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Abstract. In this paper we study the following question related
to Diophantine approximations and geometric measure theory: for
a given set Ω find α such that α−θ has bad Diophantine properties
simultaneously for all θ ∈ Ω. How do the arising Diophantine
inequalities depend on the geometry of the set Ω? We provide
several methods which yield different answers in terms of the metric
entropy of Ω and consider various examples.

Furthermore, we apply these results to explore the asymptotic
behavior of the directional discrepancy, i.e. the discrepancy with
respect to rectangles rotated in certain sets of directions. It is well
known that the extremal cases of this problem (fixed direction vs.
all possible rotations) yield completely different bounds. We use
rotated lattices to obtain directional discrepancy estimates for gen-
eral rotation sets and investigate the sharpness of these methods.

1. Introduction

In the present paper we study an interesting problem which lies at the
interface of Diophantine approximations and geometric measure theory
and apply our results to problems in geometric discrepancy theory.

1.1. Diophantine approximation. The central question of this in-
vestigation is the following:

Given a set Ω ⊂ [0, 1), find a point α ∈ [0, 1) so that its distances
to all points of Ω have simultaneously bad Diophantine approximation
properties, i.e. for each θ ∈ Ω

(1.1)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ > 1

q2 · ψ(q)
,

where p ∈ Z, q ∈ N, and ψ is a non-decreasing function. What is the
optimal relation between the geometry of the set Ω and the function ψ?

We briefly comment on the history and the background of the prob-
lem. Of course, if Ω = {θ0} is a singleton, one can choose α so that
ω = α − θ0 has a countinued fraction with bounded partial quotients
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(see §4.2 for proper definitions) and hence is a badly approximable num-

ber, i.e.

∣∣∣∣ω − p

q

∣∣∣∣ ≥ c

q2
, in which case ψ is a constant. This inequality

is best possible due to Dirichlet’s theorem.
In 1947 Hall [14] proved that any real number can be represented

as a sum of two continued fractions with partial quotients bounded by
4. This easily implies that for any two-element set Ω = {θ1, θ2} there

exists α such that

∣∣∣∣(α− θ1)− p

q

∣∣∣∣ ≥ c

q2
and

∣∣∣∣(α− θ2)− p

q

∣∣∣∣ ≥ c

q2
, where

c > 0 is an absolute constant.
This result was extended to all finite sets Ω by Cassels [8] in 1956

(with some generalizations by Davenport [10] in 1964): there exists a
constant c = c(N) > 0 such that for any Ω = {θ1, ..., θN} there exists
α ∈ [0, 1) such that for all j = 1, ..., N we have

(1.2)

∣∣∣∣(α− θj)− p

q

∣∣∣∣ ≥ c

q2

for all p ∈ Z, q ∈ N. The constant in this inequality behaves like
c(N) ≈ 1/N2.

In their previous work [6] the authors of the present paper had made
an attempt to understand this question in the case of infinite sets Ω.
Obviously, it is too optimistic to expect the same estimates in this
situation, hence ψ(q) in (1.1) has to be an increasing function whose
nature depends on the geometry of Ω. Generalizing the methods of
Cassels and Davenport, we have considered several particular classes
of sets: lacunary sequences, lacunary sets of finite order (see §3.3 for
the definition), and sets with small upper Minkowski dimension. In
this article, we continue this line of investigation by introducing new
methods, extending and sharpening our previous results.

We consider generic sets Ω ⊂ [0, 1) and obtain estimates of the type
(1.1) in terms of the entropy properties of Ω. More precisely, if N(δ)
denotes the covering number of Ω, i.e. the cardinality of the smallest
covering of Ω by open intervals of length δ, we define F (δ) = δ ·N(δ)
(see Definitions 2.1 and 2.2 for more details). In §2 we prove the fol-
lowing results:

There exists α ∈ [0, 1) such that for all θ ∈ Ω, all p ∈ Z, and all
q ∈ N:

• Theorem 2.1:

(1.3)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ cF−1

(
F−1

(
γ

q2

))
for some absolute constants c, γ > 0.
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• Theorem 2.2:

(1.4)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ F−1

(
γ

q2 · h(q)

)
,

where h(q) satisfies
∑

1
q·h(q)

<∞ and γ > 0 depends on h.

• Theorem 2.3:

(1.5)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ δ(q),

where δ(q) satisfies

d1/δ(Q)e∑
q=Q

q · F (δ(q)) ≤ c0 for a small constant

c0 > 0 and all sufficiently large Q ∈ N.

The estimates above are obtained using different methods: (1.3) is
a generalization of the Cassels–Davenport approach and the authors’
prior work, (1.4) comes from a rather trivial counting argument, and
(1.5) is based on the dyadic constructions of Peres and Schlag [21].

The range of applicability of these estimates also varies: while (1.3)
gives better estimates for “sparse” sets Ω (finite, “superlacunary”, see
§3.5), (1.4) and (1.5) yield better results for “thicker” sets (lacunary of
finite order, positive Minkowski dimension, etc.).

Both main methods exploited in this paper are iterative schemes
which construct systems of nested intervals by avoiding the “bad” sets.
The difference between the estimates they yield may be heuristically
explained by the fact that the method of Cassels and Davenport is
“local” – it carefully builds a single sequence of nested intervals (see §2.1
for details), while the Peres–Schlag approach is “global” – it produces
a dyadic Cantor-like set (the details are described in §2.3). Hence the
former technique is better suited for “thin” sets, while the latter is
better adjusted to “denser” ones.

The boundary between these methods seems to happen when Ω is
a lacunary sequence, in which case both (1.3) and (1.5) provide the
right-hand side of the same order c

q2 log2 q
. These issues are explored

and compared in §3.
It is not clear whether the estimates above are optimal. It may

be reasonable to conjecture that the correct lower bound is perhaps
F−1

(
γ
q2

)
. In particular, in the lacunary case this would yield c

q2 log q
,

i.e. an improvement of our bound by log q. This resonates with the
fact that in the problem of Erdős (see the beginning of §2.3) the result
of Peres and Schlag is generally believed to be worse than the sharp
bound by a logarithm.

1.2. Directional discrepancy. The second part of the paper is de-
voted to investigating the directional discrepancy of finite point-sets
in two dimensions. For a set of directions Ω ⊂ [0, π/2), we consider
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the family of rectangles pointing in directions determined by Ω (or,
equivalently, axis-parallel rectangles rotated by angles from Ω):
(1.6)
AΩ = {rectangles R : a side of R makes angle φ ∈ Ω with the x-axis}.
We will interchangeably refer to Ω as the set of directions or rotation
set. For a finite point set PN ⊂ [0, 1]2 of N points, its directional
discrepancy with respect to Ω is defined as

DΩ(PN) = sup
R∈AΩ, R⊂[0,1]2

|DΩ(PN , R)| = sup
R∈AΩ, R⊂[0,1]2

∣∣∣∣#PN ∩R−N · |R|∣∣∣∣
and shows how well the discrete set PN approximates the Lebesgue
measure with respect to rectangles R ∈ AΩ. We shall be interested in
the relations between the asymptotic behavior of the quantity

DΩ(N) = inf
PN⊂[0,1]2

DΩ(PN).

for large values of N and the geometric properties of the set Ω.
The interest in this question comes from the following classical results

in discrepancy theory:

• When the direction is fixed, e.g. the case of axis-parallel rect-
angles (Ω = {0}),

(1.7) DΩ(N) ≈ logN.

The lower bound was proved by Schmidt in 1972 [25], and the
upper bound goes back to at least 1904, Lerch [18]. This esti-
mate continues to hold when Ω is finite [9].
• When the rectangles are allowed to rotate in arbitrary direc-

tions, i.e. Ω = [0, π/2), the relevant discrepancy estimates be-
come polynomial in N , see Beck [3, 4]:

(1.8) N
1
4 . DΩ(N) . N

1
4

√
logN.

These well-known results already make it obvious that the behavior
of directional discrepancy depends radically on the geometry of the
set of rotations Ω. It is therefore interesting to understand the exact
nature of the relation between DΩ(N) and the geometry of the set
Ω. Several intermediate situations, such as lacunary sets (and their
generalizations) and sets with small upper Minkowski dimension, have
been considered in the prior work of the authors of this paper [6],
where some upper discrepancy bounds for these partial cases have been
obtained. The present paper generalizes previous results and provides
a general method of obtaining upper bounds on directional discrepancy
based on the geometric (entropy) properties of the set Ω.

The Diophantine approximation question described in §1.1 enters
the picture in the following way. In the case of axis-parallel rectan-
gles (when Ω = {0} is a singleton), one of the most classical ways to
construct a low-discrepancy point distribution is to take a standard
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(appropriately rescaled) integer lattice 1√
N
Z × 1√

N
Z and rotate it by

an angle α whose tangent has bad Diophantine approximation prop-
erties. The resulting distribution PαN In particular, it is well known

that, if tanα is badly approximable, i.e.

∣∣∣∣tanα− p

q

∣∣∣∣ ≥ c

q2
for all p ∈ Z,

q ∈ N, then DΩ(PN) ≈ logN , which according to (1.7) is asymptoti-
cally best possible. Other Diophantine estimates can also be translated
into discrepancy bounds, see §4–§5.

Therefore, for a general set Ω, in order to produce a set with low
directional discrepancy, one may attempt to find a rotation α which
is ‘bad’ with respect to all directions in Ω at the same time, in other
words, such that tan(α−θ) has bad Diophantine properties for all θ ∈ Ω
simultaneously. Then, just as in the axis-parallel case, for each fixed
θ ∈ Ω, the rotated lattice PαN will have low discrepancy with respect to
rectangles pointing in the direction of θ. But since the estimates hold
for all θ ∈ Ω, the directional discrepancy DΩ(PαN) will also be small.

For finite sets Ω the existence of such a rotation is precisely the
Cassels–Davenport lemma (1.2) with (α− θj) replaced by tan(α− θj)
(the fact that one can replace (α − θ) by more general f(α − θ) was
observed by Davenport [10], see §2.4). This fact has been applied in
the discrepancy context by Beck and Chen [5], Chen and Travaglini [9].

For infinite rotation sets Ω one should anticipate the right-hand side
to be somewhat smaller than 1/q2, which in turn would lead to larger
discrepancy bounds depending on the geometry of Ω. Results of this
type have been obtained in [6] for several particular examples of rota-
tion sets.

The results of our current work (1.3)–(1.5) with (α− θ) replaced by
tan(α − θ) provide the rotation angle α with bad Diophantine prop-
erties relative to Ω for an arbitrary set Ω in terms of its covering
function. These Diophantine inequalities can then be translated into
one-dimensional discrepancy estimates using either the Erdős-Turan in-
equality or the asymptotics of the partial quotients (the second method
works slightly better in the most delicate situations, see §4).

Finally, using the approach described in [5, 9, 6], these estimates are
applied to directional discrepancy in §5. Using this machinery one can
obtain directional discrepancy estimates for any rotation set Ω; however
the optimization required along the way prevents one from being able
to write a generic formula for DΩ(N) in terms of the covering function
of Ω. In the specific partial cases that we have considered this algorithm
gives the following bounds:

• If Ω is a lacunary sequence, we have

DΩ(N) . log3N.

• If Ω is a lacunary set of order M , we have

DΩ(N) . logM+2 N.
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• If Ω has upper Minkowski dimension d ∈ [0, 1), we have

(1.9) DΩ(N) . N
d
d+1

+ε.

• If Ω is a “superlacunary” sequence, we have

DΩ(N) . logN · (log logN)2.

In §6 we approach the question of sharpness of the discrepancy esti-
mates obtained in this fashion in §5 and obtain some results, which are
conditional in the following sense: as long the Diophantine bounds of
§2 are sharp, we can prove lower bounds for the directional discrepancy,
which almost match the upper bounds obtained in §5. In particular,
in the case when Ω has upper Minkowski dimension 0 < d < 1, we
show that the directional discrepancy estimate (1.9) essentially cannot
be improved, provided that the rotation α produced in (1.5) is best
possible.

Throughout the paper we use the notation A . B, which means
that there exists an absolute constant C, independent of N , such that
A ≤ CB, and write A ≈ B if A . B . A. For a finite set F , we denote
its cardinality by #F .

2. Main results on simultaneous Diophantine
approximations

In this section we shall describe three different approaches to the
main Diophantine approximation question formulated in the introduc-
tion. The first approach (§2.1) is based on the methods of the aforemen-
tioned lemma of Cassels and Davenport and is a direct generalization
of the results obtained in [6]. The second method (§2.2) is a rather
simple measure-theoretic counting argument. The approach presented
in §2.3 involves Cantor-type constructions based on the ideas of Peres
and Schlag [21] and somewhat refines the result of §2.2. While the
methods provide different answers, they are not redundant – in various
geometric situations better estimates are given by different approaches.
This will be discussed in detail in §3.

Definition 2.1. Let Ω ⊂ R. The covering function of Ω is defined as
(2.10)

N(δ) = min

{
N ∈ N : ∃ J1, J2, ..., JN with |Jk| = δ and Ω ⊂

N⋃
k=1

Jk

}
,

where J1, J2, ..., JN are open intervals, i.e. N(δ) is the size of the
smallest covering of Ω by open intervals of length δ. The logarithm of
this function (and sometimes the function itself) is often referred to as
the metric entropy of Ω.

In particular, in the specific cases considered in [6], one has the
following relations.
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• N(δ) is constant, if Ω is finite;
• N(δ) . log 1

δ
, if Ω is lacunary;

• N(δ) .

(
log 1

δ

)M
, if Ω is lacunary of order M ;

• N(δ) ≤ Cε
(

1
δ

)d+ε
, if Ω has upper Minkowski dimension d.

Definition 2.2. Let N(x) be the covering function of Ω as defined in
(2.10). Define the function

F (x) = x ·N(x).

This function can be viewed as the total mass of the most economical
covering of Ω by intervals of length x.

We briefly discuss some simple technical properties of this function.
In most situations of interest N(x) � 1/x, therefore, F (x) → 0 as
x→ 0. Since F is not monotone, we define

F−1(y) = sup{x > 0 : F (x) < y}.

Obviously F−1 is an increasing function. Since F (x) ≥ x, we have
F−1(y) ≤ y. Since F is piecewise linear and only has downward jumps,
one can easily see that F

(
F−1(y)

)
= y, i.e. F−1 is the right inverse of

F . Take any 0 < y∗ ≤ y < 1 and set x = F−1(y) and x∗ = F−1(y∗).
We obtain that x∗ ≤ x and

F−1(y)

y
=

x

F (x)
=

1

N(x)
≥ 1

N(x∗)
=

x∗

F (x∗)
=
F−1(y∗)

y∗
.

Since F−1 is increasing, writing
F−1

(
F−1(y)

)
y

=
F−1

(
F−1(y)

)
F−1(y)

· F
−1(y)

y
and applying the above inequality twice, we find that

(2.11)
F−1

(
F−1(y)

)
y

≥
F−1

(
F−1(y∗)

)
y∗

whenever 0 < y∗ ≤ y < 1. We shall make use of this monotonicity in
(2.16).

2.1. Generalized Cassels–Davenport lemma. We start by describ-
ing the general idea of the argument which generalizes the ideas of Cas-
sels and Davenport. This approach was initiated in [6]. Assume that
for a certain choice of parameters Rn, |In|, cn, depending on the set Ω
we can obtain the following statement:

Let Ω ⊂ [0, 1). There exists a sequence of nested closed intervals I0 ⊃
I1 ⊃ · · · ⊃ In ⊃ · · · in [0, 1) with |In| → 0 such that for all α ∈ In and
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all p, q ∈ Z with Rn ≤ q < Rn+1 we have, for all θ ∈ Ω:

(2.12)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ cn
q2
.

This would immediately imply that there exist α ∈ [0, 1) and C > 0
such that for all θ ∈ Ω, all p ∈ Z, q ∈ N we have∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ C

q2 ψ(q)
,

where the function ψ(q) is determined by the relation between cn and
Rn.

To prove (2.12), one proceeds inductively. At the nth step, the set Ω
is covered by at most Nn open intervals Jn,k of length δn, k = 1, ..., Nn.
The dependence between Nn and δn is governed by the geometry of the
set Ω, namely Nn = N(δn).

Next, one has to choose parameters Rn, |In|, cn, δn, Nn so that they
satisfy two inequalities:

2cn
R2
n

+ |In−1|+ δn ≤
1

R 2
n+1

and(2.13)

|In−1| −Nn

(
2cn
R2
n

+ δn

)
≥ (Nn + 1)|In|.(2.14)

Indeed, assuming that In−1 is constructed, fix one of the chosen inter-
vals Jn,k of length δn. Suppose inequality (2.12) fails for two sets of
numbers α′, α′′ ∈ In, θ′, θ′′ ∈ Jn,k, p′, p′′ ∈ Z, Rn ≤ q′, q′′ < Rn+1.
Then by (2.13)∣∣∣∣p′q′ − p′′

q′′

∣∣∣∣ ≤ ∣∣∣∣p′q′ − (α′ − θ′)
∣∣∣∣+

∣∣∣∣p′′q′′ − (α′′ − θ′′)
∣∣∣∣+ |(α′ − θ′)− (α′′ − θ′′)|

<
2cn
R2
n

+ |α′ − α′′|+ |θ′ − θ′′|

≤ 2cn
R2
n

+ |In−1|+ δn ≤
1

R 2
n+1

,

which shows that p′/q′ = p′′/q′′ (for otherwise they would have to differ
by at least 1/R 2

n+1). In other words, for each interval Jn,k there is at
most one fraction pk/qk with Rn ≤ qk < Rn+1 such that inequality
(2.12) is violated.

This implies that the inequality (2.12) is true for all α away from
the set

Sn =
Nn⋃
k=1

{(
pk
qk
− cn
R2
n

,
pk
qk

+
cn
R2
n

)
+ Jn,k

}
.
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Obviously, |Sn| ≤ Nn

(
2cn
R2
n

+ δn

)
and In−1\Sn consists of at most Nn+1

closed intervals. Thus the validity of (2.14) proves that In−1 \ Sn con-
tains at least one interval of length |In|.

In particular when the set Ω is finite (#Ω = N), to prove the Cassels–
Davenport’s lemma (1.2), one can choose the parameters Rn = Rn,
cn = c/N2 (for some absolute constants R, c > 0), δn = 0, Nn = N –
this is essentially the argument of Cassels and Davenport. The task of
proving similar lemmas for more general sets Ω is hence reduced to the
proper choice of these parameters.

We now turn to the first main result of this subsection.

Theorem 2.1. For any set Ω ∈ [0, 1) there exists α ∈ R such that for
all θ ∈ Ω, all p ∈ Z, and all q ∈ N we have∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ cF−1

(
F−1

(
γ

q2

))
for some absolute constants c, γ > 0.

Proof. For technical reasons instead of F (x) we shall use the function

F̃ (x) = x ·
(
4N(x) + 1

)
. Since F (x) ≤ F̃ (x) ≤ 5F (x) this would only

affect the constants. Obviously F̃ enjoys essentially the same properties
as F . In particular, similarly to (2.11) we have the relation

(2.15)
F̃−1

(
F̃−1(y)

)
y

≥
F̃−1

(
F̃−1(y∗)

)
y∗

for each 0 < y∗ ≤ y < 1.
We follow the approach sketched in the beginning of this subsection

and construct a sequence of nested closed intervals I0 ⊃ I1 ⊃ · · · ⊃
In ⊃ · · · in [0, 1) with |In| → 0 such that for all α ∈ In, all θ ∈ Ω, and
all p, q ∈ Z with Rn ≤ q < Rn+1, we have∣∣∣∣(α− θ)− p

q

∣∣∣∣ > cn
q2
,

where cn, |In|, Rn, δn will be chosen so as to satisfy the inequalities
(2.13) and (2.14). The exact choice of parameters is the following:

(1) The lengths of the intervals In are chosen so that

|In| = F̃−1(|In−1|),

which implies F̃ (|In|) = |In−1|. We also set δn = |In|. Notice

that 4|In| ≤ F̃ (|In|) ≤ |In−1|; therefore, |In| ≤ 1
4
|In−1| and

|In| → 0.
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(2) We define the sequence Rn by the relation

|In−1| =
1

2R 2
n+1

.

(3) The sequence cn is defined as

cn = |In| ·R2
n = F̃−1(F̃−1(|In−2|)) ·R2

n

= F̃−1
(
F̃−1

(
1/2R2

n

))
·R2

n.

In order to prove (2.13) we note that

2cn
R2
n

+ |In−1|+ δn = 3|In|+ |In−1| ≤
7

4
|In−1|

=
7

8R 2
n+1

<
1

R 2
n+1

.

In order to establish (2.14) we observe that

|In−1| −Nn

(
2cn
R2
n

+ δn

)
= |In−1| − 3Nn|In| = F̃ (|In|)− 3Nn|In|

= (4Nn + 1)|In| − 3Nn|In| = (Nn + 1)|In|.

We conclude that there exists an interval In such that for all α ∈ In,
and all p, q ∈ Z with Rn ≤ q < Rn+1,
(2.16)∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ c(n)

q2
=
F̃−1(F̃−1(1/2R2

n)) ·R2
n

q2
≥ F̃−1

(
F̃−1

(
1

2q2

))
,

where we have used the monotonicity of F̃−1(F̃−1(x))
x

(2.15).
�

2.2. Trivial measure-counting argument. While Theorem 2.1 pro-
vides an estimate of the order F−1

(
F−1(1/q2)

)
, there is a quick argu-

ment which allows one to obtain only one iteration of F−1 at the ex-
pense of a small loss. Let h(q) be an increasing function of q such that∑

1
q·h(q)

<∞. (Naturally, typical choices are h(q) = qε, h(q) = log1+ε q,

etc.)

Theorem 2.2. Fix h(q) as above. For any Ω ⊂ [0, 1) there exists
α ∈ [0, 1) such that for all θ ∈ Ω∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ F−1

(
γ

q2 · h(q)

)
for some constant γ > 0 depending on h.

Remark 2.1. Since F−1(x) ≤ x we see that this result is better than
Theorem 2.1 as long as the factor h(q) can be “shoved under the rug”.
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Proof. Fix q ∈ N and cover Ω byN(δ(q)) intervals Jq,j, j = 1, ..., N(δ(q)),
of length δ(q) to be chosen later. Since α − θ ∈ [−1, 1], we only need
to consider fractions p/q with −q ≤ p ≤ q. For each such fraction let
us remove intervals of the form Ij(p, q) =

(
p
q
− f(q), p

q
+ f(q)

)
+ Jq,j,

which have length 2f(q) + δ(q). Obviously, if α lies outside all of these
intervals, then it satisfies

∣∣(α− θ)− p
q

∣∣ > f(q) for this fixed value of q.

We set f(q) = δ(q). Then the length of each Ij(p, q) is 3δ(q). We

choose δ(q) so that F (δ(q)) ≤ γ

q2 · h(q)
. Then the total measure of all

the removed intervals for all q ∈ N is at most

∞∑
q=1

∑
|p|≤q

N(δ(q))∑
j=1

|Ij(p, q)| =
∞∑
q=1

∑
|p|≤q

3δ(q) ·N(δ(q))

≤ 9
∞∑
q=1

q · F (δ(q)) ≤ 9γ
∞∑
q=1

1

q · h(q)
< 1

if γ is small enough. Therefore, there are points in the interval [0, 1)
which have not been removed. For such points α we have

∣∣(α − θ) −
p/q
∣∣ > f(q) = δ(q) for all q ∈ N. �

This argument is rather crude as it completely disregards possible
intersections of the removed intervals. However, in some situation it
provides a satisfactory answer, see §3.4. The shortcoming of this ap-
proach is circumvented by the method that we describe next.

While the result of Theorem 2.2 is superseded by Theorem 2.3 in
the next subsection, we chose to still include it since it provides only a
slightly weaker estimate using a much simpler method.

2.3. The Peres–Schlag method. The method that we describe here
originates from the beautiful paper of Peres and Schlag [21] dealing with
a Diophantine approximation question which is somewhat similar in
spirit to ours. In particular, they prove that, given a lacunary sequence
of positive integers {nj} with

nj+1

nj
> 1 + ε, there exists θ ∈ [0, 1) such

that for all j ∈ N

(2.17) ‖njθ‖ >
cε

log 1
ε

, i.e.

∣∣∣∣θ − p

nj

∣∣∣∣ > cε

nj · log 1
ε

,

where ‖x‖ stands for the distance from x to the nearest integer.
The question has interesting history: in 1975 [12] Erdős asked whether

for any lacunary sequence of integers {nj} there exists θ ∈ [0, 1) such
that the fractional parts njθ (mod 1) are not dense in the unit inter-
val. However, it turned out that already in 1926 Khintchine [16] proved
that for any lacunary sequence {nj} there exists θ ∈ [0, 1) and γ > 0
such that ‖njθ‖ > γ which of course gives an affirmative answer to the



12 DMITRIY BILYK, XIAOMIN MA, JILL PIPHER, AND CRAIG SPENCER

question of Erdős. However, since Khintchine’s result had not been re-
discovered until very recently, Erdős’ problem has been independently
solved by de Mathan [19] (1980) and Pollington [22] (1979).

Quantitative bounds similar to (2.17) are interesting due to their
relations to chromatic numbers, intersective sets, and lacunary Fourier
series (see [15], [21]). While Khintchine was not concerned with the
dependence of γ on the lacunarity constant, his proof may be traced to
yield cε2/log2 1

ε
which was only improved by Katznelson [15] and Peres

and Schlag [21] in the early 2000’s.
In a nutshell, the method of Peres and Schlag consists of two main

ideas. First of all, one may observe that for each fixed n ∈ N the set
where ‖nθ‖ is large is periodic:

Gn =
{
θ ∈ R : ‖nθ‖ > γ

}
=
⋃
k∈Z

(
k

n
+
γ

n
,
k + 1

n
− γ

n

)
,

i.e., it consists of equal-length intervals repeated with step 1
n
. There-

fore, for a sparse sequence {nj}, the intersection of such sets closely
resembles a Cantor set construction. The main objective now is to
show that the arising Cantor-type set is non-empty.

The second important idea is the use of dyadic rather than arbitrary
intervals – this approximation allows one to better handle intersections,
since any two dyadic intervals are either disjoint or one is contained in
the other.

The original paper of Peres and Schlag uses a variant of the lo-
cal Lovász lemma to demonstrate that at each step the intersection
is not void. The heuristic explanation is simple: if the sets Gnj are
independent events with positive probabilities, then ∩Nj=1Gnj also has
positive probability and is thus non-empty. Various conditional prob-
ability arguments (e.g., the local Lovász lemma) allow one to draw the
same conclusion in the presence of some weak dependence between the
events.

This method has an additional advantage which lies in the fact that
one can easily estimate the Hausdorff dimension of the constructed ex-
ceptional sets due to their Cantor-type structure, see e.g. [7]. However,
we do not pursue this issue in the current paper.

Subsequently, this approach has been successfully applied to a num-
ber of problems in Diophantine approximation (in particular, to ques-
tions related to the celebrated Littlewood conjecture) by Bugeaud and
Moshchevitin [7], Moshchevitin [20], Rochev [23], etc., which required
significant refinements and extensions of the original method. Our ar-
guments strongly resonate with [7]. The first author would like to ex-
press his deep and sincere gratitude to Nikolay Moshchevitin for point-
ing out the Peres–Schlag method and for his interesting and fruitful
comments.

We prove the following theorem:
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Theorem 2.3. Let Ω ⊂ [0, 1). Assume that a decreasing function
δ : N→ [0, 1) with the property that δ(q) . q−2 satisfies the inequality

(2.18)

d1/δ(Q)e∑
q=Q

q · F (δ(q)) ≤ 1

64

for all Q ≥ q0. Then there exists α ∈ [0, 1) such that we have

(2.19)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ ≥ δ(q)

for all θ ∈ Ω and for all p ∈ Z, q ∈ N, q ≥ q0.

Remark 2.2. First of all, we notice that this theorem implies the result

of Theorem 2.2. Indeed, set δ(q) = F−1
(

γ
q2·h(q)

)
. Then q · F (δ(q)) =

γ
q·h(q)

and, since
∑

1
q·h(q)

< ∞, condition (2.18) is automatically satis-

fied for Q large enough.
We also want to remark that the precise form of condition (2.18) is

a technicality – in the concrete cases that we shall consider it can be
easily rescaled, see e.g. §3.3, §3.4, however in this general form the
relation does not scale nicely.

Proof. Following the notation of Theorem 2.2, for each fixed q ∈ N we
cover the set Ω by N(δ(q)) open intervals Jq,j, j = 1, ..., N(δ(q)) of
length δ(q). Denote by

Ij(p, q) =

(
p

q
− δ(q), p

q
+ δ(q)

)
+ Jq,j

(this interval has length 3δ(q)) and consider the problematic sets

Eq,j =

q⋃
p=−q

Ij(p, q), Eq =

N(δ(q))⋃
j=1

Eq,j.

Thus Eq is the set on which (2.19) may fail for the given value of q.
We shall prove that the intersection of Ec

q over q ∈ N is non-empty.
Rather than working with the sets Eq directly, we shall look at their

dyadic approximations. Open dyadic intervals are intervals of the form(
m2−l, (m + 1)2−l

)
, where m and l are integers. We set the scale

l(q) = blog2(1/3δ(q))c. Each of the intervals Ij(p, q) comprising the set
Eq can be then covered by either one or two open dyadic interval of
length 2−l(q). More precisely, in the latter case we take an open interval
of the form

(
m2−l(q), (m+ 2)2−l(q)

)
.

We denote by Aq,j the union of such dyadic intervals which cover
Eq,j and

Aq =

N(δ(q))⋃
j=1

Aq,j.
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Notice that Acq = [0, 1] \Aq, the complement of Aq, is a union of closed

dyadic intervals of length 2−l(q).
Define the sequence of denominators {qk} inductively by setting

qk+1 = d1/δ(qk)e and set Lk = l(qk). Consider the sets

Bq =

q⋂
n=q0

Acn.

We shall prove that for each k ∈ N the set Bqk is not empty. Since the
sets Bq are nested and closed, this will imply the existence of a point

α ∈
∞⋂
q=q0

Acq ⊂
∞⋂
q=q0

Ec
q .

We claim that Bqk (which consists of closed dyadic intervals of length
2−Lk) contains 2Lk+1−(k+3) dyadic intervals of length 2−Lk+1 which are a
part of Bqk+1

. We call the union of these intervals Cqk+1
. This statement

means that the measure µ
(
Bqk+1

)
≥ µ

(
Cqk+1

)
= 2−(k+3) and hence

Bqk+1
is not empty.

The proof of the claim is inductive and produces a nested sequence
of sets {Cqk} with µ

(
Cqk
)

= 2−(k+2). Assume that Cqk and Cqk+1
are

already constructed. We shall show that we can construct Cqk+2
⊂

Cqk+1
with the above properties. It is easy to see that

(2.20) Cqk+1
∩Bqk+2

= Cqk+1
\

qk+2⋃
q=qk+1+1

(
Cqk+1

∩ Aq
)
.

Going one level back we write Cqk =
⋃
ν Jν as a union of closed

dyadic intervals Jν of length 2−Lk . We observe that Eq,j consists of
open intervals of length 3δ(q) whose centers are equally spaced with
step 1

q
and Aq,j inherits roughly the same structure. If q ≥ qk+1, then

|Jν | = 2−Lk = 2−l(qk) ≥ 3δ(qk) ≥
3

qk+1

≥ 3

q
, i.e. q|Jν | ≥ 3.

We then obtain

µ
(
Jν ∩ Aq,j) ≤

⌈
|Jν |

(1/q)

⌉
· 2 · 2−l(q) ≤

(
1 + q|Jν |

)
2−l(q)+1

≤ 4

3
q|Jν | · 4 · 3δ(q) = 16 q δ(q) · |Jν |.(2.21)

Therefore, for qk+1 ≤ q ≤ qk+2

µ
(
Cqk ∩ Aq,j

)
≤ 16 q δ(q) · µ

(
Cqk
)

and hence

µ
(
Cqk ∩ Aq

)
≤ 16 q ·N(δ(q)) · δ(q) · µ

(
Cqk
)

= 16 q · F (δ(q)) · µ
(
Cqk
)
.

Since µ
(
Cqk
)

= 2µ
(
Cqk+1

)
and Cqk+1

⊂ Cqk , we have

µ
(
Cqk+1

∩ Aq
)
≤ µ

(
Cqk ∩ Aq

)
≤ 32 q · F (δ(q)) · µ

(
Cqk+1

)
.
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Using (2.20) we finally arrive at

µ
(
Cqk+1

∩Bqk+2

)
≥ µ

(
Cqk+1

)
−

qk+2∑
q=qk+1+1

µ
(
Cqk+1

∩ Aq
)

≥
(

1−
d1/δ(qk+1)e∑
q=qk+1

32 qF (δ(q))

)
µ
(
Cqk+1

)
≥ 1

2
µ
(
Cqk+1

)
,(2.22)

where we have used (2.18). Thus at least a half of Cqk+1
is contained

in Bqk+2
, and we can choose Cqk+2

⊂ Cqk+1
∩ Bqk+2

which consists of

dyadic intervals of length 2−Lk+2 and has total measure µ
(
Cqk+2

)
=

1
2
µ
(
Cqk+1

)
= 2−(k+4).

To prove the claim it remains to establish the base case of the induc-
tion. Namely we need to show that we can choose q0 ∈ N and construct
Cq0 and Cq1 . Similarly to (2.21) we establish that µ

(
[0, 1] ∩ Aq,j

)
≤

(q + 1) · 2−l(q)+1 ≤ 12(q + 1)δ(q), and hence

µ
(
Bq0

)
= µ

(
Acq0
)
≥ 1− 12(q0 + 1)F

(
δ(q0)

)
≥ 1− 24

64
≥ 1

2
,

where we have used the condition (2.18). Analogously to (2.22) we can
estimate

µ
(
Bq1

)
≥ µ

(
Bq0

)
−

q1∑
q=q0+1

µ
(
[0, 1] ∩ Aq

)
≥ 1

2
−
d1/δ(q0)e∑
q=q0

24 q F
(
δ(q)

)
≥ 1

2
− 24

64
=

1

8
.

Since Bq1 ⊂ Bq0 , we can construct Cq0 and Cq1 such that Cq0 ⊂ Bq0 ,
Cq1 ⊂ Cq0 ∩ Bq1 , and Cqk consists of 2Lk−(k+2) closed dyadic intervals
of length 2−Lk for k = 0, 1. �

2.4. Remarks. We would like to note that the statements of Theo-
rems 2.1, 2.2, and 2.3 remain true if we replace (α − θ) by f(α − θ)
where f is some function whose derivative is bounded above and below.
Indeed, instead of removing the exceptional sets directly we would have
to remove their preimages under f – this generalization was made by
Davenport [10]. In particular, for applications to directional discrep-
ancy we would need the existence of α such that tan(α− θ) has certain
Diophantine properties for each θ ∈ Ω ⊂ [0, π/2). In this setup (see
e.g. [6]) one has to initially restrict the range of α to

(
α0,

π
2
− α0

)
so

that tan′(α− θ) = 1
cos2(α−θ) stays bounded. All the arguments are then

repeated verbatim and we shall not make the distinction between these
formulations in the text.
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3. Examples and comparison of the methods

We now turn to considering various specific classes of sets Ω. As
pointed out earlier, in different cases different methods would produce
better results.

We shall start by revisiting the case studied by Cassels and Daven-
port – finite sets §3.1. We shall then look at more interesting infinite
examples: lacunary sequences §3.2, a slightly thicker example – lacu-
nary sets of order M ≥ 1 §3.3, and a substantially thicker case – sets
with upper Minkowski dimension 0 ≤ d < 1 §3.4. These three ex-
amples have been considered in the previous work of the authors [6];
however we now obtain better results in the latter two cases. We also
consider one new example – “superlacunary” sequences §3.5 which are
substantially sparser than lacunary sequences. In §3.6 we summarize
and compare our methods.

3.1. Finite sets. If Ω is finite, then N(x) = #Ω is constant for small
x, in which case F (x) = Nx. Thus Theorem 2.1 gives the original
lemma of Cassels and Davenport even with the same constant

F−1(F−1(γ/q2)) ≈ 1

N2q2
,

which is not surprising since the method of §2.1 is a direct generaliza-
tion of their result.

The two other methods do not give the same result (which is best
possible). Theorem 2.2 would only give the right-hand side of the

order
1

Nq2h(q)
with e.g. h(q) = log1+ε q. Theorem 2.3 removes ε in

this estimate: since
b∑

q=a

1

q · log q
≈ log log b− log log a, it is easy to see

that condition (2.18) is satisfied by δ(q) =
c

q2 log q
.

3.2. Lacunary sequences. A sequence Ω = {ωn}∞n=1 ⊂ [0, 1) is called

lacunary if for some ω ∈ [0, 1] and some λ < 1 we have 0 <
ωn+1 − ω
ωn − ω

< λ.

A typical example is the sequence Ω = {2−n}n∈N. In this case, N(x) ≈
log 1

x
, and thus F (x) ≈ x · log 1

x
and F−1(x) ≈ x

log(1/x)
. Hence we find

that Theorem 2.1 yields

(3.23) F−1(F−1(1/q2)) ≈ 1

q2 log2 q
.

At the same time, the trivial method of Theorem 2.2 with e.g. h(q) =

log1+ε q provides F−1

(
1

q2 · h(q)

)
≈ 1

q2 log1+ε q
· 1

log q
=

1

q2 log2+ε q
, i.e.

falling just short of log2 q in the denominator.
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On the other hand, Theorem 2.3 with δ(q) =
c

q2 log2 q
yields the same

right-hand side as (3.23). Indeed, then F
(
δ(q)

)
≤ c′

q2 log q
, and we have

(3.24)

d1/δ(Q)e∑
q=Q

q · F
(
δ(q)

)
≤ c′

Q3∑
q=Q

1

q log q
≈ log logQ3 − log logQ . 1,

i.e. condition (2.18) is satisfied if Q is large and c is small.
We see that in this case the Cassels–Davenport and the Peres–Schlag

methods give exactly the same answer.

3.3. Lacunary sets of finite order. We now take a look at some
classes of slightly denser sets. Let E ⊂ E ′ be closed subsets of R of
measure 0. In our case we restrict our attention to subsets of some
bounded interval, [0, 1] or [0, π/2]. We say that E ′ is a successor of E
if the following holds: there exists a constant c > 0 such that for each
x, y ∈ E ′ with x 6= y, we have

|x− y| ≥ cd(x,E),

where d(x,E) is the distance from x to the closed set E. We now define
lacunary sets of finite order.

Definition 3.1. A lacunary set of order zero is a singleton. A set is a
lacunary set of order M if it is a successor of a lacunary set of order
M − 1.

It is quite easy to see that a lacunary set of order 1 consists of at
most two lacunary sequences converging to the original singleton from
different sides with lacunarity constant λ ≥ 1+c, e.g., {0}∪{±2−n}n∈N.
In general, it is not hard to see that the set {2−n1 + 2−n2}ni∈N∪{∞} is
a lacunary set of order 2, and one can construct examples of lacunary
sets of this type for any finite order, namely

Ω = {2−j1 + 2−j2 + ...+ 2−jM}j1,...,jM∈N∪{∞}.

If Ω ⊂ [0, 1] is a lacunary set of order M , it is not hard to establish
the covering function estimate

(3.25) N(ε) . logM
1

ε
,

where the implicit constant would depend on the ‘successor’ constants
c used in each step of the definition.

Indeed, let Γ ⊂ [0, 1] be the lacunary set of order M − 1, which
is a predecessor of Ω . Let us cover Γ by NM−1 intervals of length
ε. Consider an interval (α, β) between two consecutive intervals from
the given cover of F . For any x, y ∈ Ω ∩ (α, β), we have |x − y| ≥
cd(x,Γ) ≥ cmin{|x − α|, |x − β|}. Hence, Ω ∩ (α, β) is a successor of
the two-point set {α, β} and thus consists of at most of two lacunary
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sequences: one converging to α, one to β. Therefore Ω ∩ (α, β) can be
covered by O(log 1

ε
) intervals of length ε, which implies that one can

cover Ω by

NM . (NM−1 + 1) · log
1

ε

intervals of length ε, which proves (3.25).

Remark. Such sets are natural objects in analysis. In particular,
Bateman [2] proved that the directional maximal function

MΩf(x) = sup
R∈AΩ: x∈R

1

|R|

∫
R

|f(x)| dx,

where AΩ is the set of rectangles pointing in directions of Ω as defined
in (1.6), is bounded on Lp(R2), 1 < p <∞, if and only if Ω is covered
by a finite union of lacunary sets of finite order. This condition is also
equivalent to the fact that Ω does not “admit Kakeya sets” (see [2, 26]).
Unfortunately, despite the apparent similarity of definitions, we do not
know any direct connections between the directional maximal function
and directional discrepancy.

We would also like to point out that the original definition of lacunary
sets of order M (a union of a lacunary set of order M −1 and lacunary
sequences converging to its points), which was given in [2] and used in
[6], is actually strictly weaker than Definition 3.1. We refer the reader
to [13] for a discussion of this issue. This inaccuracy, which propagated
into several papers, is quite important: in particular, the directional
maximal function theorem, as well as the covering number estimate
(3.25), both fail to hold under the original definition.

Since for lacunary sets of order M we have N(x) . logM(1/x), it

follows that F (x) . x · logM(1/x), and F−1(x) &
x

logM(1/x)
. Theorem

2.3 then provides the estimate with the right-hand side of the form

δ(q) =
c

q2 logM+1 q
.

The calculation is identical to (3.24) since q · F
(
δ(q)

)
.

1

q log q
. (The

trivial bound of Theorem 2.2 would be of the order
1

q2 logM+1+ε q
.)

The Cassels–Davenport method, however, would give us a worse
bound

F−1(F−1(1/q2)) &
1

q2 log2M q
.

This estimate has been obtained in [6]. We see that in this situation a
better answer is provided by the Peres–Schlag method.
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3.4. Positive upper Minkowski dimension. We now take a look at
a class of substantially thicker sets. The upper Minkowski dimension of
a set Ω ⊂ R is defined as the infimum of exponents d such that for any
0 < δ � 1 the set E can be covered by O(δ−d) intervals of length δ.
Assume that Ω has upper Minkowski dimension 0 ≤ d < 1. In this case

N(x) .
(

1
x

)d+ε
, and therefore, F (x) . x1−d−ε and F−1(x) & x

1
1−d+ε for

every ε > 0. Theorem 2.1 then yields

(3.26) F−1(F−1(1/q2)) ≈ q
− 2

(1−d)2
−ε
,

which was proved in [6].
However already the simple argument of Theorem 2.2 provides a

significantly larger bound. Taking h(q) = qε
′

we obtain

(3.27) F−1(1/q2+ε) & q−
2

1−d−ε,

for arbitrary ε > 0, which is obviously much better than (3.26). Theo-
rem 2.3 would not provide us with a stronger answer in this situation
since the exponents are only determined up to ε. However, if more

delicate information were available, e.g. N(x) .
(

1
x

)d
as in the case

of Cantor-type sets, then the Peres–Schlag method would have given a

better result, namely, q−
2

1−d . Anyway, the Cassels–Davenport approach
again loses the battle in this situation.

3.5. “Superlacunary” sequences. We now look at a substantially
less dense sets. Consider sequences that converge at a doubly expo-
nential rate, e.g. Ω =

{
2−2n

}
. In this case we have F (x) ≈ x ·N(x) ≈

x · log log 1
x

and F−1(x) ≈ x

log log(1/x)
. Theorem 2.1 then yields

(3.28) F−1

(
F−1

(
c

q2

))
&

1

q2(log log q)2
.

Theorem 2.2 with h(q) = log1+ε q gives

F−1

(
1

q2 · h(q)

)
&

1

q2 log1+ε q
· 1

log log q
&

1

q2 log1+ε′ q
,

which is much smaller. (Theorem 2.3 would only allow us to get rid
of the ε). Therefore, in this case a better estimate comes from the
Cassels–Davenport approach.

3.6. Summary. The discussion of this section suggests that the Cassels–
Davenport method yields better results for “thinner” sets (finite, “su-
perlacunary”), while the Peres–Schlag approach is more fruitful for
“thicker” sets (lacunary of finite order, positive Minkowski dimension).
Lacunary sequences seem to be the natural boundary between the
ranges of applicability of the two methods.
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The examples considered in this section are summarized in the fol-
lowing theorem.

Theorem 3.1. (i) Let Ω ⊂ [0, 1) be a lacunary sequence, then there
exists α ∈ [0, 1) such that for all θ ∈ Ω∣∣∣∣(α− θ)− p

q

∣∣∣∣ & 1

q2 log2 q

(ii) Let Ω be a lacunary set of order M , then there exists α ∈ [0, 1)
such that for all θ ∈ Ω∣∣∣∣(α− θ)− p

q

∣∣∣∣ & 1

q2 logM+1 q

(iii) Let Ω be a “superlacunary” set, then there exists α ∈ [0, 1) such
that for all θ ∈ Ω∣∣∣∣(α− θ)− p

q

∣∣∣∣ & 1

q2(log log q)2

(iv) Assume Ω has upper Minkowski dimension 0 ≤ d < 1, in this case
there exists α ∈ [0, 1) such that for all θ ∈ Ω

(3.29)

∣∣∣∣(α− θ)− p

q

∣∣∣∣ & 1

q
2

1−d+ε
.

The theorem continues to hold for Ω ⊂ [0, π/2) with (α−θ) replaced
by tan(α− θ).

3.7. Further examples. The methods exploited in this section can
provide an answer to the Diophantine question posed in §1.1 for an
arbitrary set Ω as long as its metric entropy estimates are available,
and the list of examples could be endless. We briefly include one more
example, which underpins the delicate difference in the performance of
our methods.

Consider a weakly lacunary sequence Ω = {ωk} ⊂ [0, 1] converging

to 0 satisfying 0 ≤ ωk+1

ωk
≤ 1− cka, for some for −1 < a ≤ 0, see

e.g. [1]. We then have F (x) ≈ x · log1/(1+a)(1/x) and and F−1(x) ≈
x · log−1/(1+a)(1/x). Running this through the methods described in
the previous section we obtain the following results.

Cassels–Davenport method yields the right-hand side of the order
1

q2 · log
2

1+a q
. At the same time, the trivial method gives the bound

1

q2 · log1+ 1
1+a

+ε q
, while the Peres–Schlag approach slightly refines this

estimate:
1

q2 · log1+ 1
1+a q

.
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Therefore, in this situation, the Peres–Schlag method outperforms
the Cassels–Davenport approach, except for breaking even when a = 0,
i.e., when Ω is a lacunary sequence.

4. One-dimensional discrepancy estimates

There are at least two standard ways to obtain discrepancy esti-
mates for the Kronecker sequence ({nβ})∞n=1 in terms of the Diophan-
tine properties of β: using the Erdős–Turan inequality or by exploring
the behavior of the partial quotients of the continued fraction of β.
In this section we shall explore and compare these approaches in the
present context.

Let us denote by ‖β‖ the distance from β to the nearest integer, and
by {β} its fractional part. We say that a real number β is of type < ψ
for some non-decreasing function ψ on R+ if for all natural q we have
q‖qβ‖ > 1/ψ(q). In other words, for all p ∈ Z and q ∈ N, we have

(4.30)

∣∣∣∣β − p

q

∣∣∣∣ > 1

q2 · ψ(q)
.

In these terms the results of the previous section state that the numbers

β = tan(α − θ) are of type < ψ with ψ(q) =
1

q2 · f(q)
, where f(q)

is the right-hand side in the estimates of Theorems 2.1, 2.2, or 2.3,
respectively.

The discrepancy of a one-dimensional infinite sequence ω = {ωn}∞n=1 ⊂
[0, 1] is defined as

DN(ω) = sup
x∈[0,1]

∣∣∣∣#{{ω1, ..., ωN} ∩ [0, x)
}
−Nx

∣∣∣∣.
4.1. Erdős–Turan inequality. A simplified form of the Erdős–Turan
inequality (see e.g. [17]) states that, for any sequence ω ⊂ [0, 1],

DN(ω) .
N

m
+

m∑
h=1

1

h

∣∣∣∣∣
N∑
n=1

e2πihωn

∣∣∣∣∣
for all natural numbers m. It is well adapted to sequences of the form
{nβ}, since∣∣∣∣∣

N∑
n=1

e2πihnβ

∣∣∣∣∣ ≤ 2

|e2πihβ − 1|
=

1

| sin(πhβ)|
≤ 1

2‖hβ‖
.

For a number β of type < ψ, one can bound the arising sum as follows
(see e.g., Exercise 3.12, page 131, [17])

(4.31)
m∑
h=1

1

h‖hβ‖
. log2m+ ψ(m) +

m∑
h=1

ψ(h)

h
.
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Therefore, one obtains the estimate

(4.32) DN({nβ}) . N

m
+ log2m+ ψ(m) +

m∑
h=1

ψ(h)

h
.

To deduce the final estimate in terms of N , the standard line of rea-
soning is to optimize the right-hand side in m.

While for some particular examples this was done by the authors in
[6], we consider these examples again since the Diophantine estimates
of Theorems 2.3 yield better bounds:

• Lacunary sequence: in view of (3.23) we have ψ(q) = C log2 q.
Then

m∑
h=1

1

h‖hβ‖
. log2m+

m∑
h=1

log2 h

h
≈ log3m.

Inequality (4.32) with m ≈ N then yields

(4.33) DN({nβ}) . log3N.

• For lacunary sets of order M , since ψ(q) = C logM+1 q, we
similarly obtain

DN({nβ}) . logM+2 N.

• For sets with upper Minkowski dimension d, according to (3.27)

we have ψ(q) = C q
2

1−d−2+ε. Therefore, denoting τ = 2
1−d − 2 + ε =

2d
1−d + ε, we obtain from (4.31)

m∑
h=1

1

h‖hβ‖
. mτ +

m∑
h=1

hτ−1 ≈ mτ .

Inequality (4.32) with m ≈ N
1
τ+1 yields

DN({nβ}) . N
τ
τ+1 = N

2d
d+1

+ε′ .

4.2. Discrepancy in terms of the partial quotients. While the
Erdős–Turan inequality is a powerful tool for converting Diophantine
inequalities into discrepancy estimates, it is well known that in some
cases it is not delicate enough and misses the correct bounds by one
power of the logarithm. In particular, for a badly approximable number
β, the Erdős–Turan inequality only yields DN({nβ}) . log2N , while
the sharp bound is logN . This phenomenon will be further discussed
in the next subsection.

An alternative way to estimate the discrepancy of the sequence {nβ}
involves the partial quotients of the number β. Let β be represented
by its continued fraction

β = a0 +
1

a1 + 1
a2+ 1

...

= [a0; a1, a2, a3, . . .],
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with partial quotients a0 ∈ Z and ak ∈ N (k > 1). The conver-
gents pn

qn
= [a0; a1, a2, ..., an] satisfy the recurrence relations pn =

anpn−1+pn−2, qn = anqn−1+qn−2. The convergent provides the best ap-
proximation to β by a rational number with denominator not exceeding
qn, in particular ∣∣∣∣β − pn

qn

∣∣∣∣ < 1

qnqn+1

.

If we assume additionally that β is of type < ψ and apply (4.30) with
p/q = pn/qn, we find that qn+1 < qn · ψ(qn). Since qn+1 ≥ an+1qn we
arrive at

(4.34) an+1 ≤ ψ(qn).

Fix an integer N > 0 and choose m so that qm ≤ N < qm+1. The
discrepancy of {nβ} may be bounded in terms of the partial quotients
of β as follows

(4.35) DN({nβ}) .
m+1∑
j=1

aj,

which is essentially sharp (for details see e.g. Corollary 1.64 in [11]).
Inequalities (4.34) and (4.35) together with the recurrence formulas for
qn may be used to bound discrepancy in terms of N .

4.3. Comparison of the methods. Let us consider an example not
previously treated in [6] – a “superlacunary” sequence of directions as
defined in §3.5, e.g. Ω =

{
2−2n

}
. In this case, F (x) ≈ x · log log 1

x
,

hence F−1(x) ≈ x
log log(1/x)

. As shown in (3.28), Theorem 2.1 guarantees

the existence of α such that∣∣∣∣(α− θ)− p

q

∣∣∣∣ > F−1

(
F−1

(
c

q2

))
≈ 1

q2(log log q)2

for all θ ∈ Ω, i.e. (α − θ) is of type < ψ uniformly in θ ∈ Ω with
ψ(q) ≈ (log log q)2. We now try to estimate DN({nβ}) with β = α− θ
using both methods described above.

It is easy to see that, for any β, {qk} grows at least exponentially;
therefore m . logN . Since an+1 ≤ ψ(qn) ≈ (log log qn)2, we easily
obtain

DN({nβ}) .
m+1∑
k=1

ak .
m∑
k=1

(log log qk)
2 . m·(log log qm)2 . logN ·(log logN)2.

At the same time, the Erdős-Turan inequality would only yieldDN({nβ}) .
log2N .

On the other hand, if we use partial quotients to bound the dis-
crepancy when ψ(q) ≈ log2 q (lacunary directions), we similarly find
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that

DN({nβ}) .
m+1∑
k=1

ak .
m∑
k=1

log2 qk . m · log2 qm . log3N,

which is the same answer as (4.33) provided by the Erdős–Turan in-
equality.

Hence we see that the two methods yield different bounds only in the
most delicate situations when the true bounds are close to the optimal
logN , in particular, less than log2N (inequality (4.32) suggests that
Erdős–Turan cannot produce estimates below log2N).

We stress that the methods we used are rather general and not re-
stricted to the particular examples considered here – they give an-
swers for arbitrary rotation sets Ω based on their covering function.
One-dimensional discrepancy estimates may be obtained using specific
forms of the function ψ provided by Theorems 2.1, 2.2, or 2.3, although
unfortunately one cannot write down a general estimate for DN({nβ})
in terms of ψ or in terms of the covering function. The one-dimensional
discrepancy estimates can be then converted into bounds for directional
discrepancy as explained in the next section.

5. Discrepancy with respect to rotated rectangles

In the present section we demonstrate how one can translate the one-
dimensional discrepancy estimates into the estimates for DΩ(N). These
ideas are classical and go back to Roth [24]. In the present context they
were first applied by Beck and Chen [5] and Chen and Travaglini [9].
Since full details have been developed and presented in our prior work
[6], the exposition of this section will be rather condensed.

As announced in the introduction, sets with low directional discrep-
ancy will be constructed as rotations of the appropriately scaled integer
lattice (N−1/2Z)2 by an angle α provided by Theorems 2.1, 2.2, or 2.3,
such that tan(α− θ) has bad Diophantine properties for all θ ∈ Ω. For
technical reasons, it will be more convenient to rescale and rotate the
unit square and the rectangles and keep the integer lattice Z2.

Let V the square [0, N1/2) rotated clockwise by α and let AΩ,α be
the family of all rectangles R ⊂ V which have a side that makes angle
θ−α with the x-axis for some θ ∈ Ω. For each point n = (n1, n2) ∈ Z2,
consider a square of area one centered around it

S(n) =

[
n1 −

1

2
, n1 +

1

2

)
×
[
n2 −

1

2
, n2 +

1

2

)
.

For any set U ⊂ V , we shall denote by D(U) the discrepancy of the
integer lattice Z2 with respect to U . The main point of the transfer-
ence between the directional discrepancy and the discrepancy of one-
dimensional sequences may be formulated in the following claim.



DIOPHANTINE APPROXIMATIONS AND DIRECTIONAL DISCREPANCY 25

Proposition 5.1. We have the following relation
(5.36)
DΩ(N) . sup

R∈AΩ,α

|D(R)| . sup
θ∈Ω

sup
1≤M≤2

√
N

DM

(
{n · tan(α− θ)}

)
.

Rather than giving a complete proof of this claim, we explain the
heuristics behind it. An interested reader is referred to Section 4 of [6]
for the details. The first estimate above is rather obvious and follows
from rescaling.

The heart of the matter is the second estimate. It is obtained in the
following way. We have

D(R) =
∑
n∈Z2

D(R ∩ S(n)).

Obviously, the squares S(n) which lie completely inside or completely
outside of R do not contribute to the sum. Therefore, the discrepancy
comes from the squares which intersect the boundary, i.e. from lattice
points which lie close to some side of the rectangle R.

For j = 1, ..., 4, let N j = {n : S(n) intersects the jth side of R}
and denote by Ij = {n1 ∈ Z : (n1, n2) ∈ N j for some n2 ∈ Z} the
projection of N j onto the x-axis. It is then standard to show that

(5.37)
∑
n∈N j

D(R ∩ S(n)) = ±
∑
n∈Ij

ψ(c− n tanφ),

where ψ the “sawtooth” function, ψ(x) = x− [x]− 1
2

= {x}− 1
2
, and c

is the y-intercept of the line containing the jth side of R.
The sawtooth function arises naturally in relation to the one-dimensional

discrepancy. In particular, it is possible to show that for a sequence
ω = {ωn} and all c ∈ R we have

(5.38)

∣∣∣∣∣∑
n=1

ψ(c− ωn)

∣∣∣∣∣ . DN(ω).

Therefore

(5.39)

∣∣∣∣∣∑
n∈N j

D(R ∩ S(n))

∣∣∣∣∣ . D#Ij

(
{n · tan(α− θ)}

)
.

Since the cardinality of Ij satisfies #Ij . N
1
2 , inequalities (5.38) and

(5.39) prove (5.36).

The argument may be summarized as follows: discrepancy arises
from the boundary of R, and the contribution of each side can be
bounded by the one-dimensional discrepancy DL

(
{nβ}

)
, where β is

the slope of the side and L is its length, which is bounded by 2
√
N .
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Therefore, to obtain the estimates for the directional discrepancy
roughly speaking all one has to do is use the bounds for the one-
dimensional discrepancy obtained by the methods of §4 with N re-
placed by cN1/2. In particular, for the concrete examples considered
in §3 we obtain the following results.

Theorem 5.2. We have the following estimates for the directional dis-
crepancy

(i) Let Ω be a lacunary sequence, then

DΩ(N) . log3N.

(ii) Let Ω be a lacunary set of order M , then

(5.40) DΩ(N) . logM+2N.

(iii) Let Ω be a “superlacunary” set, then

DΩ(N) . logN · (log logN)2.

(iv) Assume Ω has upper Minkowski dimension 0 ≤ d < 1. In this
case for every ε > 0

(5.41) DΩ(N) . N
d
d+1

+ε,

where the implicit constant depends on ε.

We note that estimates (5.40) and (5.41) are better than the corre-
sponding bounds obtained in [6].

Remark 5.1. We close this section with an interesting remark about
the critical dimension. Due to inequality (1.8), for any Ω we have the

bound DΩ(N) . N1/4 log1/2N . The bound arising from (5.41) provides
a better answer only if d

d+1
≤ 1

4
. Thus estimate (5.41) is interesting

only if the set of rotations has low Minkowski dimension:

d ≤ 1

3
.

6. Lower bounds for the directional discrepancy of
rotated lattices

In this section we shall complement some of the upper bounds for
the directional discrepancy of rotated lattices derived in this paper and
in [6] by lower bounds depending on the Diophantine properties of the
rotation angle with respect to the direction set Ω. In particular, we
consider the case when the direction set has upper Minkowski dimen-
sion 0 < d < 1 and show that, if the Diophantine estimate (3.29)
cannot be improved, then the directional discrepancy bound (5.41) is
best possible up to ε.

The discussion of the previous sections leads to the following natural
definition.
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Definition 6.1. Let Ω ⊂ [0, π/2) be an arbitrary set of directions. For
any α ∈ R, we say that η is the Ω-type of α if

η = inf {r ≥ 1 : ∃c > 0 such that ∀θ ∈ Ω,∀q ∈ N, qr‖ tan(α−θ)q‖ > c},
where ‖ · ‖ stands for the distance to the nearest integer. The condition
r ≥ 1 above follows from Dirichlet’s theorem.

We note that if Ω is a singleton Ω = {0}, then this definition just
yields the standard notion of type from number theory (see e.g. Def-
inition 3.4 in Chapter 2 of [17]) for the number tanα. Notice that
relation (3.29) of Theorem 3.1 in these terms says that for a set Ω of
upper Minkowski dimension d < 1 there exists α such that its Ω-type
η satisfies

η ≤ 2

1− d
− 1 =

1 + d

1− d
.

As before, let PNα (or simply Pα) denote the intersection of the
rescaled lattice (N−1/2Z)2 rotated by α with the unit square [0, 1]2,
and DΩ(PNα ) is the extremal discrepancy of PNα with respect to rect-
angles R ∈ AΩ. Let us observe that the proof of relation (5.41) of
Theorem 5.2 essentially establishes the following fact:

Lemma 6.1. Let Ω ⊂ [0, π/2) and assume that α ∈ R has Ω-type at
most η. Then

(6.42) DΩ

(
PNα
)
≤ CεN

1
2

(
1− 1

η
+ε
)

for any ε > 0.

Indeed, the Erdős–Turan approach of §4.1 proves thatDN

(
{n·tan(α−

θ)}
)
. N1− 1

η
+ε for all θ ∈ Ω. In turn, the transference principle of

Proposition 5.1 proves (6.42).
We shall show that Lemma 6.1 cannot be improved, i.e. in a certain

sense our methods are optimal.

Theorem 6.2. Let Ω ⊂ [0, π/2). Assume that α ∈ R has Ω-type η and
for all θ ∈ Ω we have

∣∣ tan(α− θ)
∣∣ ≤ C. Then for any ε > 0 there are

infinitely many values of N for which

(6.43) DΩ

(
PNα
)
> cεN

1
2

(1− 1
η
−ε).

Remark 6.1. In the case of Ω with upper Minkowski dimension 0 ≤
d < 1 we know that η ≤ 1+d

1−d which yields DΩ

(
PNα
)
. N

d
d+1

+ε. Theorem

6.2 implies that, if in fact the Ω-type of α satisfies η = 1+d
1−d , in other

words if the rotation provided by Theorem 3.1 is optimal, then for in-

finitely many values of N we have DΩ

(
PNα
)
& N

d
d+1
−ε. Therefore, we

obtain conditional sharpness of the upper bound (5.41) in Theorem 5.2:
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if the Ω-type of α provided by Theorem 3.1 cannot be improved, then
the exponent in the discrepancy bound (5.41) is best possible.

The condition
∣∣ tan(α− θ)

∣∣ ≤ C in the statement of Theorem 6.2 is
technical and means that α− θ stays away from ±π

2
. This assumption

is satisfied by the angles constructed in Theorems 2.1, 2.2, 2.3 in view
of the remark made in §2.4. We now turn to the proof of Theorem 6.2.

Proof. The beginning of the argument closely follows the proof of The-
orem 3.3 in Chapter 2 of [17]. Let ε > 0 and choose δ > 0 so that

1
η−δ = 1

η
+ ε. There exist qi →∞ and θi ∈ Ω such that

lim
i→∞

q
η−δ/2
i ‖qi tan(α− θi)‖ = 0.

In particular, for some pi ∈ Z,
∣∣ tan(α − θi) − pi

qi

∣∣ ≤ q
−1−η+δ/2
i . Take

Ni =
[
qη−δi

]
, the integer part of qη−δi . Write βi = tan(α − θi). Then

βi = pi
qi

+ cq
−1−η+δ/2
i with |c| < 1. For 1 ≤ n ≤ Ni, we have nβi =

npi
qi

+ cn, with |cn| =
∣∣cnq−1−η+δ/2

i

∣∣ < q
−1−δ/2
i . It then follows that

none of the fractional parts {nβi}, 1 ≤ n ≤ Ni, lie in the interval

I =
[
q
−1− δ

2
i , q−1

i − q
−1−δ/2
i

]
since {npi

qi
} is either 0 or is greater than or

equal to 1
qi

.

We now consider the one-dimensional discrepancy

D∗Ni = DNi

(
{nβi}

)
= sup

0≤γ≤1
DNi(γ) = sup

0≤γ≤1

∣∣#{[0, γ) ∩ {nβi}Nin=1

}
−Niγ

∣∣.
Since there is an interval of length q−1

i − 2q
−1−δ/2
i which contains no

points from the sequence, it follows that D∗Ni ≥
1
2
(q−1
i − 2q

−1−δ/2
i )Ni.

For sufficiently large qi we have D∗Ni & Ni/qi, and Ni = [q
(η−δ)
i ] implies

that

D∗Ni & N
1− 1

η−δ
i = N

1−1/η−ε
i .

We now translate this estimate into the the lower bound for DΩ

(
PNα
)

in a manner outlined in §5. As before, rather than rotating the lattice,
we rotate and rescale the unit square and use the integer lattice Z2.

Let V denote the rectangle [0,M
1/2
i ] × [0,M

1/2
i ] rotated clockwise by

α, where Mi ≈ N2
i is to be determined later. The number of integer

points in V is N ≈Mi.
Consider a rectangle R ⊂ V pointing in the direction given by α−θi.

According to equation (5.37) the contribution of its jth side to the
discrepancy is given by

∑
n∈Nj D(R ∩ S(n)) = ±

∑
n∈Ij ψ(c− n tanφ),

where ψ(x) = {x}−1/2 is the sawtooth function and c is the y-intercept
of the line containing the jth side of R. Observe that ψ(c− n tanφ) =
ψ({c} − n tanφ).
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For each Ni, since D∗Ni ≥ cN
1−1/η−ε
i , one can choose γ ∈ [0, 1] with∣∣D∗Ni(γ)

∣∣ ≥ cN1−1/η−ε. Let us pick a line T1 satisfying the following
properties:

i) The slope of T1 is tan(θi − α).
ii) The intersection of T1 with the y-axis, denoted by c1, is an integer.

iii) The line T1 intersects V in a segment of length at least 1
3
M

1/2
i .

Choose T3 parallel to T1 so that c3 – the y-intercept of T3 – has integer
part equal to c1 and fractional part γ to be determined later. Let R be
the biggest rectangle in V with two sides along T1 and T3. We will now
let R1 and R3 refer to the sides of R lying on T1 and T3 and denote
the other two sides of R by R2 and R4. Therefore, according to (5.37)
|D(R)|, the discrepancy of Z2 with respect to R, up to a bounded error
can be written as∣∣∣∣ ∑

n∈I1

ψ(c1 − n tanφ)−
∑
n∈I3

ψ(c3 − n tanφ) +

+
∑
n∈I2

ψ(c2 − n tan(φ+ π/2))−
∑
n∈I4

ψ(c4 − n tan(φ+ π/2))

∣∣∣∣,
where Ij, j = 1, 2, 3, 4, are as in §5 and φ = θi − α. By construction,
|R2| ≤ 1 and |R4| ≤ 1, hence #I2 ≤ 1 and #I4 ≤ 1. Since ψ is
bounded, we have∣∣∣∣∑

n∈I2

ψ(c2 − n tanφ)−
∑
n∈I4

ψ(c4 − n tanφ)

∣∣∣∣ ≤ 1.

The focus will be on the expression
∑

n∈I1 ψ(c1−n tanφ)−
∑

n∈I3 ψ(c3−
n tanφ).

Let c∗ = inf{cos(α − θ) : θ ∈ Ω}. Since α is chosen so that α − θ
stays away from ±π/2, we have c∗ > 0. Set also I∗ = I1 ∩ I3, then
I1 = I∗ ∪ (I1 \ I∗) and I3 = I∗ ∪ (I3 \ I∗). One can see that |I1 \ I∗| ≤ 1

and |I3 \ I∗| ≤ 1; hence |I1 ∩ I3| ≥ c∗

4
M

1/2
i . Thus D(R) differs by at

most a constant from the quantity

(6.44)
∑
n∈I∗

(
ψ(c1 − n tanφ)− ψ(c3 − n tanφ)

)
.

Write n0 = min I1 (note that this parameter does not depend on the

choice of c3 = c1+γ). IfM
1/2
i > 4

c∗Ni, by possibly reducing the length of
the rectangle R we may guarantee that I∗ = {n0+1, n0+2, . . . , n0+Ni},
i.e. #I∗ = Ni.

In order to estimate (6.44), we utilize the one-dimensional discrep-
ancy D∗N . One can easily check that for any sequence ω

DN(ω, x) =
N∑
n=1

(
ψ(ωn − x)− ψ(ωn)

)
.



30 DMITRIY BILYK, XIAOMIN MA, JILL PIPHER, AND CRAIG SPENCER

Therefore∑
n∈I∗

(ψ(c1 − n tanφ)− ψ(c3 − n tanφ))

=

#I∗∑
n=1

(ψ((n+ n0) tanφ− γ)− ψ((n+ n0) tanφ)) = DNi

(
ω, γ

)
,

where the sequence ω = {(n + n0) tanφ}. It is obvious that this se-
quence satisfies the same discrepancy estimates as {n tanφ}. There-

fore, there exists γ ∈ [0, 1] such that we have
∣∣DNi

(
ω, γ

)∣∣ ≥ cN
(1− 1

η
−ε)

i

and hence D(R) ≥ cN
(1− 1

η
−ε)

i . Since N = #(V ∩ Z2) ≤ Mi ≤ cN2
i , we

obtain

D(R) ≥ cN
1
2

(1− 1
η
−ε),

which proves (6.43).
�
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