t1,I

∑

J :Jα2
⊂3·2kJ0

(ϕα1,α2 , hR)2 dα1.

The integrand is less than or equal to a constant times 2k|I||J0|, by the BMO condition on

the open set I × 2kJ0. Integrating over Ey1,t1,I, we obtain

∑

J :Jα2
⊂3·2kJ0

c2J ≤
C

2k|I0|

∑

I:|I|>2k|I0|

y1 |I|
−1

(
2k|I||J0|y1

)
.

It remains to integrate the right-hand side over T (I0). Then

∫∫

T (I0)

1

2k|I0|

∑

I:|I|>2k|I0|

y2
1 |J0| 2

k dt1 dy1

y1
≤

1

22k|I0|2
2k|J0|

∫∫

T (I0)

y2
1

dt1 dy1

y1

≤
1

22k|I0|2
2k|J0| |I0|

3

≤ 2−k |I0 × J0|.

Integrating over T in α1 does not change this bound.

Now, summing over the rectangles R0, we obtain

∑

k,l

∑

R0:R0∈Fk∩Gl

∫∫

T (R0)

[C(i)]
2 dt dy

y

≤
∑

k

∑

R0:R0∈Fk

∫∫

T (R0)

[C(i)]
2 dt dy

y

≤
∑

k

∑

R0:R0∈Fk

2−k|R0|

≤ C |Ω|,
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by Journé’s lemma. This controls the sum over the rectangles covered by case (i).

Case (ii). Here we consider those rectangles R = I × J for which I and J are both large.

Fix a point (t, y) = (t1, t2, y1, y2) in T (R0). We must estimate the quantity

∫∫

T (R0)

[C(ii)]
2 dt dy

y
,

where

C(ii) :=

∣∣∣∣
∫ 1

0

∫ 1

0

∑

I:|Iα1
|>2k|I0|

∑

J :|Jα2
|>2k|J0|

(ϕα, hR) hRα
∗ ψy(t) dα

∣∣∣∣. (14)

For fixed I and J in that sum, consider the expression

C(ii)(R) :=

∣∣∣∣
∫ 1

0

∫ 1

0

(ϕα, hR)
[
hRα1

∗ ψy1
(t1)

] [
hRα2

∗ ψy2
(t2)

]
dα

∣∣∣∣. (15)

Again, the integrand can only be nonzero when α1 ∈ Ey1,t1,I and α2 ∈ Ey2,t2,I , where Ey1,t1,I

and Ey2,t2,I are of size y1 and y2 respectively. Also

|(ϕα, hR)| ≤ Cd|R|
1/2,

|hIα1
∗ ψy1

(t1)| ≤ |I|−1/2,

|hIα2
∗ ψy2

(t2)| ≤ |J |−1/2.

Integrating over Ey1,t1,I and Ey2,t2,I gives

C(ii)(R) ≤ Cdy1y2. (16)

Summing C(ii)(R) over I and J , we find that

C(ii) ≤ Cd

[
1

2k|I0|

1

2k|J0|
y1y2

]
. (17)

Therefore ∫∫

T (R0)

[C(ii)]
2 dt1 dt2 dy1 dy2

y1 y2
≤ C2

d2−4k|R0|. (18)

As in the previous case, we sum over these rectangles R0 in Fk and use Journé’s lemma to

conclude that the sum is bounded by a constant times |Ω|.
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Case (iii). We must estimate the quantity
∫∫

T (R0)

[C(iii)]
2 dt dy

y
,

where

C(iii) :=

∣∣∣∣
∫ 1

0

∫ 1

0

∑

J :|Jα2
|>2l|J0|

∑

I:|Iα1
|≤2l|I0|

(ϕα, hR) hRα
∗ ψy(t) dα

∣∣∣∣. (19)

Move the integral in α1 to the outside, by Cauchy–Schwarz. Let

cI :=
∑

J :|Jα2
|>2l|J0|

∫ 1

0

(ϕα, hR) hJα2
∗ ψy2

(t2) dα2.

Fix α1. If hJα2
∗ ψy2

(t2) 6= 0, then Iα1
∩ 3I0 6= ∅, and so Iα1

⊂ 3 · 2lI0. Therefore, by the

L2-theory again,
∫∫

T (I0)

∣∣∣∣
∑

I:|I|<2l|I0|
Iα1

∩3I0 6=∅

cI hIα1
∗ ψy1

(t1)

∣∣∣∣
2
dt1 dy1

y1

≤

∫∫

T (I0)

∣∣∣∣
∑

I:|I|<2l|I0|
Iα1

⊂3·2lI0

cI hIα1
∗ ψy1

(t1)

∣∣∣∣
2
dt1 dy1

y1

≤
∑

I:Iα1
⊂3·2lI0

c2I .

Following the argument laid out in case (i), we get

∑

I:Iα1
⊂3·2lI0

c2I ≤
1

2l|J0|

∑

J :|J |>2l|J0|

y2|J |
−12l|I0||J |. (20)

Summing over the rectangles R0, we obtain

∑

k,l

∑

R0:R0∈Fk∩Gl

∫∫

T (R0)

[C(iii)]
2 dt dy

y

≤
∑

l

∑

R0:R0∈Gl

∫∫

T (R0)

[C(iii)]
2 dt dy

y

≤
∑

l

∑

R0:R0∈Gl

2−2l|J0| · 2
l|I0|

=
∑

l

∑

R0:R0∈Gl

2−l|R0|

≤
[∑

l

C l 2−l
]
|Ω|,
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by the version in Proposition 1 of Journé’s lemma for the sets Gl. This controls the sum over

the rectangles covered by case (iii).

Case (iv). We omit the argument for this case. The argument is similar to that for case (ii),

and uses Proposition 1.

This completes the proof of Theorem 4.

As a corollary of Theorem 4, by duality we can establish the product version on the

bidisc of Davis’s theorem connecting H1 and dyadic H1
d [D, Theorem 3.1, case p = 1], just as

Garnett and Jones noted for the one-parameter case in [GJ]. For complete information about

the Hardy space H1 on the bidisc, see [CF1985] and the references therein. Product VMO on

the bidisc is discussed in Section 6 below; here we use only that VMOd(T⊗T) ⊂ BMOd(T⊗T)

and that product H1 is the dual of product VMO.

Theorem 6 (Biparameter Davis Theorem). If f ∈ H1(T ⊗ T), then for almost every

α ∈ [0, 1] × [0, 1], the translation Tαf(·) := f(· − α) belongs to H1
d(T ⊗ T), and

∫ 1

0

∫ 1

0

‖Tαf‖H1
d
dα ≤ C‖f‖H1

.

Proof. We will use the following facts about the Hardy space H1(T ⊗ T):

(
H1(T ⊗ T)

)∗
= BMO(T ⊗ T), H1(T ⊗ T) =

(
VMO(T ⊗ T)

)∗
,

and their dyadic analogues.

Take f ∈ H1(T ⊗ T). If f is also continuous, then f and all its translates Tαf belong

toH1
d(T⊗T). To get the norm estimate, note that ‖Tαf‖H1

d
varies continuously and uniformly

in α. By duality the norm ‖Tαf‖H1
d

is given by pairing with a BMO(T ⊗ T) function. If we

approximate these norms, we can choose a family of ϕα which vary measurably in α. Indeed

the map α 7→ ϕα will be piecewise constant.

By Theorem 4, the translation-average ϕ(·) :=
∫ 1

0

∫ 1

0
ϕα(·+α) dα is in BMO(T⊗T), and
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‖ϕ‖∗ ≤ 1. Then

∫ 1

0

∫ 1

0

〈Tαf, ϕ
α〉 dα =

∫ 1

0

∫ 1

0

∫

T⊗T

Tαf(x)ϕα(x) dx dα

=

∫

T⊗T

f(x)

∫ 1

0

∫ 1

0

ϕα(x+ α) dα dx

≤ ‖f‖H1.

In particular, Tαf is in H1
d(T ⊗ T) for almost all α.

Now assume f ∈ H1(T ⊗ T), ‖f‖ = 1. We can represent f =
∑

n fn, where the fn are

continuous and
∑

n ‖fn‖H1 ≤ (1 + ε)‖f‖H1. Define

F (α) :=
∑

n

‖Tαfn‖H1
d
.

The estimate for the continuous functions implies

∫ 1

0

∫ 1

0

F (α) dα =
∑

n

∫ 1

0

∫ 1

0

‖Tαfn‖H1
d
dα ≤

∑

n

C‖fn‖H1 ≤ C(1 + ε)‖f‖H1.

Since ∣∣∣∣
∫

I

Tαf(t)dt

∣∣∣∣ ≤
∑

n

∣∣∣∣
∫

I

Tαfn(t)dt)

∣∣∣∣

we have

(Tαf)∗(x) ≤
∑

n

(Tαfn)∗(x),

where (Tαf)∗ denotes the the martingale maximal function of Tαf .

Integrating with respect to x we obtain

‖Tαf‖H1
d
≤ F (α).

6 VMO(T ⊗ T) from averaging VMOd(T ⊗ T)

The product VMO space VMO(T⊗T) was investigated in [LTW] where, among other things,

the authors gave a definition of product VMO in terms of Carleson measures, and identified
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product VMO as the predual of product H1. We recall their definition of product VMO.

Let Dn denote the class of dyadic rectangles Q such that |Q| is less than 2−n.

Definition 8 (Product VMO). A function b belongs to VMO(T ⊗ T) if b belongs to

BMO(T ⊗ T), and for each ε > 0 there is an n ∈ N such that for every open set Ω in the

bidisc T ⊗ T,
∑

Q:Q⊂Ω,Q∈Dn

∫∫

Q+

|b ∗ ψy(t)|
2 dt1 dt2 dy1 dy2

y1y2
≤ ε|Ω|, (21)

where

Dn := {Q = Q1 ×Q2

∣∣ Q1, Q2 are dyadic intervals in T with |Q| := |Q1||Q2| < 2−n}.

Specializing equation (21) to one parameter, it can be seen that this definition of VMO

is equivalent to Definition 3.

As in the one-parameter case, product VMO can also be characterized as the closure of

C∞
0 in BMO (see [LTW]).

Definition 9 (Dyadic product VMO). A function b belongs to the space dyadic product

VMO, denoted VMOd(T ⊗ T), if for each ε > 0 there is an N such that for all open sets

A ⊂ T ⊗ T
∑

R:R⊂A,R∈D,|R|<2−N

(ϕα, hR)2 ≤ ε|A|.

We now prove the averaging theorem for product VMO, namely that translation-averages

of suitable VMOd(T ⊗ T) functions belong to VMO(T ⊗ T). The argument requires one

essential modification from the product BMO averaging theorem. When specialized to one

parameter, the argument gives another proof of Theorem 3.

Theorem 7. Suppose that ϕα ∈ BMOd(T⊗T) for each α = (α1, α2) ∈ [0, 1]× [0, 1], α 7→ ϕα

is measurable, and the BMOd norms of the functions ϕα are uniformly bounded: there is a

constant Cd such that

‖ϕα‖d ≤ Cd
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for all α ∈ [0, 1] × [0, 1]. Let x = (x1, x2). Suppose also that
∫

ϕα(x) dx = 0 for all α ∈ [0, 1] × [0, 1].

Suppose in addition that the functions ϕα belong to VMOd(T⊗T) uniformly: for each ε > 0

there is an N such that for all α ∈ [0, 1] × [0, 1] and for all open sets A ⊂ T ⊗ T

∑

R:R⊂A,R∈D,|R|<2−N

(ϕα, hR)2 ≤ ε|A|.

Then the translation-average

ϕ(x) :=

∫ 1

0

∫ 1

0

ϕα(x + α) dα

is in VMO(T ⊗ T).

Proof. By Theorem 4, ϕ is in BMO(T ⊗ T). Let Ω be an open set in the bidisc T ⊗ T, and

fix ε > 0. Since the functions ϕα are uniformly in VMO(T ⊗ T), there is some N such that

for all α ∈ [0, 1] × [0, 1] and for all open sets A ⊂ T ⊗ T,

∑

R:R⊂A,R∈D,|R|<2−N

(ϕα, hR)2 ≤ ε|A|.

It suffices to show that for K = K(ε,N) sufficiently large,

∑

Q:Q⊂Ω,Q∈D,|Q|<2−K

∫∫

Q+

|ϕ ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2
≤ ε|Ω|. (22)

We first split the sum in the integrand of ϕ at scale 2−N so that ϕ = ϕ1 + ϕ2, where

ϕ1 :=

∫ 1

0

∫ 1

0

∑

R:R∈D,|R|<2−N

(ϕα, hR) hR(x+ α) dα,

ϕ2 := ϕ− ϕ1 =

∫ 1

0

∫ 1

0

∑

R:R∈D,|R|≥2−N

(ϕα, hR) hR(x+ α) dα.

Thus ϕ ∗ ψy(t) = ϕ1 ∗ ψy(t) + ϕ2 ∗ ψy(t), where

ϕ1 ∗ ψy(t) =

∫ 1

0

∫ 1

0

∑

R:R∈D,|R|<2−N

(ϕα, hR) hRα
∗ ψy(t) dα,

ϕ2 ∗ ψy(t) =

∫ 1

0

∫ 1

0

∑

R:R∈D,|R|≥2−N

(ϕα, hR) hRα
∗ ψy(t) dα. (23)
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Here as usual

Rα = R(α1 ,α2) := (I − α1) × (J − α2)

is the translate of the rectangle R ∈ D by α = (α1, α2).

The estimate for ϕ1 is straightforward. We apply the arguments of Section 5, including

the splitting into four cases. The arguments go through without change, and we obtain a

stronger inequality than (22), namely

∑

Q:Q⊂Ω,Q∈D

∫∫

Q+

|ϕ1 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2
≤ ε|Ω|.

We turn to the estimate for ϕ2. We must show that there is a K such that

∑

Q:Q⊂Ω,Q∈D,|Q|<2−K

∫∫

Q+

|ϕ2 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2

≤ ε|Ω|, (24)

where ϕ2 ∗ ψy(t) is as defined in equation (23).

Fix δ with 0 < δ < 2−N , and let K = K(ε,N, δ) � N be a positive integer, to be

determined later.

Write Q = Q1 × Q2, and Q+ = Q+
1 × Q+

2 . If |Q| = |Q1||Q2| < 2−K, then either

|Q1| < 2−K/2 or |Q2| < 2−K/2, or both.

We consider two cases for inequality (22), one in which we sum over rectangles Q with

|Q1| < 2−K/2, and one in which we sum over rectangles Q with |Q2| < 2−K/2. For notational

convenience we relabel K/2 as K. By symmetry, we may assume that our sum is taken over

rectangles Q for which |Q1| < 2−K. Then

∑

Q:Q⊂Ω,Q∈D,|Q1|<2−K

∫∫

Q+

|ϕ2 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2

≤

∫

(t1,t2)∈Ω

∫

0<y1<2−K

∫

0<y2<1

|ϕ2 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2
. (25)

Now we make use of our previously chosen δ, splitting the integral in y2 into an integral

over 0 < y2 < δ and another over δ < y2 < 1.

First, consider the part of the integral in the right-hand side of inequality (25) with

0 < y2 < δ. Fix R ∈ D such that |R| ≥ 2−N . Because both y1 < |I| and y2 < |J |, the same
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arguments used to establish inequality (16) apply, and we obtain the inequality

∫ 1

0

∫ 1

0

∣∣(ϕα, hR) hRα
∗ ψy(t)

∣∣ dα ≤ Cy1y2.

Since there are no more than (N + 1)2N+2 dyadic rectangles R of area |R| ≥ 2−N , we

find that

|ϕ2 ∗ ψy(t)| =
∣∣∣
∫ 1

0

∫ 1

0

∑

R:R∈D,|R|≥2−N

(ϕα, hR) hrRα
∗ ψy(t) dα

∣∣∣

≤
∑

R:R∈D,|R|≥2−N

∣∣∣
∫ 1

0

∫ 1

0

(ϕα, hR) hrRα
∗ ψy(t) dα

∣∣∣

≤ (N + 1)2N+2CCdy1y2.

Hence

|ϕ2 ∗ ψy(t)|
2 ≤

[
(N + 1)2N+2CCdy1y2

]2
.

Therefore

∫

(t1 ,t2)∈Ω

∫

0<y1<2−K

∫

0<y2<δ

|ϕ2 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2

≤

∫

(t1,t2)∈Ω

∫

0<y1<2−K

∫

0<y2<δ

[
(N + 1)2N+2CCdy1y2

]2 dt1dt2dy1dy2

y1y2

=
[
(N + 1)2N+2CCd

]2
|Ω|

∫ 2−K

0

y2
1

dy1

y1

∫ δ

0

y2
2

dy2

y2

=
[
(N + 1)2N+2CCd

]2
|Ω|

(2−K)2

2

δ2

2

≤ ε|Ω|

as required, if K = K(ε,N, δ) is chosen sufficiently large.

Second, consider the part of the integral with δ < y2 < 1:

∫

(t1 ,t2)∈Ω

∫

0<y1<2−K

∫

δ<y2<1

|ϕ2 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2
,

where

ϕ2 ∗ ψy(t) =

∫ 1

0

∫ 1

0

∑

R:R∈D,|R|≥2−N

(ϕα, hR) hRα
∗ ψy(t) dα.
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As before, |(ϕα, hR)| ≤ Cd|R|
1/2. Also |hIα1

∗ψy1
(t1)| ≤ |I|−1/2 and |hJα2

∗ψy2
(t2)| ≤ |J |−1/2.

Further, hIα1
∗ ψy1

(t1) = 0 except when α1 lies in a specific set of total length at most

3|It1(y1)| = 6y1, because y1 < |I|. We obtain

|ϕ2 ∗ ψy(t)| ≤
∑

R:R∈D,|R|≥2−N

∫ 1

0

∫ 1

0

|(ϕα, hR)| |hIα1
∗ ψy1

(t1)| |hJα2
∗ ψy2

(t2)| dα

≤
∑

R:R∈D,|R|≥2−N

Cd|R|
1/26y1|I|

−1/2

∫ 1

0

|J |−1/2 dα2

=
∑

R:R∈D,|R|≥2−N

Cd6y1

≤ CCd(N + 1)2N+2y1.

Thus

∫

(t1,t2)∈Ω

∫

0<y1<2−K

∫

δ<y2<1

|ϕ2 ∗ ψy(t)|
2 dt1dt2dy1dy2

y1y2

≤

∫

(t1 ,t2)∈Ω

∫

0<y1<2−K

∫

δ<y2<1

[
CCd(N + 1)2N+2y1

]2 dt1dt2dy1dy2

y1y2

=
[
CCd(N + 1)2N+2

]2
|Ω|

∫ 2−K

0

y2
1

dy1

y1

∫ 1

δ

dy2

y2

=
[
CCd(N + 1)2N+2

]2
|Ω|

2−2K

2
log

1

δ

≤ ε|Ω|,

if K = K(ε,N, δ) is chosen sufficiently large.

We have shown that the translation-average ϕ is in VMO(T ⊗ T), as required.
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