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Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Prob-
lems, by Carlos E. Kenig, CBMS Regional Conference Series in Mathematics, Num-
ber 83
Reviewed by Jill C. Pipher

The last twenty years has seen considerable and fruitful research in the field
of non-smooth boundary value problems (BVP’s) for partial differential equations.
The objective is to understand the behavior and properties of solutions to either
variable coefficient equations with minimal regularity assumptions on the coef-
ficients, or to linear constant coefficient equations in domains with non-smooth
boundary. An example of the latter is the following. Let ∆ =

∑
i
∂2

∂x2
i

be the Lapla-
cian in Rn and let Ω ⊂ Rn be a connected bounded domain whose boundary may
have corners and edges. One may then pose the Dirichlet problem:{

∆u = 0 in Ω
u = f on ∂Ω,

and the object is to define and uniquely solve this problem for a broad class of
data f . An example of the former, whose study forms a significant portion of the
book under review, is the following. One considers a second order linear partial
differential operator of the form L =

∑
i,j Diaij(x)Dj (which we denote hereafter as

L = divA∇) where A = (aij(x)) is a matrix whose real coefficients satisfy minimal
smoothness properties, together with an ellipticity condition. Ellipticity is a strong
positive definiteness of the matrix A : there exists λ > 0, so that for all x and
all ζ ∈ Rn, λ−1|ζ|2 ≤

∑
i,j aij(x)ζiζj ≤ λ|ζ|2. One then seeks to define, in some

sense, Dirichlet conditions on the boundary of the domain and uniquely solve this
Dirichlet problem for a broad class of data.

There are of course connections between these two problems. For consider the
Laplacian in the upper half space R2

+ and let Φ : R2
+ → R2

+ be a quasiconfor-
mal change of variables. Let L be the pullback of ∆ under Φ. Then ([CFK]) L
is an elliptic operator of the form divA∇ - but the coefficients of A are merely
bounded and measurable. (These changes of variable give rise to an important,
and computable, class of examples in this theory.) Or consider Laplace’s equation
in Ω = {(x, t) ∈ Rn × R+ : t > φ(x)}, the unbounded domain above the graph
of a Lipschitz continuous function φ. A ”flattening” of the domain by means of
the change of variables (x, t) → (x, t − φ(x)) transforms ∆ into a divergence form
elliptic operator whose coefficients depend on the derivatives of φ and are hence
at best bounded and measurable. In fact, this transformation yields an equation
which is maximally smooth in a transverse direction since the coefficients are in-
dependent of the t variable. It turns out that one can solve lots of natural BVP’s
for these “time independent” second order operators ([JK]). This last observation
is then the foundation for a theory of elliptic divergence form operators under some
minimal smoothness conditions in the transverse direction. These conditions, im-
posed on the coefficients, have an origin in the theory of differentiation as well as
rich connections to modern ideas in harmonic analysis.

Let us turn then to a discussions of the origin and some motivation for these
studies. The theory of second order divergence form elliptic equations described
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above, began with the results of De Giorgi [De], Nash [Na] (for parabolic equations
as well) and Moser [Mo] in the 1950’s. In the first place, what can we mean by a
solution u to divA∇u = 0 when the coefficients aij(x) are not even differentiable?
We say that divA∇u = 0 in a domain Ω ⊂ Rn when

∫
Ω
A(X)∇u(X).∇φ(X)dX = 0

for every smooth function φ compactly supported in Ω. Here ∇u denotes the weak
derivative of u, so that weak solutions are a priori defined only almost everywhere
with respect to Lebesgue measure. Remarkably, the results of De Giorgi, Nash
and Moser show that weak solutions are in fact Holder continuous of some order
depending on the ellipticity constant of L, even when the aij(x) are merely bounded
and measurable. It is therefore possible to speak of the pointwise values of these
solutions, and to ask for continuous solutions of the classical Dirichlet problem
(Lu = 0 in Ω, u|∂Ω = f with f continuous).

The motivation for considering equations with merely bounded coefficients is
twofold. First, one may be able to regard a given nonlinear PDE as a linear elliptic
equation - one whose coefficients now depend on the solution of the original nonlin-
ear problem. If a solution exists which is known to be bounded, then this divergence
form operator has bounded measurable coefficients. The improvement of regularity
result implies that the solution is in fact Holder continuous. Now the coefficients of
the linearized equation have improved smoothness which, in turn, implies greater
regularity of the solution, and so on. When De Giorgi first proved this regularity
result, a number of important nonlinear problems were solved. More recently, this
theory of elliptic equations with minimal smoothness assumptions has been used in
a crucial way by Caffarelli et. al. for free boundary problems ([AgCS], [AC], [C1],
[C2]). Another fundamental reason for the recent development and interest of this
field lies in the dilation invariant nature of the problems and the rich theory that
has ensued when certain powerful techniques from harmonic analysis are applied.
Indeed, the PDE problems themselves have generated new methods and ideas, and
have contributed to fundamental developments in harmonic analysis. It is exactly
this exciting interplay of ideas which is the subject proper of Carlos Kenig’s book,
based on his series of CBMS lectures in 1991.

The motivation for the pushing the classical theory of solutions to operators like
the Laplacian from smooth domains to more general domains is very similar. Recall
that the classical Dirichlet problem (continuous data, with solutions continuous
up to the boundary) is solvable for ∆ in any domain which satisfies an exterior
cone condition ([Z]). Lipschitz domains are those which satisfy, uniformly, both
an interior and exterior cone condition. The linear equations under consideration
here are dilation invariant, and so is the class of Lipschitz domains; one seeks to
understand the behavior of solutions u in Ω by means of estimates which relate the
size (loosely speaking) of u to that of its boundary values, where the constant in
such an inequality depends only on the Lipschitz “character” of Ω. This constant
is hence invariant under dilations of the domain. Thus the theory is a study of this
interaction between dilation invariance of domains and equations in the presence
of homogeneity and ellipticity conditions. In addition, Lipschitz domains already
appear even in the classical smooth theory via the definitions of nontangential
limits of harmonic functions; these domains also arise quite naturally in terms of
the minimal smoothness needed for the existence almost everywhere of a normal
vector to the boundary and for the validity of certain trace and extension thereoms
for Sobolev spaces. Thus one can consider a variety of natural boundary conditions
for these elliptic equations. (Other types of equations as well, parabolic for instance,
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have been and are the object of research - see [B] for example.)
In order to be more precise about the aforementioned connections to harmonic

analysis, let us define our boundary data as well as a technical concept which will
capture the precise sense in which a solution to L in a domain Ω converges to
this boundary data. Given a Lipschitz domain Ω, one associates to each Q ∈ ∂Ω a
(truncated) cone Γ(Q) compactly contained in the interior of Ω. If u(X) is defined in
Ω, the nontangential maximal function of u is u∗(Q) = sup{u(X) : X ∈ Γ(Q)}. One
particular aim is to solve the Dirichlet problem and to be able to prescribe boundary
data in various Banach spaces, for example, in Lp(∂Ω) with respect to surface
measure on the boundary. Specifically, if f is a given function in Lp(∂Ω) then one
seeks a unique solution to Lu = 0 in Ω such that u converges nontangentially to
f and u∗ belongs to Lp(∂Ω) together with the estimate ||u∗||Lp ≤ C||f ||Lp (which
implies uniqueness).

First of all, why is interesting to consider data in Lp? The case p = ∞ of the
Dirichlet problem for these second order equations, is just a weaker version of the
maximum principle. The case p = 2 is also a natural class of data in view of the
Hilbert space structure and the variational methods which come into play. In fact
it turns out to be important to consider solvability questions in the full range of
p’s - it yields refined information about the behavior of harmonic measure (defined
later) and also, for higher order elliptic equations, there are strong connections
betweens Lp boundary value problems and the validity of maximum principles of
Agmon- Miranda type ([PV1], [PV2]).

It is not always possible to solve such a boundary value problem. The question is,
under what conditions on L or Ω and for what values of p is this Lp Dirichlet problem
solvable? The book under review is an ambitious and successful attempt to give a
fairly detailed account of what is known about this question. Indeed, the scope of
the book is broader than this, as it provides an account (sometimes in the form of
remarks and notes on further research) of related developments in the the theory
of parabolic equations, second order elliptic equations with complex coefficients,
nondivergence form equations, systems of equations and equations of higher order
as well focussing on other BVP’s such as the Neumann and regularity problems.
Because the author has been instrumentally involved in all of these developments,
in the formation both of key ideas and of the techniques through which these ideas
are realized, the perspective presented here is unique in its breadth and clarity.

The book begins with the De Giorgi-Nash-Moser theory (some proofs are omit-
ted), the definition of weak solutions, properties of Green’s functions and properties
of harmonic measure. The existence of this ”harmonic” measure on the boundary
of a domain associated with an operator L = divA∇ is one of the fundamental
reasons that techniques of harmonic analysis play such an important role. This
measure is perhaps familiar to readers from the study of analytic functions in the
plane. Suppose u is a harmonic function, i.e. a solution to ∆u = 0 in a domain
Ω ⊂ Rn. Then there exists, for each X ∈ D, a representing measure ωX such that if
u is the harmonic function with boundary values f , then u(X) =

∫
∂Ω
f(Q)dωX(Q).

The {ωX} form a mutually absolutely continuous family of probability measures,
whose existence is derived from the maximum principal for solutions with contin-
uous data f by the Riesz Representation Theorem. Because the measures are are
mutually absolutely continuous, one generally singles out one point X0 ∈ Ω and
refers to dω = dωX0 as the harmonic measure for ∆ relative to Ω. The properties
of this measure, which are determined by the geometry of the domain Ω, tran-
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late into properties of solutions u and in particular, whether estimates of the form
||u∗||p ≤ C||f ||p are valid, and for which p’s. Likewise, associated to an elliptic
operator L = divA∇ there is a family {ωXL }X∈Ω of mutually absolutely continuous
probability measures so that a solution to Lu = 0 with u = f on ∂Ω is represented
by u(X) =

∫
∂Ω
f(Q)dωXL (Q). For some X0 ∈ Ω, the measure dωX0

L is referred as
the elliptic or harmonic measure associated to L in Ω. One connection between
harmonic analysis and properties of solutions to L comes from investigating the
relationship between dω and dσ (Lebesgue measure on ∂Ω) via the general theory
of weights, initiated in [M] and [C-F].

Historically, the next major development in this field was the paper by Hunt
and Wheeden [HW] on estimates for harmonic measure. This was followed by
Dahlberg’s proof that, for domains with Lipschitz boundary, the estimate ||u∗||L2 ≤
C||f ||L2 was valid for harmonic functions in Ω with boundary values f ∈ L2.([D1])
The ”2” is a sharp lower bound in the sense that for p < 2 one can exhibit a
Lipschitz domain where uniqueness fails for solutions to Laplace’s equation for the
Lp Dirichlet problem. A result of this type is not merely a technical one: it yields
a deep understanding of the role played by the geometry of this class of domains.
It shows how certain precise local behavior of solutions , like the behavior of a
harmonic function near an isolated conical point on the boundary, extends to all
Lipschitz domains — even though such domains may contain a dense set of such
singularities.

Kenig’s book follows a different path, choosing instead to first present the more
modern results and definitions for general divergence form elliptic operators. What
follows then is a discussion of the three main problems associated with these second
order operators: Dirichlet, Neumann and regularity. Then the Beurling-Ahlfors
theory of quasi-conformal mappings of the upper half plane is introduced, together
with some of its implications for the elliptic theory. In the following chapter we see
a return to the theory of harmonic functions and to the development of the method
of layer potentials.

It is the success of the method of layer potentials for solving these BVP’s which
furnishes the next historical development and connection with harmonic analysis.
And for this success, one requires the theory of singular integral operators (SIO’s).
The method of layer potentials is an approach to solvability of BVP’s for, say,
Laplace’s equation, by means of integral equations. Here is a very brief sketch of
the method. Let Γ = cn|X−Y |2−n be the fundamental solution of the Laplacian in
all of Rn. One attempts to solve the Dirichlet problem by representing the solution
as the integral over the boundary of the normal derivative of Γ against an unknown
function h. The boundary data of a solution thus represented is given, in the limit,
by an operator acting on h of the form Id + K. Thus to solve this problem, in a
domain Ω ⊂ Rn, one needs to invert Id + K on a space of functions defined on
∂Ω. If the boundary of the domain Ω is sufficiently smooth (C1 in fact) - the above
operator K is compact and the Fredhom theory applies ([Ca], [FJR]). But when Ω
is merely Lipschitz, K is not compact. The operator K is an example of a SIO, and
such operators, arising in PDE, were a major source of motivation for the study
of SIO’s in initiated by Calderon and Zygmund, and subsequently developed by
E. Stein and many others. (Regretfully, this review neglects, due to limitations of
space, the mention of many major contributors to these and related fields. Happily,
the book does not, citing almost 250 sources and giving detailed accounts of many
contributions.)
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Before answering the invertibility question for Id + K, one must first establish
that K is a bounded operator on some space, say Lp. In the case of Lipschitz do-
mains this is a nontrivial issue, and one whose answer awaited the work of Calderon
[Ca] in the small Lipschitz constant case, and [CMcM] in 1981 in the general case.
In this latter work, Coifman, McIntosh and Meyer proved that the Cauchy integral,
defined on a domain with Lipschitz boundary is a bounded operator on Lp(∂Ω, ∂σ)
for 1 < p < ∞. This theorem paved the way for the application of layer potential
methods to this class of domains. In 1984, Verchota [V] understood how to invert
the operator Id + K, which is the real part of the Cauchy integral in dimension 2,
thereby settling a long- standing question whose positive resolution was not entirely
expected.

In his proof of invertibility, Verchota realized how to use a certain Rellich-type
identity which had been rediscovered a couple of years earlier by Jerison and Kenig.
(It is an equation which results in a relationship between the normal and tangential
derivatives of harmonic functions.) This identity, and their observation in [JK] of its
utility in solving BVP’s for second order divergence form elliptic operators, has an
importance for this field which cannot be overstated. It is fair to say that, after [JK],
most of the successful work — even in related theories, like parabolic equations,
systems of equations and higher order equations — has involved a refinement of or
adaptation of the idea behind this identity. Of course the subsequent work involves
many new ideas as well, but it is fair to say that the results and observations in
[JK] opened a door which changed the field.

The Rellich identity was used by Jerison and Kenig to solve, not only the Dirich-
let problem for certain variable coefficient operators, but also the Neumann and
regularity problems as well, for data in L2. Verchota’s solution of the Dirichlet
problem for Laplace’s equation by the method of layer potentials extended also to
the regularity problem (and here for the optimal range of data). Later, Dahlberg
and Kenig [DK] showed how to solve the Neumann problem in this optimal range
as well by defining and solving a BVP in the atomic Hardy space. The use of
the Hardy space, and its dual, the space BMO ([JN]) provides yet another serious
connection with harmonic analysis. These results, and the use of Hardy spaces in
related developments in the field, are explained early in Chapter 2.

The latter portion of this second chapter is devoted to the perturbation theory
of divergence form elliptic operators, initiated in [FJK], and developed in [D2],
[Fe], [FeKP], [KP1], [KP2] and [L]. This includes the approach of multilinear sin-
gular integrals, which has the flexibility of applying to the situation of complex
coefficients also. In fact the most important applications are to complex valued
operators. Originally, the method of multilinear SI’s was developed in connection
with parabolic equations in [Fa] and [FSW] but its most notable use ([CMcM]) is in
the elliptic theory and in its ramifications for the Kato square root conjecture. (See
also [CDM].) Unfortunately the method has yielded only partial results in higher
dimensions.

A more complete set of results for perturbations of elliptic operators is available
in the real valued setting. Here, the question is essentially the following. Suppose
one is given an operator L0 = divA0(X)∇ defined in some domain Ω, where as usual
A0 is an elliptic matrix of bounded coefficients, for which one has a priori solvability
of some BVP (Dirichlet or Neumann for example) with data in Lp along with the
estimates on the nontangential maximal function of u. Let L1 = divA1(X)∇ be
another such operator where A1(X) is perturbation of A0(X) in the sense that
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A0 = A1 on the boundary of Ω. Then, inside Ω, how close should A1 be to A0, i.e.
what quantitative condition on |A1(X)−A0(X)| suffices to conclude solvability of
the same BVP for L1 with data in some some Lq space?

The motivation for conditions that are sufficient, and in some cases necessary,
comes from a striking analogy with results in the classical theory of differentiation.
For example, consider a function f : Rn → R which verifies the Zygmund type
condition |f(x+ t) + f(x− t)− 2f(x)| = |t|η(|t|) where η is an increasing function
satisfying η(0) = 0. The question of classical differentiation theory is what condition
on η guarantees that f be differentiable almost everywhere? The answer, provided
by Calderon and Zygmund in [CZ] (but see also [WZ] and [JN]) is that η must verify
a square Dini condition:

∫∞
0
η2(s)s−1ds < ∞. It was first realized in [FJK] that

this quantitative expression plays an important role in the theory of perturbations
of operators. That is to say, the perturbation condition one needs to impose on
|A1(X) − A0(X)| has a very similar character. A rather complete understanding
of these conditions, including sharpness results, was given in [FeKP], where further
connections with the theory of weights were established.

The book contains, in section 6 of Chapter 2, a beautiful exposition of these
ideas, developing the historical perspective within the context of these contempo-
rary results. It is rather densely written in this section - each sentence contains
important information. But Kenig draws out the beautiful links between all these
ideas with such insight that the reader who spends the necessary time to absorb it
is richly rewarded.

Let us conclude with some additional description of the structure and features of
the book. Much of the background material is presented, not explained; and while
many details of the more recent theorems are given, it is often the case that technical
lemmas are merely sketched. Had all the details been presented, this monograph
would have easily been three or four times as long. I think the author’s judgement
was to give exactly enough of the necessary details to provide the heart of the these
matters to experts in the field, as well as to give the overall flavor of the subject
to nonexperts in analysis. It is a shame, however, that the nonlinear applications
were not discussed, not even in the form of remarks in the Notes sections.

As mentioned earlier, the references are dizzyingly complete and the Notes sec-
tions at the end of the chapters pinpoint these sources and place them in the proper
historical context. Indeed, the Notes sections are much more than a series of refer-
ences and acknowledgements. Here one finds the author’s sense of the development
of the subject. It is an interesting, if condensed, glimpse of a great deal of analysis
in the last 40 or 50 years. Less condensed, and truly inspired, is the third and final
chapter on further results and open problems. It is not merely a list of problems
(which is important in and of itself) but a view of the development and direction
that this field can and should take. It is easy enough to make a list of difficult
open problems which have resisted the best efforts to date. And a few of those
problems are included here. But it is not easy, and it is much more valuable, to do
what Kenig has achieved. This chapter contains a collection of ideas and tractable
problems that arise from a real knowledge of the field and a clear vision of how
to make progress, in both reasonable and significant ways. The scope of this final
chapter is impressive.

This book could be used in a course for advanced graduate students, supple-
mented by some of the references for the earlier material. It is well written, and
already organized in the form of a course. The monograph will also be an excellent
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source book for amateurs as well as experts in this subject. And finally, it’s cheap.
The AMS, in publishing this series, has done the mathematical community a real
service by providing timely and scholarly research manuscripts at such a reasonable
price.
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