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Abstract

We establish a connection between the absolute continuity of elliptic measure
associated to a second order divergence form operator with bounded measurable
coefficients with the solvability of an endpoint BMO Dirichlet problem. We show
that these two notions are equivalent. As a consequence we obtain an end-point
perturbation result, i.e., the solvability of the BMO Dirichlet problem implies
Lp solvability for all p > p0.

1 Introduction

We shall prove an equivalence between solvability of certain endpoint (BMO) Dirichlet
boundary value problems for second order elliptic operators and a quantifiable absolute
continuity of the elliptic measure associated to these operators. More precisely, we
consider here the Dirichlet problem for divergence form (not necessarily symmetric)
elliptic operators L = divA∇, where A = (aij(X)) is a matrix of bounded measurable
functions for which there exists a λ > 0 such that λ−1|ξ|2 <

∑
aijξiξj < λ|ξ|2. The Lp

Dirichlet problem for L asks for solvability in a domain Ω, in the sense of non-tangential
convergence and a priori Lp estimates, of the problem: Lu = 0 in Ω with u = f on ∂Ω.

Let us recall ([13]) a fundamental property of the harmonic extension to R+
n of

functions of bounded mean oscillation on Rn: If f ∈ BMO, then the Poisson extension
u(x, t) = Pt ∗ f(x) has the property that t|∇u|2dxdt is a Carleson measure. (Carleson
measures are defined in Section 2, below.) In fact the Carleson measure norm of this
extension and the BMO norm of f are equivalent.

In [12], this fundamental property was shown to hold for the harmonic functions in
the class of Lipschitz domains. The key fact here is that harmonic measure on Lipschitz
domains is always mutually absolutely continuous with respect to surface measure, by
a well known result of [4].
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In [20], further connections between Carleson measure properties of solutions to
very general second order divergence form elliptic equations and absolute continuity
were established. There it was shown that if all bounded solutions to L = divA∇
are arbitrarily well approximated by continuous functions satisfying an L1 version of
the Carleson measure property, then in fact the elliptic measure belongs to A∞ with
respect to surface measure. This approximation property was shown (in [20]) to follow
from a certain norm equivalence between two different classical quantities associated
to the solution of an elliptic equation: the nontangential maximal function, measuring
size, and the square function, measuring the size of oscillations.

These results, from the Carleson measure properties of harmonic functions in the
upper half space, to theorems such as those in [20] which specifically connect absolute
continuity of the representing measures associated to second order divergence form
operators to Carleson measure conditions, led us to a conjecture concerning solvability
of the Dirichlet problem with data in BMO.

Specifically, we are interested in properties of the elliptic measure of an operator
L = divA∇ which determine that it belongs to the Muckenhoupt A∞ class with respect
to the surface measure on the boundary of the domain of solvability. On the one hand,
A∞ is a “perturbable” condition, in the sense that A∞ =

⋃
Ap =

⋃
Bp. And when

the density of harmonic measure with respect to surface measure belongs to Bp, it
turns out that the Dirichlet problem is solvable with data in Lq, where 1/q + 1/p = 1.
(Again, see section 2 for the definitions.) On the other hand, a boundary value problem
which is equivalent to A∞ would have to be “perturbable” as well: solving it would
have to imply solvability of the Dirichlet problem in some Lq. Clearly L∞ cannot be
such a perturbable endpoint space: all solutions satisfy a maximum principle, a precise
version of the L∞ Dirichlet problem. In the end, perturbing from a BMO problem
seems quite natural.

We will use a variety of properties of solutions to divergence form elliptic operators
with bounded measurable coefficients. The De Giorgi-Nash-Moser theory of the late
1950s and early 1960s assures us that weak solutions to these equations are in fact
Holder continuous. Further properties of solutions, of the elliptic measure whose exis-
tence is guaranteed by the maximum principle and the Riesz representation theorem,
and of the relationship of this measure to the Green’s function were developed in the
1970s and 1980s. For the basic properties of solutions to divergence form operators
with bounded measurable coefficients, as in [24] or [1], one can consult the introduc-
tion of [20] where many primary references are cited, and where the issues for the
non-symmetric situation are discussed.

2 Definitions and Statements of Main Theorems

Let us begin by defining introducing Carleson measures and square functions on do-
mains which are locally given by the graph of a function. We shall assume that our
domains are Lipschitz, even though it is possible to formulate and prove these re-
sults with less stringent geometric conditions on the domain. Most likely, the minimal
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geometric conditions required would be chord-arc and nontangentially accessible. 1

Definition 2.1. Z ⊂ Rn is an M-cylinder of diameter d if there exists a coordinate
system (x, t) such that

Z = {(x, t) : |x| ≤ d, −2Md ≤ t ≤ 2Md}

and for s > 0,
sZ = {(x, t) : |x| < sd,−2Md ≤ t ≤ 2Md}.

Definition 2.2. Ω ⊂ Rn is a Lipschitz domain with Lipschitz ‘character’ (M,N, C0)
if there exists a positive scale r0 and at most N cylinders {Zj}N

j=1 of diameter d, with
r0

c0
≤ d ≤ c0r0 such that

(i) 8Zj ∩ ∂Ω is the graph of a Lipschitz function φj,

‖φj‖∞ ≤ M, φj(0) = 0,

(ii)

∂Ω =
⋃
j

(Zj ∩ ∂Ω)

(iii)

Zj ∩ Ω ⊃
{

(x, t) : |x| < d, dist ((x, t), ∂Ω) ≤ d

2

}
.

If Q ∈ ∂Ω and
Br(Q) = {x : |x−Q| ≤ r}

then ∆r(Q) denotes the surface ball Br(Q) ∩ ∂Ω and T (∆r) = Ω ∩ Br(Q) is the called
the Carleson region above ∆r(Q).

Definition 2.3. Let T (∆r) be a Carleson region associated to a surface ball ∆r in ∂Ω.
A measure µ in Ω is Carleson if there exists a constant C = C(r0) such that for all
r ≤ r0,

µ(T (∆r)) ≤ Cσ(∆r).

For such measure µ we denote by ‖µ‖Car the number

‖µ‖Car = sup
∆⊂∂Ω

(
σ(∆)−1µ(T (∆))

)1/2
.

Definition 2.4. A cone of aperture a is a non-tangential approach region for Q ∈ ∂Ω
of the form

Γ(Q) = {X ∈ Ω : |X −Q| ≤ a dist(X, ∂Ω)}.
Sometimes it is necessary to truncate the height of Γ by h. Then Γh(Q) = Γ(Q)∩Bh(Q).

1This was pointed out to us by M. Badger.
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We remind the reader that L will stand for L = divA∇ where the matrix A has
bounded measurable coefficients ai,j and is strongly elliptic: there exists λ such that
uch that for all ξ ∈ Rn\{0},

λ|ξ|2 ≤
∑

ai,jξiξj ≤ λ−1|ξ|2.

Definition 2.5. If Ω ⊂ Rn, and u is a solution to L, the square function in Q ∈ ∂Ω
relative to a family of cones Γ is

Su(Q) =

(∫

Γ(Q)

|∇u(X)|2δ(X)2−ndX

)1/2

.

and the non-tangential maximal function at Q relative to Γ is

Nu(Q) = sup{|u(X)| : X ∈ Γ(Q)}.

Here δ(X) = dist(X, ∂Ω). We also consider truncated versions of these operators which
we denote by Shu(Q) and Nh(Q), respectively; the only difference in the definition is
that the nontangential cone Γ(Q) is replaced by the truncated cone Γh(Q).

Definition 2.6. The Dirichlet problem with the Lp(∂Ω, dσ) data is solvable for L if
the solution u for continuous boundary data f satisfies the estimate

‖N(u)‖Lp(∂Ω,dσ) . ‖f‖Lp(∂Ω,dσ), (2.1)

where the implied constant does not depend on the given function.

Definition 2.7. If dµ and dν are finite measures on the boundary of Ω, then dµ belongs
to A∞ with respect to dν if for all ε there exists an η such that, for every surface ball
∆ and subset E ⊂ ∆, whenever ν(E)/ν(∆) < η, then µ(E)/µ(∆) < ε.

This space was investigated in [2], where various equivalent definitions were given.
In particular, dµ ∈ A∞(dν) if and only if dν ∈ A∞(dµ).

Let us specialize this definition to the domain Ω, to surface measure dσ and to the
elliptic measure dωL associated to some divergence form operator L. We are assuming
that dωL is evaluated at some fixed point P in the interior of Ω so that a solution to L
with continuous data f at the point P is represented by this measure: this means that
u(P ) =

∫
∂Ω

f(y)dωL(y). If dω belongs to A∞(dσ), then there is a density function:
dωL(y) = k(y)dσ. The apriori estimate of definition 2.6 turns out to be equivalent
to the fact that the density k(y) satisfies a reverse Hölder estimate Bp′ . For general
q > 1, the density k is said to belong to Bq(dσ) if there exists a constant C such that
for every surface ball ∆, ((σ(∆))−1

∫
∆

kqdσ)1/q < Cσ(∆))−1
∫
∆

kdσ. The relationship
between the reverse Hölder classes and A∞ is ([15] and [2])

A∞(∂Ω, dσ) =
⋃
p>1

Bq(∂Ω, dσ),
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Definition 2.8. We say that a function f : ∂Ω → R belongs to BMO with respect to
the surface measure dσ if

sup
I⊂∂Ω

σ(I)−1

∫

I

|f − fI |2dσ < ∞.

Here fI = σ(I)−1
∫

I
fdσ. We denote by ‖f‖BMO(p) the number

‖f‖BMO(p) = sup
I⊂∂Ω

(
σ(I)−1

∫

I

|f − fI |pdσ

)1/p

.

It can be shown for any 1 ≤ p < ∞ that ‖f‖BMO(2) < ∞ if and only if ‖f‖BMO(p) < ∞.
Moreover, ‖.‖BMO(p) and ‖.‖BMO(2) are equivalent in the sense that there is a constant
C > 0 such that the inequality

C−1‖f‖BMO(p) ≤ ‖f‖BMO(2) ≤ C‖f‖BMO(p) (2.2)

holds for any BMO function f .

This definition can be modified further. Instead of using the difference f − fI in
the definition of the BMO norm one can take

‖f‖BMO∗(p) = sup
I⊂∂Ω

inf
cI∈R

(
σ(I)−1

∫

I

|f − cI |pdσ

)1/p

. (2.3)

Again, it can be shown that this gives an equivalent norm, i.e., there is C > 0 such
that

C−1‖f‖BMO∗(p) ≤ ‖f‖BMO(2) ≤ C‖f‖BMO∗(p).

Definition 2.9. The BMO-Dirichlet problem is solvable for L if the solution u for
continuous boundary data f satisfies

‖|∇u|2δ(X)dX‖Car . ‖f‖2
BMO(2).

Equivalently, there exists a constant C such that for all continuous f ,

sup
∆⊂∂Ω

σ(∆)−1

∫∫

T (∆)

|∇u|2δ(X)dX ≤ C sup
I⊂∂Ω

σ(I)−1

∫

I

|f − fI |2dσ. (2.4)

Remark. It follows from our results that even though we define BMO-solvability in
the Definition 2.9 only for continuous boundary data, the solution can be defined for
any BMO function f : ∂Ω → R and moreover the estimate (2.4) will hold. In addition,
such a solution u will have a well-defined nontangential maximal function N(u) for
almost every point Q ∈ ∂Ω and in the nontangential sense

f(Q) = lim
X→Q, X∈Γ(Q)

u(X), for a.e. Q ∈ ∂Ω.
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Indeed, by Theorem 2.2 given that (2.4) holds, the Lp Dirichlet boundary value
problem is solvable for some large p < ∞. Consider now an arbitrary BMO function
f : ∂Ω → R. As we argue in (3.18), there exists a sequence of continuous functions
fn : ∂Ω → R such that fn → f in Lp(∂Ω) and ‖fn‖BMO ≤ C‖f‖BMO for some C > 0
independent of n.

For each fn we can solve the continuous Dirichlet boundary value problem which
will give us solutions un such that

‖N(un)‖Lp(∂Ω) ≤ C‖fn‖Lp(∂Ω) ≤ C‖f‖BMO.

In addition, also

‖N(un − um)‖Lp(∂Ω) ≤ C‖fn − fm‖Lp(∂Ω) → 0, as n,m →∞,

since fn → f in Lp and (2.1) holds. This implies that the sequence (un)n∈N is locally
uniformly Cauchy in L∞loc(Ω), hence

u(X) = lim
n→∞

un(X), for X ∈ Ω

is pointwise well defined.
We claim that this u is a weak solution to Lu = 0. That is,

∫

Ω

A(X)∇u(X).∇ψ(X) dX = 0, for all ψ ∈ C∞
0 (Ω), (2.5)

To see this, fix a compact set K ⊂ Ω. By the dominated convergence theorem we
know that

un → u, in any Lp(K), p < ∞.

Hence for any K ′ ⊂⊂ K by Cacciopoli we have that

∫

K′
|∇(un − um)(X)|2 dX ≤ CK,K′

∫

K

|(un − um)(X)|2 dX → 0, as n, m →∞.

It follows that ∇un converges locally uniformly in L2, from which we get that u belongs
to W 1,2

loc (Ω) and ∇un → ∇u in L2
loc(Ω). Therefore (2.5) follows as we already now that

(2.5) holds for every un and we can pass to the limit n →∞.
Hence with the use of Fatou’s lemma (see Appendix B of [9] for details) we get

that N(u − un) → 0 in Lp(∂Ω) as n → ∞. This implies that ‖N(u)‖Lp < ∞, so
N(u)(Q) < ∞ a.e. for Q ∈ ∂Ω and also one has existence of nontangential limits a.e.:
limX→Q, X∈Γ(Q) u(X).

Finally, we also get that (2.4) will also hold for u by the limiting argument, since
it holds for each un:

sup
∆⊂∂Ω

σ(∆)−1

∫∫

T (∆)

|∇un|2δ(X)dX . sup
I⊂∂Ω

σ(I)−1

∫

I

|fn − fn,I |2dσ. (2.6)
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Notice that taking the limsup on the right-hand side of (2.6) yields just a multiple of
BMO norm of f , as ‖fn‖BMO ≤ C‖f‖BMO. On the left-hand side we may take the
limit

σ(∆)−1

∫∫

T (∆)\Cε

|∇un|2δ(X)dX → σ(∆)−1

∫∫

T (∆)\Cε

|∇u|2δ(X)dX, n →∞,

since ∇un → ∇u in L2
loc(Ω). Here Cε = {X ∈ Ω : dist(X, ∂Ω) < ε}. It follows that for

any ε > 0

sup
∆⊂∂Ω

σ(∆)−1

∫∫

T (∆)\Cε

|∇u|2δ(X)dX . ‖f‖2
BMO. (2.7)

As the constant in (2.7) does not depend on ε we get the required estimate on the whole
T (∆). In fact, it can be shown that equivalence holds between the two quantities in
(2.4).

We now state our main results.

Theorem 2.1. Let Ω be a Lipschitz domain and L be a divergence form elliptic operator
with bounded coefficients satisfying the strong ellipticity hypothesis.

If the elliptic measure dωL associated with L is in A∞(∂Ω, dσ) then the BMO-
Dirichlet problem is solvable for L, with in fact equivalence of the two norms in the
estimate (2.4).

Conversely, if the estimate (2.4) holds for all continuous functions f with constants
only depending on the Lipschitz character of the domain Ω and the ellipticity constant
of L, then the elliptic measure dωL belongs to A∞(∂Ω, dσ).

Remark. The closure of continuous functions in BMO norm is the VMO class ([25]).
From the proof of the theorem, we will see that A∞ is actually equivalent to solvability
of a VMO-Dirichlet problem.

Recall that if a Dirichlet problem for an elliptic operator L is Lp solvable for some
p ∈ (1,∞), then it is solvable for all Lq p − ε < q < ∞, which shows that the
“solvability” is stable under small perturbations.

Theorem 2.1 implies the same kind of stability result for the end-point BMO prob-
lem on the Lp interpolation scale.

Theorem 2.2. (Stability of BMO solvability) Let Ω be a Lipschitz domain and L
be a divergence form elliptic operator with bounded coefficients satisfying the strong
ellipticity hypothesis.

Assume that the BMO-Dirichlet problem is solvable for L and the estimate (2.4)
holds. Then there exist p0 > 1 such that the Lp Dirichlet problem for L is solvable for
all p0 < p < ∞.

Proof. By Theorem 2.1 if follows that dωL ∈ A∞(∂Ω, dσ). Since

A∞(∂Ω, dσ) =
⋃
p>1

Bp(∂Ω, dσ),
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we see that dωL ∈ Bp(∂Ω, dσ) for some p > 1. From this the claim follows since
dωL ∈ Bp(∂Ω, dσ) implies the solvability of the Lp′ Dirichlet problem. The range of
solvability (p0,∞) can be then obtained by realizing that Bp(∂Ω, dσ) ⊂ Bq(∂Ω, dσ) for
q < p.

3 Proof of Theorem 2.1.

We establish the A∞ property of dωL by assuming the estimate (2.4) holds uniformly
for continuous data.

The elliptic measure for L will be abbreviated dω and is evaluated at a fixed interior
point, P0, of the domain Ω.

Let ∆ be a surface ball on the boundary of Ω of radius r. Let ∆′ be another surface
ball of radius r separated from ∆ by a distance of r. By assumption, if Lu = 0 and
u = f on the boundary, we have

σ(∆′)−1

∫∫

T (∆′)
|∇u|2δ(X)dX . ‖f‖BMO. (3.8)

Let us now assume that f is a positive and continuous function supported in ∆.
Recall that Sru(Q) denotes the square function defined using cones truncated at

height r. We claim that there exists a constant C such that for all Q ∈ ∆′,

ω(∆)−1

∫

∆

fdω ≤ CSru(Q) (3.9)

To establish this claim, we introduce a little more notation.
For Q ∈ ∆′, set Γj(Q) = Γ(Q) ∩ B2−jr(Q)\B2−j−1r(Q), a slice of the cone Γ(Q) at

height 2−jr.
By Lemma 5.8 (see also 5.13) of [21], we have the following Poincare type estimate,

which was established using Sobolev embedding and boundary Cacciopoli to exploit
the fact that u vanishes on ∆′:

(2jr)−2

∫

Γj(Q)

u2dX .
∫∫

Γj(Q)

|∇u|2δ(X)dX (3.10)

Let A′ denote a point in T (∆′) whose distance to the boundary of Ω is approximately
r. By the comparison theorem for solutions which vanish at the boundary, and with
G(X) denoting the Green’s function for L with pole at P0 in Ω,

u(X)

G(X)
≈ u(A′)

G(A′)
, (3.11)

for all X ∈ Γ(Q) ∩ T (∆′).
We use this to estimate the square function:
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S2
ru(Q) ≥

∞∑
j=0

∫

Γj

δ(X)2−n|∇u|2dX (3.12)

≥ u2(A′)
G2(A′)

∞∑
j

(2−jr)n

∫

Γj

G2(X)dX. (3.13)

Now let Aj be a nontangential point in Γj, so that |Aj − Q| ≈ 2−jr. By Harnack,
G(X) ≈ G(Aj) for all X ∈ Γj(Q). Moreover, again by Harnack, there is constant
C > 1 for which G(Aj−1) < CG(Aj). Thus,

u2(A′)
G2(A′)

∞∑
j=0

G2(Aj) . S2
ru(Q), (3.14)

and now since G(A′) ≤ CjG(Aj), we can sum this series and we find that

u2(A′) . S2
ru(Q). (3.15)

Since, by properties of harmonic measure, we also know that u(A′) ≈ ω(∆)−1
∫
∆

fdω,
this proves 3.9.

For any such f , positive, continuous and supported in ∆, the estimate in 3.8 implies
that, for some constant C0,

(ω(∆)−1

∫

∆

fdω)2 ≤ C2
0‖f‖2

BMO. (3.16)

We now establish absolute continuity of the elliptic measure. Suppose that σ(∆) = r
and that ε is given. Let E ⊂ ∆ be an open set. We shall find an η such that
σ(E)/σ(∆) < η implies that ω(E)/ω(∆) < ε.

Let h = χE, the characteristic function of E. If M(h) is the Hardy-Littlewood
maximal function of h with respect to surface measure on the boundary of Ω, define
(as in [18]) the BMO function

f = max{0, 1 + δ log M(h)}, (3.17)

where δ is to be determined. The function f has a structure which is typical of BMO
functions: see [3] for this characterization. Also, this particular choice of BMO function
was exploited in [18] in their proof of weak convergence in H1. It has the following
properties:

• f ≥ 0

• ‖f‖BMO ≤ δ

• f = 1 on E
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Observe that if x /∈ 2∆, then M(h)(x) < σ(E)/σ(∆) < η. For any δ, if we choose η
sufficiently small, the function 1 + δ log M(h) will be negative, and thus f = 0 outside
2∆.

Using a standard mollification process (as in [25]) we can find a family ft of con-
tinuous functions, t > 0 such that:

• ft → f in Lp,

• For all t, there exists a C such that ‖ft‖BMO ≤ C‖f‖BMO,

• support of ft is contained in 3∆.

Because f ≥ 1 on E, (3.16) implies that

ω(E)

ω(3∆)
≤ ω(3∆)−1

∫

3∆

f dω = ω(3∆)−1 lim
t→0+

∫

3∆

ft dω

≤ C0 lim sup
t→0+

‖ft‖BMO. (3.18)

Hence by (3.18)
ω(E)

ω(3∆)
≤ C1‖f‖BMO.

Now we choose δ so that 2C1δ < ε, where C1 is the constant in the estimate above
and this gives that

ω(E)

ω(∆)
< Mε (3.19)

where M depends on the doubling constant of the measure ω.

Now that absolute continuity is established, the exact same argument gives A∞.
The function f , constructed in (3.17), will have the same properties as before, except
that, for general sets E, f ≥ 1 a.e. dσ on E, and hence a.e. dω on E by absolute
continuity.

Before turning to the proof of the converse, we note the following corollary of this
argument.

Suppose that the Dirichlet problem for L with data in Lp is solvable in the sense that
an apriori estimate in terms of square functions holds:

‖S(u)‖Lp(∂Ω,dσ) . ‖f‖Lp(∂Ω,dσ).

Then the argument above shows that also

‖N(u)‖Lp(∂Ω,dσ) . ‖f‖Lp(∂Ω,dσ).
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This can be derived from 3.9 as follows. Let f be positive and supported in a
surface ball ∆ of radius r, and let ∆′ be as above. Then

(ω(∆)−1

∫

∆

fdω)p ≤ Cσ(∆)−1

∫

∆′
Sp

r (u)dσ ≤ Cσ(∆)−1

∫

∆′
fpdσ (3.20)

shows that dω is absolutely continuous with respect to dσ and the density belongs to
Bq, where 1/p + 1/q = 1.

Proof of the Converse. This part of the proof of Theorem 2.1 uses ideas in in Fabes-
Neri [12], where the authors showed that the BMO Dirichlet problem was solvable for
the Laplacian in Lipschitz domains.

By assumption, since dωL ∈ A∞(∂Ω, dσ), there is p0 > 1 such that the Dirichlet
problem (Dp) for L is solvable for all p0 < p ≤ ∞.

Consider f ∈ BMO(∂Ω). We will establish that

∫∫

T (∆)

|∇u|2δ(X)dX ≤ Cσ(∆)‖f‖2
BMO. (3.21)

Consider any ∆ ⊂ ∂Ω a surface ball of radius r. Let us denote by ∆̃ and enlargement
of ∆ such that 3∆ ⊂ ∆̃ ⊂ 5∆. We will write the solution u of the Dirichlet problem
for boundary data f as u1 + u2 + u3, where u1, u2 solve

Lu1 = 0, u1

∣∣
∂Ω

= (f − f∆̃)χ∆̃,

Lu2 = 0, u2

∣∣
∂Ω

= (f − f∆̃)χ∂Ω\∆̃,

u3 = f∆̃ in Ω.

Here f∆̃ denotes, as before the average of f over the set ∆̃ and χ∆̃ is the characteristic

function of the set ∆̃.
We first estimate u1. We claim that

∫∫

T (∆)

|∇u1|2δ(X)dX ≤ C

∫

∆̃

S2
r (u1) dσ. (3.22)

Let us denote by ∆X the set {Q ∈ ∂Ω; X ∈ Γ(Q)}. It follows that σ(∆X ∩ ∆̃) ≈
δ(X)n−1. Hence

∫∫

T (∆)

|∇u1|2δ(X)dX ≤ C

∫∫

T (∆)

δ(X)2−n|∇u1|2σ(∆X ∩ ∆̃)dX

≤ C

∫

Q∈∆̃

∫

Γr(Q)

δ(X)2−n|∇u1|2 dX dσ (3.23)

≤ C

∫

∆̃

S2
r (u1) dσ.
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By Hölder inequality for sufficiently large p (such that the Lp Dirichlet problem is
solvable on Ω)

∫

∆̃

S2
r (u1) dσ ≤ σ(∆̃)

p−2
p

(∫

∆̃

Sp(u1) dσ

)2/p

≤ Cσ(∆)
p−2

p

(∫

∆̃

|u1|p dσ

)2/p

. (3.24)

The last inequality uses solvability of the Dirichlet problem in Lp, which implies that
the Lp norm the square function is comparable to the Lp norm of the boundary data.
We put (3.22) and (3.24) together to obtain an estimate

∫∫

T (∆)

|∇u1|2δ(X)dX ≤ Cσ(∆)
p−2

p

(∫

∆̃

|f − f∆̃|p dσ

)2/p

≤ Cσ(∆)‖f‖2
BMO(p). (3.25)

This is the desired estimate for u1. Now we handle u2. This function is a solution of
the equation Lu2 = 0 with Dirichlet boundary data f2 := f − (f − f∆̃)χ∆̃. Let us call
by f+

2 and f−2 the positive and negative part of the function f2, that is f2 = f+
2 − f−2

and f+
2 , f−2 ≥ 0. We denote by u±2 the solution of the Dirichlet problem

Lu±2 = 0 in Ω, u±2
∣∣
∂Ω

= f±2 .

Hence u±2 ≥ 0 and u2 = u+
2 − u−2 . We claim the following

Lemma 3.1. There exist C > 0 depending only on the ellipticity of the operator L
such that for any X ∈ Ω

(
δ(X)−n

∫

B(X, δ(X)/2)

|∇u±2 (Y )|2dY

)1/2

≤ C

δ(X)

∫

∂Ω

f±2 (Q) dωX(Q). (3.26)

Here ωX is the elliptic measure for the operator L at the point X.

This statement is a consequence of the Poincaré inequality that allows to estimate
the integral of a gradient by an average of (u±2 − u±2 (X))2 over slightly larger ball and
by Harnack inequality that implies u±2 (Y ) ≈ u±2 (X) for Y ∈ B(X, δ(X)/2). Notice
that the integral

∫
∂Ω

f±2 (Q) dωX(Q) equals to the value of u±2 at the point X.
Let us set

v2(X) =

∫

∂Ω

|f2(Q)| dωX(Q) =

∫

∂Ω

(f+
2 (Q) + f−2 (Q)) dωX(Q). (3.27)

It follows that v2(X) = u+
2 (X) + u−2 (X).

Lemma 3.2. There exist C, ε > 0 depending only on the ellipticity constant of the
operator L such that for all x ∈ T (∆):

• v2(X) ≤ C‖f‖BMO

12



• v2(X) ≤ C‖f‖BMO

(
δ(X)

r

)ε

. Here r is the radius of the surface ball ∆.

We postpone the proof of this lemma until we show how it gives us the desired
estimate.

To to that we consider a standard ‘dyadic’ decomposition of the Carleson region
T (∆). What this means is that T (∆) can be written as a union of disjoint regions In,
n = 1, 2, 3, . . . such that for each region In the diameter of the region d = diam(In) is
comparable to the distance dist(In, ∂Ω) and the volume of the region is comparable to
dn. For each region In we denote by xn a point inside In. It follows that

∫∫

T (∆)

|∇u±2 |2δ(X)dX ≤
∑

n

∫∫

In

|∇u±2 |2δ(X)dX ≤ C
∑

n

δ(xn)
|u±2 (xn)|
δ(xn)2

δ(xn)n

≤ C

∫

T (∆)

|u±2 (X)|2
δ(X)

dX ≤ C

(
r−2ε

∫

T (∆)

δ(X)2ε−1dX

)
‖f‖2

BMO. (3.28)

Here we used Lemma 3.1 for the last estimate in the first line of (3.28) and Lemma 3.2
for the last estimate in the second line (clearly u±2 (X) ≤ v2(X)).

Since r−2ε
∫

T (∆)
δ(X)2ε−1dX ≤ Crn−1 ≈ σ(∆) we see that (3.25) and (3.28) together

implies the estimate (3.21) we sought (function u3 is constant, hence the required
estimate hold trivially).

Proof of Lemma 3.2. The first estimate of the lemma, namely that v2(X) ≤ C‖f‖BMO,
essentially follows from Lemma on p.35 in [12]. As stated there

v2(X) =

∫

∂Ω\∆̃
|f − f∆̃|K(X, Q)dσ(Q),

for some kernel K(X,Q) (a Radon-Nykodim derivative of the elliptic measure ωX).
Fabes and Neri then use then fact that K ∈ B2(dσ)2 to establish the estimate. By
looking at their proof we see that it is enough to have K ∈ Bq for some q > 1. This
holds, as we assume that ωX ∈ A∞(dσ) =

⋃
q>1 Bq(dσ).

The further improvement in the estimate v2(X) ≤ C‖f‖BMO

(
δ(X)

r

)ε

is a conse-

quence of Di Giorgi-Nash-Moser theory. Nonnegative solutions u of L in the region
T (∆̃) which vanish on 2∆ satisfy

u(X) ≤ C

( |X −Q|
r

)ε

sup
T (2∆)

u, for any X ∈ T (∆).

Here ε only depends on the ellipticity constant of the operator L and Q is the center of
the ball ∆. (See for example (1.9) in [20] for reference). From this the estimate follows

as we can move point Q around (within ∆) as our function vanishes on ∆̃ ⊃ 3∆.

Now we prove the reverse estimate to (3.21). We want to show that

‖f‖2
BMO∗(dσ) ≤ C sup

∆⊂∂Ω

∫∫

T (∆)

|∇u|2δ(X)
dX

σ(∆)
. (3.29)

2We denote by Bq the class of Gehring weights. The weights in this class satisfy the reverse Hölder
inequality with exponent q.
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In this case it is more convenient to use (2.3) to define BMO norm. We first prove the
following

sup
∆⊂∂Ω

inf
c∆

σ(∆)−1

∫

∆

|f − c∆|dσ ≤ C sup
∆⊂∂Ω

(
inf
c∆

ω(∆)−1

∫

∆

|f − c∆|pdω

)1/p

. (3.30)

Here ω = ωX0 is the elliptic measure for the operator L at some (fixed) interior point
X0. This inequality implies that a BMO function with respect to the surface measure
σ is also a BMO function with respect to the elliptic measure ω. Indeed, Let dσ = kdω.
The fact ω ∈ A∞(dσ) implies that σ ∈ A∞(dω) =

⋃
q>1 Bq(dω). Hence there exists

q > 1 such that k satisfies the reverse Hölder inequality

(
ω(∆)−1

∫

∆

kq dω

)1/q

≤ Cω(∆)−1

∫

∆

k dω for all ∆ ⊂ ∂Ω. (3.31)

It follows

σ(∆)−1

∫

∆

|f − c∆|dσ = σ(∆)−1

∫

∆

|f − c∆|k dω

≤ σ(∆)−1

(∫

∆

kq dω

)1/q (∫

∆

|f − c∆|pdω

)1/p

(3.32)

≤ Cσ(∆)−1ω(∆)1/q−1

(∫

∆

k dω

)(∫

∆

|f − c∆|pdω

)1/p

.

= C

(
ω(∆)−1

∫

∆

|f − c∆|pdω

)1/p

. (3.33)

This gives (3.30). It also follows that it suffices to prove (3.29) with dω measure on
the left-hand side instead of dσ.

In what follows we use the following lemma from [19].

Lemma 3.3. Let X0 be a fixed point inside a Lipschitz domain Ω, ωX0 the elliptic
measure for an operator L at X0 and G(., .) the Green’s function for L. Then for any
open surface ball ∆r ⊂ ∂Ω or radius r such that δ(X0) ≥ 2r and

G(X0, Y )rn−2 ≈ ω(∆r), (3.34)

where Y ∈ Ω such that dist(Y, ∆r) ≈ δ(Y ) = r. The precise constants in the estimate
(3.34) only depends on the ellipticity of L and Lipschitz character of domain Ω.

The following lemma is crucial for the proof.

Lemma 3.4. There exists C > 0 such that for all f ∈ BMO(dω)

‖f‖BMO∗(dω) ≤ C sup
∆⊂∂Ω

(∫∫

T (∆)

|∇u|2G(X0, X)
dX

ω(∆)

)1/2

. (3.35)
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Assume for the moment the Lemma is true. By using Lemma 3.3 we get that

∫∫

T (∆)

|∇u|2G(X0, X)dX ≤ C

∫∫

T (∆)

|∇u|2δ(X)2−nω(∆X)dX, (3.36)

where ∆X is as before the set {Q ∈ ∂Ω; X ∈ Γ(Q)}. By changing the order of
integration we get that

∫∫

T (∆)

|∇u|2δ(X)2−nω(∆X)dX ≤
∫

∆̃

S2
ru(Q) dω(Q). (3.37)

Combining (3.35)-(3.37) we get that

‖f‖BMO∗(dω) ≤ sup
∆⊂∂Ω

(∫

∆

S2
ru(Q)

dω(Q)

ω(∆)

)1/2

. (3.38)

Now we use the same trick as above to change measure back from ω to σ. Again using
reverse Hölder inequality (now for k−1) we get that

sup
∆r⊂∂Ω

(∫

∆r

S2
ru(Q)

dω(Q)

ω(∆r)

)1/2

≤ C sup
∆r⊂∂Ω

(∫

∆r

Sq
ru(Q)

dσ(Q)

σ(∆r)

)1/q

for some q > 2.

Finally, there exists C > 0

sup
∆r⊂∂Ω

(∫

∆r

Sq
ru(Q)

dσ(Q)

σ(∆r)

)1/q

≤ C sup
∆r⊂∂Ω

(∫

∆r

S2
ru(Q)

dσ(Q)

σ(∆r)

)1/2

(3.39)

= C sup
∆⊂∂Ω

(∫∫

T (∆)

|∇u|2δ(X)
dX

σ(∆)

)1/2

.

The first estimate in (3.39) follows from the BMO John-Nirenberg argument (same
way as (2.2) is established). This concludes the proof of Theorem 2.1 (modulo Lemma
3.4).

Proof of Lemma 3.4. We fix a surface ball ∆ ⊂ ∂Ω or radius r and center Q. As before
we consider a point X0 inside Ω such that δ(X0) ≥ 5r. Finally, let us denote by D the
domain Ω∩B(Q, 4r). We pick a point X ∈ D such that dist(X, ∂D) ≈ 2r. We denote
by ν the elliptic measure for operator L on the domain D with pole at X.

We study relations between measures ω and ν. The following Lemma holds

Lemma 3.5. For any measurable set E ⊂ ∆

ω(E)

ω(∆)
≤ Cν(E), (3.40)

where the constant C > 0 only depends on the ellipticity constant and Lipschitz char-
acter of the domain Ω.
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It suffices to establish (3.40) for all balls ∆′ ⊂ ∆, as the general statement for all
measurable sets E follows by a covering lemma. For both balls ∆′ and ∆ we find points
Y ′ and Y , respectively such that dist(Y ′, ∂∆′) ≈ δ(Y ′) = r′ and dist(Y, ∂∆) ≈ δ(Y ) =
r, where r′ and r are radii of these balls. According to Lemma 3.3

ω(∆′) ≈ GΩ(X0, Y
′)(r′)n−2, and ν(∆′) ≈ GD(X,Y ′)(r′)n−2.

Hence
ω(∆′)
ν(∆′)

≈ GΩ(X0, Y
′)

GD(X, Y ′)
≈ GΩ(X0, Y )

GD(X, Y )
.

The last relation comes form the comparison principle for two positive solutions v(.) =
GΩ(X0, .) and w(.) = GD(X, .) that vanish at the boundary. Finally,

ω(∆′)
ν(∆′)

≈ GΩ(X0, Y )

GD(X,Y )
≈ ω(∆)rn−2

ν(∆)rn−2
,

again by using Lemma 3.3. However, ν(∆) = O(1), since the measure ν is doubling,
and ν(∂D) = 1. Hence Lemma 3.5 follows.

By Lemma 3.5 we see that for any c∆ ∈ R∫

∆

|f − c∆|2 dω

ω(∆)
≤ C

∫

∆

|f − c∆|2dν ≤ C

∫

∂D
|u− c∆|2dν. (3.41)

Since ν is the natural (elliptic) measure for the domain D it follows that the L2(dν)
Dirichlet problem is always solvable in this domain. This implies the the L2(dν) norm
of the square function is comparable with the L2(dν) of the (normalized) boundary
data, i.e.,

inf
c∆∈R

∫

∂D
|u− c∆|2dν ≈

∫

∂D
S2u dν ≈

∫∫

Ω\Br/8(X)

|∇u(Y )|2GD(X,Y )dY. (3.42)

Finally, we claim that

GD(X, Y ) ≤ GΩ(X,Y ) ≈ GΩ(X0, Y )

ω(∆)
, for all Y ∈ Ω \Br/8(X). (3.43)

Combining the estimates (3.41)-(3.43) we obtain Lemma 3.4. The first estimate of
(3.43) is simply a maximum principle, as GD(X, Y ) vanishes on the whole ∂D, and
GΩ(X, Y ) is positive at the portion of this boundary. Both functions have same pole

at X. The relation GΩ(X, Y ) ≈ GΩ(X0,Y )
ω(∆)

can be established as follows. For Y ∈
Ω \ Br/8(X) such that δ(Y ) ≥ r Lemma 3.3 implies that GΩ(X0, Y ) ≈ rn−2ω(∆). On
the other hand GΩ(X, Y ) ≈ rn−2 as Y is of distance r from the pole and also r away
from the boundary. For Y near the boundary we use the comparison principle (since
both function vanish at ∂Ω. This gives

GΩ(X,Y )

GΩ(X0, Y )
≈ GΩ(X, Y ′)

GΩ(X0, Y ′)

for all Y, Y ′ ∈ Ω\Br/8(X). This establishes (3.43) and concludes the proof of Theorem
2.1.
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