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1 Lecture 1

1.1 Integer lattices

Lattices have been studied by cryptographers for quite some time, in
both the field of cryptanalysis (see for example [16–18]) and as a source
of hard problems on which to build encryption schemes (see [1, 8, 9]). In
this lecture, we describe the NTRU encryption algorithm, and the lattice
problems on which this is based. We begin with some definitions and a
brief overview of lattices.

If a1,a2, ...,an are n independent vectors in Rm, n ≤ m, then the
integer lattice with these vectors as basis is the set L = {∑n

1 xiai : xi ∈
Z}. A lattice is often represented as matrix A whose rows are the basis
vectors a1, ...,an. The elements of the lattice are simply the vectors of
the form vT A, which denotes the usual matrix multiplication. We will
specialize for now to the situation when the rank of the lattice and the
dimension are the same (n = m).

The determinant of a lattice det(L) is the volume of the fundamen-
tal parallelepiped spanned by the basis vectors. By the Gram-Schmidt
process, one can obtain a basis for the vector space generated by L, and
the det(L) will just be the product of these orthogonal vectors. Note that
these vectors are not a basis for L as a lattice, since L will not usually
possess an orthogonal basis.

The two fundamental problems in the theory of integer lattices are
the shortest vector problem (SVP), and the more general closest vector
problem (CVP). Roughly speaking, both of these problems are concerned
with finding the “most efficient” basis of the lattice - a basis consisting
of vectors which are as short and as orthogonal as possible. Specifically,
if v is a vector in the lattice, let ||v|| denote a norm on v, typically

the sup norm, maxvi, or the Euclidean norm
√

∑

v2
i . Given a basis A

for a lattice L, the shortest vector problem is that of finding a nonzero
vector in L with minimum norm. Given an arbitrary (target) vector v in



Zn, the CVP is the problem of finding the lattice point xT A closest in
norm to v, i.e., of minimizing ||Ax− v||. No polynomial time algorithms
exist for solving either of these problems, although they have been well
studied both experimentally and theoretically. There are algorithms which
find approximations to the shortest vector - we’ll say more on that in a
moment. First, let’s investigate a simpler question - that of predicting the
length of the shortest vector.

The relationship between the minimum distance between lattice points
and geometric properties of the lattices is an example of a question in the
geometry of numbers, a field essentially formed when Minkowski proved
the following theorem.

Theorem 1. If L is a lattice in Rn (of rank n), then any convex set K
of area greater than 2ndet(L) which is symmetric about the origin must
contain a nonzero lattice point.

This result gives an upper bound for the length of the “expected short-
est vector”, λe in a random lattice. Suppose that K = B(r) be the ball
centered at the origin of radius r, and choose r so that vol(B(r)) is ex-
actly 2ndet(L). Then B(r) should contain a nonzero lattice point - and r
should be an upper bound for the minimum length of the shortest vector

in the Euclidean norm. In Rn, the volume of B(r) is πn/2rn

Γ (n/2+1 , and approx-

imating Γ (x + 1) by
√

2πx(x/e)x, we find that λe ≤
√

n/πe det(L)1/n. A
general principle (the so-called “Gaussian heuristic”) estimates the num-
ber of lattice points in the ball by the volume of the set divided by the
determinant of the lattice. This gives an intuitive, and commonly used,
estimate of det(L)1/n

√

n/2πe for λe. We will see that the ratio of this
value to the actual length of the shortest vector in a lattice will be an
important constant in evaluating the security of NTRU lattices.

The closest vector problem is a hard problem, in the sense of com-
plexity theory - the CVP is known to be NP-complete, in any norm.
While the SVP is believed to be an NP-hard, this is an open problem.
There are a number of indications that SVP is hard - see the recent work
of Micciancio [6], for example. The book “Complexity of Lattice Prob-
lems” by Micciancio and Goldwasser is a good reference for these issues
in computational complexity, which we’ll not discuss further here. For us,
the important fact is that there is no polynomial time algorithm which
finds the shortest vector. There is however a well known algorithm due
to Lenstra, Lenstra and Lovasz [5], which finds an approximately short
vector - guaranteed to be within a factor (2/

√
3)n of the actual short-

est - in polynomial time. LLL produces a “reduced” basis of a lattice,
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producing an approximately short basis vector as a result. The security
of the NTRU public key cryptosystem will ultimately rest on the inabil-
ity of LLL (or any of its more modern variants) to produce particularly
good short vectors within a reasonable amount of time. While LLL often
works better in practice (finding shorter vectors than it is guaranteed to
produce), it appears that the running time of the LLL algorithm grows
exponentially with the dimension. We’ll return to the details after de-
scribing the NTRU lattices. Further details specific to NTRU lattices can
be found in the appendix.

1.2 Polynomial rings and the basic NTRU operations

The basic NTRU operations take place in the ring of convolution poly-
nomials R = Z[X]/(XN − 1), where N is prime. An element F ∈ R will
be written as a polynomial or a vector,

F =

N−1
∑

i=0

fix
i = [F0, F1, . . . , FN−1].

We write ∗ to denote multiplication in R. This ∗ multiplication is given
explicitly as a cyclic convolution product, F ∗ G = H, where

Hk =

k
∑

i=0

FiGk−i +

N−1
∑

i=k+1

FiGN+k−i =
∑

i+j=kmodN

FiGj .

When we do a multiplication modulo q, we mean to reduce the coefficients
modulo q. The parameter q need not be prime.

The obvious way to measure the size of an element F ∈ Z[X]/(XN −1)
is by the Euclidean norm (

∑

Fi)
1/2 of it vector of coefficients. How-

ever, when working with the ring R and its sublattices, it is better to
work with the centered norm, which is defined in the following way. Let
mF = (1/N)

∑

Fi denote the average of the coefficients of the polynomial
F (X) ∈ R. Then the centered norm of F , also denoted ‖F‖ is defined by

‖F‖2 =

N−1
∑

i=0

(Fi − mF )2 =

N−1
∑

i=0

F 2
i − 1

N

(N−1
∑

i=0

Fi

)2

. (1)

For randomly chosen polynomials F and G, the norm is quasi-multiplicative,

‖F ∗ G‖ ≈ ‖F‖ · ‖G‖.
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This quasi-multiplicative property can be explained via a compu-
tation related to Khintchine’s inequality: Suppose that {fi} is a ran-
dom N length sequence with Prob(fi = 1) = d, Prob(fi = −1) = d
and Prob(fi = 0) = N − 2d, and {gi} is any sequence with l2 norm

‖g‖ =
√

∑

g2
i . Then

Prob(|
N

∑

i=1

figi| >
λ
√

2d‖g‖√
N

) ≤ (
2d

N
)Ne−dλ2/N .

When considering n-tuples of elements of R, there is no reason that they
should be centered around the same value. In general we define the cen-
tered norm of an n-tuple (a, b, . . . , c) with a, b, . . . , c ∈ R by the formula

‖(a, b, . . . , c)‖2 = ‖a‖2 + ‖b‖2 + · · · + ‖c‖2. (2)

It will also be necessary to compute inverses (or almost-inverses)
within the ring Rq = Z/qZ[X]/(XN − 1), where q is a prime, or a power
of a prime. If F is a polynomial in Rq such that F (1) has a factor in com-
mon with q, then it cannot be invertible in Rq. In particular, F (1) should
not equal 0. Thus not every polynomial in this ring is invertible, but it
can be shown that most polynomials, even among those which satisfy,
say F (1) = 1, have inverses. To determine how many elements of Rq are
invertible, where q is a power of a prime p, it suffices to count the number
of invertible elements in Rp. In Rp, the polynomial XN − 1 factors into
(N −1)/n irreducible polynomials of degree n, where n is the smallest in-
teger such that pn = 1 (mod N). Thus the number of invertible elements
in Rp equals (p− 1)(pn − 1)(N−1)/n) and the probability that a randomly
chosen element of this ring is invertible is this number divided by pN , or

(1 − 1

p
)(1 − 1

pn
)(N−1)/n.

If it is also required that F (1) = 1, a computation shows that probability
is still is large as

(1 − 1

pn
)(N−1)/n.

Units modulo p can be lifted to units modulo powers of p, and so finding
inverses in Rq can be reduced to using the Euclidean algorithm in Rp.
We shall want as many invertible elements as possible, and with respect
to two different primes - optimal choices make n as large as possible. In
addition, there are algorithms which provide faster ways of computing
inverses.
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1.3 NTRU Encryption algorithm

Public parameters . A choice of N determines the polynomial ring
Z[X]/(XN −1). Two moduli p and q are selected so that gcd(p, q) = 1
- here q will typically be a power of 2, and p will be very small. One
example is (N, p, q) = (251, 3, 128). Additional public parameters are
numbers, which, for reasons that will be apparent momentarily, we’ll
denote df , dg, dm and dr. These specify the space of allowable private
keys f and g, the allowable messages, and the form of the random
polynomial r used in encryption.

Key creation Choose random “small” polynomials f and g, where f has
df 1’s and df −1 (-1)’s, and the rest zeroes, while g will be similar, but
have the same number (dg) of 1’s and (-1)’s. By construction, f(1) = 1,
but, in addition, f will need to be invertible in Z[X]/(XN −1) modulo
p and q. (As mentioned above, this occurs with high probability -
when it fails, a new random f is generated.) The inverse f−1

q mod q
is computed, and the polynomial

h = f−1
q g (mod q)

is published. This h is the public key, while both f and g are private.
Encryption Choose a random polynomial r with dr 1’s, dr (-1)’s and

the rest zeroes. Let m be the (trinary) message, with dm 1’s and (-1)’s.
Compute the ciphertext

e = m + pr ∗ h (mod q)

. Reduction mod q here means reduction of the coefficients into the in-
terval (−q/2, q/2]. (This is the natural choice since these polynomials
are have coefficients centered around zero.)

Decryption Multiply e by the private key f to obtain

f ∗ e = f ∗ m + pr ∗ f ∗ h (mod q) = f ∗ m + pr ∗ g (mod q),

where this last equality uses the definition of h. With an appropriate
choice of parameters which determine the sizes of the private keys,
messages, and blinding polynomial r, it turns out that the coefficients
of f ∗m + pr ∗ g will naturally lie in the interval (−q/2, q/2]. That is,
the very last reduction mod q above was superfluous. Hence, having
obtained exactly f ∗ m + pr ∗ g, we can now reduce this mod p to
recover f ∗m, and m is recovered after multiplying by the inverse f−1

p

of f mod p. Note that m is a mod p polynomial, and is then recovered
exactly.
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The basic idea behind the decryption step is the following observation
about convolution multiplication of small polynomials. A coefficient of,
say, f ∗ m is a sum of products of the form fimj, each of which take on
values 0, 1 and -1 with some probability. Let’s think of a coefficient as
a random variable, and consider what sort of distribution it is likely to
possess. While it is reasonable to suppose that this random variable is
normally distributed around zero, it turns out that the hypergeometric
distribution (same mean, smaller standard deviation) is more accurate.
Thus the coefficients of products of small zero-centered polynomials like
f ∗ m stay very tightly clustered around zero. (Of course, f is not ex-
actly centered here.) Therefore it is easy to determine (experimentally)
choices of parameters for which decryption happens with overwhelming
probability. For example, in order for the decryption process to work, it
is necessary that

|f ∗ m + pr ∗ g|∞ < q.

We have found that this will virtually always be true if we choose param-
eters so that

|f ∗ m|∞ ≤ q/4 and |pr ∗ g|∞ ≤ q/4,

When decryption fails, there are two possible reasons. If not all the
coefficients of b = f ∗ m + pr ∗ g lie in (q/2, q/2], but yet satisfy

maxbi − minbi ≤ q

, then we say that a wrap failure has occured. A wrap failure can be fixed
by shifting all the coeffiecients. If however the spread between the max
and the min of the coefficients is larger than q, then a “gap” failure has
occurred. Again, a judicious choice of parameters will make such failures
extremely unlikely.

1.4 Some basic NTRU security issues

There are number of different types of security issues: elementary (why
N should be prime), standard (meet-in-the-middle attacks), sophisticated
(lattice reduction attacks) and implementational (chosen ciphertext at-
tacks, padding and hashing issues). Let’s talk first about the underlying
hard problem in NTRU encryption.
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NTRU lattices The hard problem underlying NTRU is the CVP prob-
lem in some special (convolution modular) lattices. The private key pair
(f, g) will be a fairly short vector in the integer lattice Lh represented by
the matrix
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which we shall abbreviate

M =

(

1 h
0 q

)

.

If k is the integer polynomial such that f ∗ h = g + qk, then the vector
(f, k) is the linear combination of the rows of this matrix which pro-
duces the private key pair (f, g). The h-vectors above have coefficients
which are fairly uniformly distributed in a q-interval. (Inverses mod q of
small polynomials can’t be particularly distinguished from arbitrary mod
q polynomials in this ring.) This lattice has dimension 2N (and deter-
minant qN ) whereas the public key has length N log q (h is an N -length
vector with integer entries mod q). The ability to keep the key length
relatively small compared to the dimension of the lattice in which the
private key is a short vector distinguishes NTRU from other lattice based
cryptosystems, such as the knapsack or GGH systems ([8]). Thus the key
length is of practical size, while the dimension of the lattice is outside the
range of existing lattice reduction technology. In practice, the parameters
of the NTRU scheme will be chosen to balance a number of competing
considerations: minimizing decryption failure, eliminating the possibility
of brute force searches, maintaining speed and efficiency, and requiring
an impossibly large estimated (breaking) time for the LLL algorithm to
return a short vector.

Remark 1. This basic scheme, and the NTRU lattice above, was pre-
sented at Crypto ’96, where preprints were distributed. At that time, we
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(J. Hoffstein, J. Silverman and myself) had not completed the details
of the analysis of the predicted breaking times of LLL, and our sample
parameters were preliminary. Shortly after this, D. Coppersmith and A.
Shamir ([2]) made two important observations. First, they pointed out
that the lattice which optimizes the ability of LLL to return short vectors
will in fact be the one represented by the matrix

M =

(

α h
0 q

)

,

where α denotes the N × N identity matrix multiplied by a certain con-
stant α. (See the discussion following the next remark for a definition of
α. They also pointed out that an attacker need not find the exact private
key pair - indeed, any short vector (f ′, g′) in the above lattice can be used
to decrypt. These two points were made in their paper [], presented at
Eurocrypt ’97. The paper also expressed the opinion that the security of
NTRUEncryptwas fragile and temporary. However, subsequent exper-
iments using LLL on these lattices reveal that efficient and quite secure
parameter choices are possible, and that the security of the algorithm is
more robust than it may have initially appeared.

Remark 2. The Hermite Normal Form of a matrix (lattice) is upper tri-
angular, with all entries positive, and the diagonal entries the largest in
that row. Every integer lattice can be put into Hermite Normal form, and
this HNF can be efficiently computed. We note that the natural lattice
for NTRU is already in HNF.

Let Lh be the lattice generated by the rows of this matrix. The deter-
minant of L is qNαN . (We shall drop the subscript h when the context
is clear. Since the public key is h = g ∗ f−1, the lattice L will contain
the vector τ = (αf, g), by which we mean the 2N vector consisting of
the N coefficients of f multiplied by α, followed by the N coefficients
of g. By the Gaussian heuristic, the expected size of the smallest vector
in a random lattice of dimension n and determinant D is approximately
D1/n

√

n
2πe In our case, n = 2N and D = qNαN , so the expected smallest

length is larger (but not much larger) than

s =

√

Nαq

πe
.

An implementation of a lattice reduction algorithm will have the best
chance of locating τ = (f, g), or another vector whose length is close to
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τ , if the attacker chooses α to maximize the ratio s/ |τ |2. Squaring this
ratio, we see that an attacker should choose α so as to maximize

α

α2 |f |22 + |g|22
=

(

α |f |22 + α−1 |g|22
)−1

.

This is done by choosing α = |g|2 / |f |2. (Note that |g|2 and |f |2 are both
public quantities.)

When α is chosen in this way, we define a constant ch by setting
|τ |2 = chs. Thus ch is the ratio of the length of the target vector to the
length of the expected shortest vector. The smaller the value of ch, the
easier it will be to find the target vector. Substituting in above, we obtain

ch =

√

2πe |f |2 |g|2
Nq

.

For a given pair (f, g) used to set up the cryptosystem, ch may be
viewed as a measure of how far the associated lattice departs from a ran-
dom lattice. If ch is close to 1, then L will resemble a random lattice and
lattice reduction methods will have a hard time finding a short vector
in general, and finding τ in particular. As ch decreases, lattice reduction
algorithms will have an easier time finding τ . Based on extensive exper-
imental evidence, the time required appears to be (at least) exponential
in N , with a constant in the exponent proportional to ch.

We note that decryption of the message is equivalent to finding the
vector (pr, pr ∗ hmod q which is a vector in the lattice close to the (non-
lattice) vector (0,m). Thus decryption solves a CVP problem for the the
NTRU lattice.

The NTRU lattices are special cases of convolution modular lattices
ones, consisting of N × N blocks of circulant matrices. Such convolution
modular lattices have a rotational invariance property, since if (u, v) ∈ L,
then

(Xi ∗ u,X i ∗ v) ∈ L for all 0 ≤ i < N .

Notice that each of the rotations (X i ∗ u,X i ∗ v) has the same (centered)
norm as (u, v).

Here are a few final general remarks about the relationship between
the parameters:

1. The security parameters N and q are related by

q = O(N).

In practice, we generally take 1
3N ≤ q ≤ 2

3N .
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2. The small polynomials have coefficients of size O(1), that is, coeffi-
cients whcih are bounded independently of N . Therefore the (cen-
tered) norm of a small polynomial a(X) satisfies

‖a‖ = O(
√

N).

3. A general convolution modular lattice L has dimension 2N and de-
terminant qN , so its probable shortest vector and closest vectors have
size approximately

λe(L) =
√

Nq/πe = O(N). (3)

Notice that L contains N linearly independent vectors of length q =
O(N), namely the rightmost N columns of its matrix. Small linear
combinations of these “q-vectors” are the only obvious vectors of
length O(N) in this lattice.

4. If (u, v) ∈ L, then the vector obtained by reducing the coordinates of
u and v modulo q is in L. Thus this lattice contains a large number
of vectors of length O(q

√
N) = O(N 3/2).

5. An NTRU lattice contains not only the short vector (f, g), but all of its
(short) rotations (X i ∗f,X i ∗g), which have length O(

√
N). Based on

the Gaussian heuristic, these secret short vectors are probably O(
√

N)
smaller than any vector not in the subspace R ∗ (f, g) that they span.

At this point, we briefly discuss two additional basic security issues
which dictate the choice of parameters.

Meet-in-the-middle attacks To cut down the search space for the
private key, one can split f in half, say f = f1 +f2, and then one matches
f1∗h against −f2∗h, looking for the pair (f1, f2) so that the corresponding
coefficients have approximately the same value. Hence in order to obtain
a security level of (say) 280, one must choose df and dg so that the space
of allowable pairs contains around 2160 elements. Hence the security level
from a brute force search aided by this trick is given by

(

Key

Security

)

=
1

dg!

√

N !

(N − 2dg)!

(

Message

Security

)

=
1

d!

√

N !

(N − 2d)!
,

.

assuming that the dg is the smaller of df , dg.
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Composite N , and the discrete Fourier transform A variety of sug-
gested parameters exist in the literature for NTRU encryption - always
using prime choices for N , the lengths of the key vectors. However, Craig
Gentry, in [ ], was the first to publish the observation that if N is compos-
ite, the dimension of the lattice that might be used to attempt recovery
the keys may be smaller than 2N, thereby reducing security. Gentry’s idea
involved a factorization of the the polynomial rings Z[X]/(XN −1) - we’ll
take a different approach here.

It is tempting to choose N composite in order to use devices like
the Fast Fourier Transform (FFT) to reduce the computation required to
compute the convolution products. However, it is exactly the computation
in FFT which shows how to reduce the dimension of the lattice. The
discrete Fourier transform (DFT) of an N length vector (f0, f1, ..., fN−1)
is another N vector, denoted FN (f), whose kth coefficient is defined by

FN (f)[k] =

N−1
∑

i=0

fiW
−ik

where W is a primitive Nth root of unity, i.e., and W N = 1 (and hence
1+W +W 2+...+W N−1 = 0). The objects in the ring Z[X]/(XN −1) may
thus be identified with Fourier transforms of integer vectors. The main
property that we’ll use is the interaction between the Fourier transform,
and the convolution, namely, that

FN (a ∗ b)[k] = FN (a)[k]FN (b)[k].

The FFT reduces the number of computations required in computing
the FT by regrouping the terms efficiently. So if N is divisible by 2, say,
the FFT will cut the number of computations in half. It works as follows.
Suppose that N = 2M , and for any N vector f , let feven be the vector
of length M whose kth coefficient, call it feven(k), is equal to fk + fk+M ,
for k = 0, 1, ...,M − 1. Let W N = 1 and hence W M = −1 and W 2 is a
primitive Mth root of unity. Then it is not hard to see that for all i = 2k,

FN (f)[2k] = FM (feven[k].

Applying this to the convolution product h ∗ f , it follows that

FN (f ∗ h)[2k] = FN (f)[2k]FN (h)[2k] =

FM (feven)[k]FM (heven)[k] = FM (feven ∗ heven)[k].
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In particular, the vector (feven, geven) will be a relatively short vector in
an N dimensional lattice - the convolution modular lattice represented
by

M =

(

α heven

0 q

)

.

For i = 2k + 1, there is a similar formula. Since

FN (f)[2k + 1] =
N−1
∑

0

fiW
−iW−2ik

the same computation as in the even case shows that

FN (f)[2k + 1] = FM (fodd)[k],

where

fodd(i) = fiW
−i + fi+MW i+M = fiW

−i − fi+MW−i.

Using this identity in the convolution product, we see that

fodd ∗ hodd = godd.

Cancelling the W−i from both sides, we find that the pair (fo, go), where
fo(k) = fk−fk+M , is a short vector in the N dimensional convolution lat-
tice generated by ho. Thus the 2N dimensional lattice reduction problem
is replaced by two N dimensional lattices, presumably recovering both
fk + fk+M and fk − fk+M .

2 Lecture 2

A digital signature scheme should have the following properties: there is
an algorithm to produce a signature for a document, there is a means
to verify valid signatures, and forgery should be impossible. Often the
requirement that valid signatures should always be accepted is relaxed in
favor of eliminating the possibility of forgery.

In this lecture we describe the digital signature scheme NTRUSign

which is based on the CVP for NTRU modular lattices. Most of the
following introduction to NTRUSign is taken from articles and material
available on the NTRU web site www.ntru.com, whose authors include J.
Hoffstein, N. Howgrave-Graham, J. Pipher, J. Silverman, and W. Whyte.

The core idea of NTRUSign is as follows. The Signer’s private key is
a short generating basis for an NTRU lattice and his public key is a much
longer generating basis for the same lattice. The signature on a digital
document is a vector in the lattice with two important properties:
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– The signature is attached to the digital document being signed.
– The signature demonstrates an ability to solve a general closest vector

problem in the lattice.

The way in which NTRUSign achieves these two properties may be
briefly summarized as follows:

Key Generation The private key includes a short 2N -dimensional vec-
tor denoted (f, g). The public key is the large N -dimensional vector h
that specifies the NTRU lattice LNT

h , that is, h is generated from f
and g by the usual NTRU convolution congruence h ≡ f−1∗g (mod q).
The private key also includes a complementary short vector (F,G)
that is chosen so that (f, g) and (F,G) generate the full NTRU lat-
tice LNT

h .
Signing The digital document to be signed is hashed to create a random

vector (m1,m2) modulo q. The signer uses the (secret) short generat-
ing vectors to find a lattice vector (s, t) that is close to (m1,m2).

Verification The verifier uses the public key h to verify that (s, t) is
indeed in the lattice LNT

h and he verifies that (s, t) is appropriately
close to (m1,m2).

Remark 3. An earlier digital signature scheme called NSS, also based on
NTRU lattices, was presented at Eurocrypt 2001 [11]. A number of cryp-
tographers found weaknesses in NSS due to the incomplete linkage be-
tween an NSS signature and the underlying hard lattice problem. The
private key pair (f, g) which generates h, together with all pairs of rota-
tions of f and of g, yields only N basis vectors for the 2N dimensional
NTRU lattice. The scheme NSS attempted to set up a CVP using only
these basis vectors, imposing a variety of additional conditions on valid
signatures in order to maintain the claim of 2N dimensional lattice secu-
rity. This weaker solution to the CVP problem for NTRU left the door
open to a variety of attacks: a simple forgery of signatures noticed in-
dependently by Gentry, Jonsson, Stern, and a more significant inherent
difficulty involving the leakage of information in a short transcript of
signatures, developed by Gentry and Szydlo. The difficulties created by
using only half the basis vectors are resolved in NTRUSign, since there
is a direct and straightforward linkage between NTRUSign signatures
and the (approximate) closest vector problem in the underlying NTRU
lattice.

Remark 4. The principle upon which NTRUSign is based is very simple.
The signer has private knowledge of a short basis of vectors in the NTRU
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lattice. Given an arbitrary point in space arising from a message digest,
the signer uses this knowledge to find a point in the NTRU lattice close
to the message point. He then exhibits this approximate solution to the
closest vector problem (CVP) as his signature. This basic idea was already
proposed by Goldreich, Goldwasser and Halvei in [8].

The fundamental advance of the NTRUSign algorithm is the use
of NTRU lattices for CVP-based signatures. The cyclical nature of the
NTRU lattices allows the public key to be specified by just one or two
vectors, and it is this property that allows secure instances of encryption
or signing with practical key sizes. Thus for lattices of dimension n, the
GGH proposal [8] requires keys of size O(n2) bits, while NTRU uses
keys of size O(n log n) bits. At a practical level, this means that a secure
version of GGH requires keys with between 105 and 106 bits (see [16]),
while NTRUEncrypt and NTRUSign achieve RSA 1024 bit security
with keys of under 2000 bits.

It should be noted that the use of NTRU lattices for CVP-based
signatures is not completely straightforward. For the GGH scheme, the
signer is free to choose any basis of short vectors for the private key. For
an NTRU lattice, the first short vector (f, g) and the public parameters N
and q completely determine the lattice L - so the signer only has a short
basis for half of the lattice and must use the known short vector (f, g)
to find a complementary short vector (F,G) that, together with (f, g),
generates Lh. The efficient construction of an appropriate (F,G) is a
nontrivial task.

We will see that the ability to forge signatures will imply the ability
to solve an approximate CVP in high dimensions for the NTRU lattices.
However, the security of a digital signature scheme, as compared to an
encryption scheme, has an extra component: the potential leakage of in-
formation in a transcript of signatures built from the same private key.
The requirement of a signature scheme that no information can be ob-
tained from a transcript of any length can be relaxed for practical use. In
this case, one needs an estimate of how often a new key should be gener-
ated to achieve a desired security level. Our analysis shows that the most
efficient known method of transcript attack is ineffective on transcipts of
108 valid signatures. We benefited a great deal from comments on these
topics from C. Gentry, J.Lahtonenen, A. Renvall and M. Szydlo. In par-
ticular, Gentry and Szydlo developed the use of higher order moments
and their asymptotics in analyzing transcripts, and showed how lattices
can be used to aid convergence in certain situations.
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2.1 Key generation, signing, verification

An NTRUSign public/private key pair is created exactly as in the public
key scheme /NTRUEncrypt: the key creator chooses (f, g) and forms
h ≡ f−1 ∗ g (mod q). However, as part of his private key, the key creator
also computes two additional polynomials F and G satisfying

f ∗ G − g ∗ F = q, and ‖F‖, ‖G‖ = O(N).

It will turn out that the rotations of (f, g) and (F,G) then form a basis
for Lh.

Let’s assume for the moment that the signer has such an (F,G) pair
at his disposal.

Signing To sign a digital document D, the signer first hashes D to
produce a message digest m = (m1,m2) composed of two random mod q
polynomials m1 and m2.

The signature on D is a vector (s, t) ∈ Lh that is very close to m.
The signer finds (s, t) by expressing (m1,m2) as a Q-linear combination
of his short basis vectors and then rounding the coefficients to the nearest
integer. This standard method of approximately solving a CVP using a
“good basis” of a lattice was already suggested for use in cryptography
by [8].

Remark 5. The hashing of the document is not only done to reduce the
size, there are security issues as well. For example, a signature on a mes-
sage will also be a valid signature on any other message close to the given
one. Thus, to prevent fraud, a small change in a message should produce
a large or random change in its hashed image. The security issues related
to hashing of the documents will be discussed at the end of this lecture.

Algorithmically, this procedure for the NTRU lattice can be described
as follows:

– Compute polynomials a, b, A,B ∈ Z[X]/(XN − 1) by the formulas

G ∗ m1 − F ∗ m2 = A + q ∗ B,

−g ∗ m1 + f ∗ m2 = a + q ∗ b,
(4)

where a and A are chosen to have coefficients between −q/2 and q/2.
– Compute polynomials s and t as

s ≡ f ∗ B + F ∗ b (mod q),

t ≡ g ∗ B + G ∗ b (mod q).
(5)
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The polynomial s is the signature on the digital document D for the
public key h.

Remark 6. In practice, only b and B will be needed to create the signa-
ture, and only s is needed to form the signature. We also observe that
(s, t) is in the NTRU lattice Lh, since we can write

(s, t) = B ∗ (f, g) + b ∗ (F,G) (mod q).

Remark 7. For a polynomial P (X) ∈ Q[X] with rational coefficients, we
use the notation bP e to denote the polynomial obtained by rounding each
coefficient of P to the nearest integer.

Then the full signing process may be summarized by the follow-
ing matrix equation, which shows that we are using our short basis
{(f, g), (F,G)} in the standard way to find approximate solutions to CVP:

(

s t
)

=
(

B b
)

(

f g
F G

)

=

⌊

(

m1 m2

)

(

G/q −g/q
−F/q f/q

)⌉(

f g
F G

)

(6)

=

⌊

(

m1 m2

)

(

f g
F G

)−1
⌉

(

f g
F G

)

Verification Let s be a putative NTRUSign signature for the message
digest m = (m1,m2) and public key h. The signature will be valid if it
demonstrates that the signer knows a lattice point in LNT

h that is suffi-
ciently close to the message digest vector m. Verification thus consists of
the following two steps:

– Compute the polynomial

t ≡ h ∗ s (mod q).

(Note that by definition, (s, t) is a point in the lattice Lh.)
– Compute the (centered) distance from (s, t) to (m1,m2) and verify

that it is smaller than a prespecified value NormBound.
In other words, check that

∥

∥(s − m1, t − m2)
∥

∥ ≤ NormBound. (7)

A valid signature demonstrates that the signer knows a lattice point
that is within NormBound of the message digest vector m. Clearly the
smaller that NormBound is set, the more difficult it will be for a forger,
without knowledge of the private key, to solve this problem. It is thus
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important to analyze how small we can set the bound NormBound, while
still allowing valid signatures to be efficiently generated by the signer.

From (4) and (5) (or using (6)), we can calculate

(m1,m2) − (s, t) =
(

A/q a/q
)

(

f g
F G

)

.

We recall that the coefficients of a and A are between −q/2 and q/2, and
hence

m1 − s = ε1 ∗ f + ε2 ∗ F and m2 − t = ε1 ∗ g + ε2 ∗ G, (8)

where ε1 = A/q and ε2 = a/q are polynomials whose coefficients are
between −1/2 and 1/2.

As m1 and m2 vary across all mod q polynomials, it is easy to check
that A varies uniformly across all mod q polynomials, so to all intents
and purposes, the coefficients of ε1 may be treated as independent random
variables that are uniformly distributed in the interval (−1/2, 1/2). Hence
on average we have ‖ε1‖ ≈

√

N/12. A similar remark applies to a and ε2,
so also ‖ε2‖ ≈

√

N/12.
We can now estimate the distance from (s, t) to (m1,m2) using ‖ε1‖ ≈

‖ε2‖ ≈
√

N/12 and the quasimultiplicativity of the norm:

‖(m1 − s,m2 − t)‖2 = ‖(ε1f + ε2F, ε1g + ε2G)‖2 ≈ c2N3

72

(

1 +
12

N

)

. (9)

Key creation The pair (f, g) which determines h, and the NTRU lattice,
is created at random. The signer needs, however, a full (short) basis of
the lattice Lh to produce a valid signature, and needs to create another
pair (F,G) - short, independent of (f, g), and in Lh. The general strategy
for completing the basis of is to project f and g down to Z via the
resultant mapping, which respects multiplication, i.e. we consider f and
g as elements of Z[X] and find ρf , ρg, kf , kg ∈ Z[X] and Rf , Rg ∈ Z such
that

ρff + kf (XN − 1) = Rf = resultant(f ,XN − 1),

ρgg + kg(X
N − 1) = Rg = resultant(g,XN − 1).

Assuming that Rf and Rg are coprime over the integers, we can now use
the extended Euclidean algorithm to find α, β ∈ Z such that αRf +βRg =
1, in which case we have

(αρf )f + (βρg)g = 1 + k(XN − 1).
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Theorem 2. Let F = −qβρg and G = qαρf . The vectors {(f, g), (F,G)}
form an R-basis for the NTRU R-module Mh,q generated by {(1, h), (0, q)}.

Proof. Let L be the R-module generated by {(f, g), (F,G)}; we will show
Mh,q ⊆ L and L ⊆ Mh,q. An arbitrary v ∈ Mh,q can be written v =
a(1, h) + b(0, q) = (a, ah + bq) for some a, b ∈ R = Z[X]/(XN − 1). Since
h = f−1g mod q we know that (hf−g)/q ∈ R and similarly (hF −G)/q =
−hβρg −αρf ∈ R, thus c = a(G−hF )/q−bF, d = (hf −g)/q+bf ∈ R. It
is a simple matter to confirm that v = c(f, g) + d(F,G) so Mh,q ⊆ L. To
show the converse let a = cf + dF, b = c(g − hf)/q + d(G − hF )/q ∈ R.

A useful way to view Mh,q is as a matrix of generating rows, in which
case the above theorem can be seen as a unimodular change of basis.

(

f g
F G

)

=

(

f (g − fh)/q
F (G − Fh)/q

)(

1 h
0 q

)

With this notation we can define the discriminant of the R-module to
be the determinant of the matrix, which can be seen to be an invariant
modulo multiplication by a unit of R.

Since the definition of the resultant of f with XN − 1 is the product
of f evaluated at all the complex roots of XN − 1, we know that f(1) =
df divides Rf . If we let ζ denote a primitive root of XN − 1, then the
remaining product Rd/df is actually the norm of f(ζ) when considered
as an element of the field Q[ζ]. When N − 1 is reasonably composite the
subfield structure1 of Q[ζ] may be utilised to yield a more efficient way
of finding ρ′f ∈ Z[X] and R′

f = Rf/df ∈ Z such that

ρ′ff = R′
f mod Φ(X).

In this case it is relatively easy to check that ρf = dfρ′f + kΦ(X) where
k = (R′

f − df l)/N ∈ Z, and l is the sum of the coefficients of ρ′
f .

A problem with the F and G generated by these techniques is that
although they do complete the basis, they typically have very large coeffi-
cients. However, we can clearly remove any R-multiple of the vector (f, g)
from (F,G) - in fact, it suffices to reduce the first coordinate F . Suppose
we find a k such that ‖F − kf‖ is small. Then since fG − gF = q, we
have

∥

∥

∥

∥

G

g
− F

f

∥

∥

∥

∥

=

∥

∥

∥

∥

q

fg

∥

∥

∥

∥

≈ q

‖f‖ · ‖g‖
1 It is an extremely interesting and open question to know if there are any security

implications to using an N such that N − 1 is highly composite.
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(For the parameter set (N, q, d) = (251, 128, 72) this quantity is equal to
2.49, which means that on average, the coefficients of Gg−1 and Ff−1

differ by only 0.157.)

To minimize ‖F − kf‖ we would like to choose k to be equal to l =
F/f ∈ Q[X]/(XN−1), where we know 1/f = (1/Rf )ρf ∈ Q[X]/(XN−1).
However we are of course limited to take k ∈ R, so we take k = ble. The
task of finding a k which minimizes the Euclidean norm of the coefficients
of F −kf can be viewed as a N -dimensional appr-CVP lattice problem,
and the procedure above is equivalent to Babai’s “inverting and rounding”
approach [Ba 86] The lattice for this N dimensional CVP problem is given
by the circulant matrix generated by f . This is a well reduced lattice,
which is essential for Babai’s technique, since f is a relatively sparse
binary element of R and thus highly orthogonal to its rotations.

In practice however one obtains a smaller result by treating the two
components together. This corresponds to the standard lattice paradigm
of multiplying a non-square basis by its transpose in order to be able
to perform Babai’s inverting and rounding technique. In this context the
optimal k to reduce ‖(F,G) − k(f, g)‖ turns out to be

k =

⌊

f̄F + ḡG

ff̄ + gḡ

⌉

,

where f̄(x) = f(1/x) mod XN − 1 and similarly for ḡ.

2.2 Hash function attacks

A signature is a close vector (s, t) to a an arbitrary point (m1,m2). From
this signature it is easy to construct a signature for the point (0,m2 −
m1 − qv), namely (s, t) − m1(1, h) − v(0, q). So we shall only solve the
CVP for points of the form (0,m).

We now turn to security issues arising from the mapping of a digital
document D to a message representative (0,m).

This mapping is actually a two stage process. First a standard secure
hash function H1 is applied to D to give an output H1(D) consisting of
β bits for an appropriate choice of β. Next a (public) function

H2 : (Z/2Z)β −→ (Z/qZ)2N

is applied to H1(D) to yield the message digest m = H2(H1(D)). The
function H2 should map the 2β possible H1 hash values in a reasonably
uniform manner into the set of q2N possible message digests.
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Two potential attacks arise related to this mapping. First, if two dig-
ital documents D and D′ map to two message representatives m and m′

which are very close together, and if the signer can be induced to sign
both of them, then there is a small, but nontrivial, possibility that the
difference of the signatures is a small element of the underlying lattice.
This might reveal the private key [14]. Such a pair of documents would
endanger all NTRUSign implementations using a common mapping H.

Another class of forgery attacks is also possible, arising from the fact
that an attacker can generate arbitrarily many lattice points themselves of
the form (u, uh mod q) for aribtrary u. In this case, the attacker generates
a large set L of lattice points and a large set M of message representatives,
and checks to see if one of the lattice points in L signs one of the message
representatives in M.

To analyze both of these problems, we consider the collision-resistance
of a uniform random mapping into (Z/qZ)2N . The measure of this resis-
tance is the number of points that need to be generated by this mapping
before there is a chance of greater than 50% that two image points exist
within a distance Bcoll of each other. To calculate this, consider where a
mapping H2 can place a succession of points. The first point can go any-
where. So long as the second point is at least Bcoll from the first point,
there is no collision. The third point needs to avoid (at worst) two balls
of radius Bcoll. Continuing with this reasoning, we find:

Prob(no collision on (n + 1)st random point)

≤
n

∏

k=0

(

1 − k · Volume of an N -ball of radius Bcoll

Volume of an N -box of side q

)

=
n

∏

k=0

(1 − k · C), where C = πN/2

Γ (1+N/2)

(

Bcoll
q

)N
.

In order for the probability of collision to be about 1
2 , therefore, we have

the familiar birthday paradox formula ncoll ≥
√

1/C . Applying this to
the key recovery attack, we find that for (N, q) = (251, 128), an attacker
will have to generate 2205 distinct messages before there is a 50% chance
of finding two message representatives within Bcoll = 10 of each other.

A similar analysis applies to the collision attack. Since each lattice
point generated signs all points within a radius N , an attacker who gen-
erates n lattice points can sign at most a fraction n.C of all potential
messages, where

C =
πN/2

Γ (1 + N/2)

(N
q

)N

.
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If the attacker generates n points and k messages, her chance of not
getting a collision is

(1 − nC)k ≈ 1 − knC.

To minimize max(k, n), we take k = n, and find that for the standard
parameters (N, q,N ) = (251, 128, 300), an attacker will have to generate
286 lattice points and the same number of message representatives to have
a 50% chance of forging a signature by this method.

3 Lecture 3

In this lecture, we discuss the security of NTRUSign from a number
of different attacks. NTRUSign is a finite transcript scheme, but before
analyzing transcript leakage, we’ll deal with the more straightforward
potential security problems.

3.1 Security of NTRUSign against forgery

Working only with the public parameters, and without the knowledge of
any signed messages, key recovery is equivalent to finding small vectors
in the NTRU lattice. Let’s consider the difficulty of forging a specific
signature.

Suppose a forger picks a small s, with the hope that m − sh mod q
will have all small coefficients too. On average these coefficients will be
more-or-less random modulo q, so the average norm of an attempted
forgery will be q

√

N/12. (This last quantity comes from an expected
value computation: take a sequence of N independent random variables
uniformly distributed in a q-interval, then the expected value of the sum
of their squares is q2N/12.) Since the asymptotic choices of df , dg and q
are all O(N) we see that the forgery will have norm O(N 3/2), which is
the same order of magnitude as the typical valid signature norm. Thus
the security of NTRUSign lies in the relative constants involved.

A forgery attack may combine the preselection of some of the coor-
dinates with lattice reduction techniques on a lower dimensional lattice
to locate the remaining coordinates. This is the approach for convolu-
tion modular lattices developed by Gentry, Jonsson and Stern [7]. In this
scenario, a forger preselects somewhat fewer than N coordinates and use
lattice reduction techniques on a lower dimensional lattice to find the re-
maining coordinates. Let’s say that αN of the coordinates of s and t are
selected, for some choice of 0 ≤ α ≤ 1. Now lattice reduction techniques
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on a lattice of dimension (2 − α)N and determinant qN to make the re-
maining (1 − α)N coordinates as small as possible. Notice that α = 0
corresponds to pure lattice reduction and α = 1 corresponds to pure
exhaustive search.

The actual lattice in [7] has determinant qN(1+α) so we’ll use this
constant in the following computations. First observe that if α = 1, the
likelihood of an finding a valid signature (by solving t = h ∗ s for the
remaining values) is just the probability that the sum of the squares of N
integers chosen at random in the interval [−q/2, q/2] will be less than the
preassigned Normbound. An upper estimate for this probility is simply the
volume of the appropriate ball divided by the volume of the q-cube. This
probability can be made negligible for practical choices of the remaining
parameters.

As α increases, the fundamental ratio (cf. (??))

NormBound
√

(2 − α)N

2πe
· q(1+α)/(2−α)

decreases, and when it passes below 1, the Gaussian heuristic says that it
is very unlikely for any solutions to exist. For example, NormBound = 310
gives a value of α = 0.3835, which corresponds to a lattice of dimen-
sion 405. Thus a lattice reduction attack cannot hope to be reduced be-
low dimension 405 (down from 502). Further, as the dimension is reduced
towards 405, the advantage gained from the reduction in dimension is at
least partially eliminated due to the decrease in the Gauss ratio.

NormBound α Lattice Dim

300 0.3772 407

310 0.3835 405

320 0.3895 404

350 0.4062 400

380 0.4213 396

400 0.4305 393

420 0.4392 391

480 0.4624 385
Table 1. Minimum Usable Lattice Dimension — N = 251, q = 128
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3.2 Transcript analysis attacks

Recall that the difference between the message to be signed (m1,m2) and
signature satisfies

(m1,m2) − (s, t) =
(

A/q a/q
)

(

f g
F G

)

.

Since the coefficients of a and A are between −q/2 and q/2, it follows
that

m1 − s = ε1 ∗ f + ε2 ∗ F and m2 − t = ε1 ∗ g + ε2 ∗ G, (10)

where ε1 = A/q and ε2 = a/q are polynomials whose coefficients are
between −1/2 and 1/2. With m1 = 0, and writing m2 = m, we see that
The polynomials A and a are related by

f ∗ m = a + q ∗ b (mod q) and − F ∗ m = A + q ∗ B. (11)

Altogether, we see that s = f ∗ εF − F ∗ εf , where

εF = εF (m) =

{

F ∗ m

q

}

and

εf = εf (m) =

{

f ∗ m

q

}

,

and similarly for t − m.

Each of εF and εf are uniformly distributed in [−1/2, 1/2], and so a
transcript of signatures s1, ..., sn reveals a list whose averages (1/n)

∑

si

converge to 0. However, the averages of higher moments of the si’s will
converge to a nonzero quantity.

We first introduce some terminology. If a(X) =
∑

aiX
i ∈ R be a

polynomial, then the reversal of a is the polynomial

arev(X) = a(X−1) = a0 +

N−1
∑

i=1

aN−iX
i.

We then set

ā(X) = a(X) ∗ arev(X) ∈ Rq =
Zq[X]

(XN − 1)
.
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Notice that ā has the form

ā =

N−1
∑

k=0

(N−1
∑

i=0

aiai+k

)

Xk.

In particular, the constant term of ā is
∑

a2
i , and if the coefficients of a

are centered to have mean 0, then the constant term of ā will tend to be
considerably larger than the other terms. In the language of the Fourier
transform, the DFT of the polynomial arev(X) is simply the conjugate of
the DFT of a(X).

Consider the convergence of the second moment s̄i = si ∗ srev
i . To find

this value, we let sm denote the signature on the document hash m. If X
is any quantity that depends on m modulo q, we write E(X) to denote
the average value (or expecatation) as m ranges over Rq,

E(X) =
1

qN

∑

m∈Rq

Xm.

Then the expectation of s̄m, which we denote by s̄target, is given by the
formula

s̄target = E(s̄m)

= E
(

f ∗ εF (m) + F ∗ εf (m)
)

= E
((

f ∗ εF (m) + F ∗ εf (m)
)

∗
(

f ∗ εF (m) + F ∗ εf (m)
)rev)

= f̄ ∗ E
(

εF (m)
)

+ F̄ ∗ E
(

εf (m)
)

+ f ∗ F rev ∗ E (εF (m) ∗ εfrev(mrev)) + F ∗ f rev ∗ E (εf (m) ∗ εF rev(mrev))
(12)

The first two terms are the most straightforward to evaluate.

Proposition 1. Assume that f is invertible in R/qR and that q is even.
Then

E
(

εf (m)
)

=
N

12

(

1 − 1

q2
+

3

q2

N−1
∑

k=0

Xk

)

. (13)

Proof. Note that εf (m) = {f ∗ m/q} depends only on m modulo q. So
if we make the change of variables m = f−1 ∗ m′, where f−1 ∈ R is an
inverse of f in Rq and m′ runs over Rq, the value of the sum (13) does not
change. It thus suffices to consider the case f = 1, in which case ε1(m) is
simply m/q.

24



We are assuming that q is even, since this is the case in which we are
principally interested. For notational convenience we set Q = q/2.

We may treat the coefficients of m(X) as independent random vari-
ables that are uniformly distributed in the set {−Q,−Q + 1, . . . , Q − 1}.
Then

E(mi) =
1

q

Q−1
∑

u=−Q

u = −1

2
and E(m2

i ) =
1

q

Q−1
∑

u=−Q

u2 =
q2 + 2

12
,

and therefore,

E(ε1(m)) =
1

q2

N−1
∑

k=0

N−1
∑

i=0

E(mimi+k)X
k

=
1

q2

N−1
∑

i=0

E(m2
i ) +

1

q2

N−1
∑

k=1

N−1
∑

i=0

E(mi)E(mi+k)X
k

=
N(q2 + 2)

12q2
+

N

4q2

N−1
∑

k=1

Xk.

The evaluation of the cross terms in the formula for s̄target would be
similarly straightforward if the quantities εf and εF were independent,
but they are not. However, it is still possible to give a simple formula for
the expectation.

Proposition 2. Let q = pr be a prime power, and let f, g ∈ R by any
two polynomials with the property that

f−1 mod q exists and f−1 ∗ g 6≡ cXk (mod p). (14)

(In other words, f−1 ∗ g is not a monomial modulo p.) Then

E
(

εf (m) ∗ εg(m)
)

=

{

0 if p is odd,
1
4(1 + X + · · · + XN−1) if p = 2.

(15)

Proof. We first observe that εf (m) only depends on f modulo q and that
for any polynomial h that is invertible modulo q, we have

E
(

εf∗h(m) ∗ εg∗h(m)
)

= E
(

εf (m) ∗ εg(m)
)

.

Taking h = f−1 mod q, it thus suffices to treat the case f = 1. Then
εf (m) = m/q, and our assumption is that g is not a monomial.

25



The degree k coefficient of the expection is equal to

1

qN

∑

m

N−1
∑

i=0

mk−i

q

{(

g ∗ m

q

)

i

}

.

For any particular i, we consider the sum

∑

m

mk−i

{(

g ∗ m

q

)

i

}

=
∑

m

mk−i







1

q

N−1
∑

j=0

gjmi−j







.

The fact that g is not a monomial means that we can find an index `
with ` 6= k − i and gi−` 6≡ 0 (mod p). In the outer sum over m =
(m0,m1, . . . ,mN−1), we consider the sum over the variable m`. This sum
can be moved past the outer mk−i, so we obtain an inner sum that looks
like

∑

m` mod q







1

q

N−1
∑

j=0

gjmi−j







. (16)

Since the fractional part only depends on the value of the numerator
modulo q, we can make a change of variables in the outer sum by setting
m` = g−1

i−`u (mod q). Then the sum becomes

∑

u mod q







1

q



u +
∑

j 6=i−`

gjmi−j











.

As u ranges over all values mod q, so does u +
∑

gjmi−j, so the above
sum is simply equal to

∑

w mod q

{

w

q

}

= −q

2
.

(This is assuming that q is even. If q is odd, then the sum will be sym-
metric and will equal 0.)

These computations show that from the average of s̄ over a moderately
long transcript, the value of

F̄ + f̄

can probably be recovered. So we assume that the attacker, in posession
of a transcript of signatures, knows this value exactly.

26



Now consider the average of the quantities s̄2
i , and denote the (exper-

imental) average value of s̄2 over the finite transcript by

Sexper =
1

n

n
∑

i=1

s̄2
i .

As m varies over all possible N -tuples in Zq, the average, as n → ∞,
will be denoted Starget.

Proposition 3. The expectation of s̄2 has the form

Starget = E(s̄2) = E2 ∗ f̄2 + 4 ∗ E2
1 ∗ f̄ ∗ F̄ + E2 ∗ F̄ 2, (17)

where E1 and E2 are given by the formulas:

E1 = α1 + β1(X + X2 + · · · + XN−1)

E2 = α2 + β2(X + X2 + · · · + XN−1)

α1 = N

(

1

12
+

1

6q2

)

β1 =
N

4q2

α2 =
N2 − N

72

(

1 − 1

q2

)2

+ N

(

1

80
− 1

24q2
+

7

240q4

)

+
N2

8q2
− N2

8q4
+

N3

16q4

β2 =
N

144

(

1 − 1

q2

)2

+
N2

8q2

(

1 − 1

q2
+

N

2q2

)

Equivalently, Starget is given by the formula

2Starget = (E2 + 2E2
1)(F̄ + f̄)2 + (E2 − 2E2

1)(F̄ − f̄)2. (18)

Proof. The proof of the formula (17) for E(s̄2) is a calculation similar to
the calculation of E(s̄) done in Section ??, but the computation is con-
siderably more complicated. We omit the details. The equivalence of (17)
and (18) is obvious.

This calculation is similar to, but more complicated than, the calcu-
lation for E(s̄).

A rough approximation of the coefficients of 2Starget using E1 ≈ N/12
and E2 ≈ N2/72 gives

‖E2 + 2E2
1‖ ≈ N2/36 and ‖E2 − 2E2

1‖ ≈ N/120.
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For N = 251 and q = 128 we find the exact values

‖E2 + 2E2
1‖ ≈ 1744.24 and ‖E2 − 2E2

1‖ ≈ 2.09.

The attackers objective is to find information about the private key
- specifically, the first goal is to approximate f̄ using the experimental
average Sexper.

Consider the expression

A :=
2Sexper − (E2 + 2E2

1)(F̄ + f̄)2

E2 − 2E2
1

= (F̄ − f̄)2 − Starget − Sexper

E2 − 2E2
1

. (19)

If the second term were small in comparison to the first term, then in
principle, one could take the square root to obtain

B := A1/2 ≈ (F̄ − f̄) − Starget − Sexper

2(F̄ − f̄)(E2 − 2E2
1)

. (20)

Subtracting this from the known value of F̄ + f̄ gives

C :=
(F̄ + f̄) − B

2
≈ f̄ +

Starget − Sexper

4(F̄ − f̄)(E2 − 2E2
1)

. (21)

The quantity C is an ε-approximation to f , on average, if

‖C − f̄‖ ≤ ε
√

N. (22)

We will assume that Sexper has been adjusted to have the same mean
and centered norm as Starget, i.e., they have the same mean and variance.
Then we can use the following formula to approximate the error:

‖v − w‖2 =
(

‖v‖ − ‖w‖
)2

+ 2‖v‖ · ‖w‖
(

1 − ρ(v, w)
)

.

Here ρ(v, w) is the correlation coefficient of v and w. Using this formula
and the normalization ‖Sexper‖ = ‖Starget‖, we find that

‖C − f̄‖ ≈
∥

∥

∥

∥

Starget

(F̄ − f̄)(E2 − 2E2
1)

∥

∥

∥

∥

√

1 − ρ(Starget, Sexper)

2
.

Hence C will be an ε approximation of f if if Sexper satisfies

∥

∥

∥

∥

Starget

(F̄ − f̄)(E2 − 2E2
1)

∥

∥

∥

∥

√

1 − ρ(Starget, Sexper)

2
≤ ε

√
N.
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Equivalently, the correlation between Starget and Sexper must satisfy

ρ(Starget, Sexper) ≥ 1 − 2ε2N

∥

∥

∥

∥

Starget

(F̄ − f̄)(E2 − 2E2
1)

∥

∥

∥

∥

−2

.

For the particular parameters N = 251 and q = 128 and a sample
key (f, F ), an easy calculation gives

∥

∥

∥

∥

Starget

(F̄ − f̄)(E2 − 2E2
1)

∥

∥

∥

∥

≈ 105.847.

Hence our theory predicts that the correlation ρ = ρ(Starget, Sexper) and
the average coefficient error ε = ‖C − f̄‖/

√
N should be related by the

formula
ρ ≈ 1 − 10−9ε2,

or equivalently
ε ≈ 104.5

√

1 − ρ. (23)

To reconstruct f̄ from C, an attacker will need ε < 0.5, and possibly
even smaller. We conducted an experiment to determine the accuracy of
the theoretical prediction and to estimate the average coefficient error.
We set Sexper equal to Starget plus a small error and tabulated how many
of the coefficients of the computed value C differed from the correspond-
ing coefficient of its target value f̄ . The experiments showed that direct
recovery of f was unlikely to be successful if 1 − ρ is greater than 10−10,
but would almost certainly succeed if 1 − ρ were smaller than 10−13.

We implemented the above algorithm and used it on long transcripts
to attempt to recover f̄ . After 10 million signatures, the correlation be-
tween C and f̄ was only 43.1%, and the average coefficient of C − f̄
had magnitude 4.99. Since the average coefficient of f̄ itself had magni-
tude 4.68, this would not appear to be helpful.

Extending the transcript to 100 million signatures improved matters
a bit. The correlation between C and f̄ was 74.2%, but the average coef-
ficient of C − f̄ was still 3.36.

Remark 8. Because a finite transcript of some (large) length leaks private
information, it is important to consider measures which lengthen the size
of a practical transcript attack. One such measure involves perturbing
the lattice point m. Specifically, after hashing the digital document D
to obtain the lattice point m, one could add a varying and secret ε to
m obtaining m′. If ε is sufficiently small, the signature for m is also a
valid signature for m′. The distribution for ε should be chosen with care,
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since there are subtle attacks which are based on discerning the difference
between the distribution of normal signatures and the distributions of the
perturbed signatures. (In fact, it was attacks of this sort that Gentry and
Szydlo exploited in demonstrating the weakness of the scheme NSS.)
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