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0. Introduction

In the late 50’s and early 60’s, the work of De Giorgi [De Gi] and Nash [N], and then

Moser [Mo] initiated the study of regularity of solutions to divergence form elliptic

equations with merely bounded measurable coefficients. Weak solutions in a domain

Ω, a priori only in a Sobolev space W 2
1,loc(Ω), were shown to be Hölder continuous

of some order depending just on ellipticity, and maximum principles and Harnack

inequalities were established. The Dirichlet problem for such operators, with contin-

uous data on the boundary, was established in [LSW]. This in turn paved the way

for a more systematic and detailed study of the properties of the elliptic measures

dωL associated to L = divA∇ on a domain Ω. The classical properties of existence

of non-tangential limits of solutions (Fatou type theorems) and comparison principles

appeared in [CFMS], but owed a great deal to the earlier work of Carleson [Ca] and

Hunt and Wheeden [H-W] on harmonic functions in Lipschitz domains.

All the results mentioned above were carried out for elliptic operators L = divA∇
where the matrix A = (aij) has bounded measurable coefficients and is symmetric.

However, it turns out that the symmetry of the matrix is not needed to get these

results: Morrey [Mor] first observed this in connection with the De Giorgi-Nash-Moser

theory; for the results in [CFMS], this fact has not been formally observed until now.

With appropriate reformulation in terms of adjoint operators, and adjoint Green’s

functions, the results of [CFMS] are valid without the symmetry assumption (see §1).

The investigation into the solvability of Lp boundary value problems, in the sense of

non-tangential convergence and Lp estimates on the non-tangential maximal function
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of solutions, really began with the study of harmonic functions in Lipschitz domains

([D1], [D2] and [JK]). In [D1], B. Dahlberg proved that, on any Lipschitz domain Ω,

the harmonic measure, dω, and the surface measure, dσ, were mutually absolutely

continuous, that dω ∈ A∞(dσ) (the Muckenhoupt weight class A∞). He showed that

there exists a constant C such that for any radius r and every surface ball ∆(r) ⊆ ∂Ω,

(0.1)

(∫

∆(r)

k2 dσ

σ(∆(r))

) 1
2

≤ C

∫

∆(r)

k
dσ

σ(∆(r))
, where dω = kdσ.

The estimate (0.1) will imply solvability of the L2 Dirichlet problem in the domain

Ω. In [JK], Jerison and Kenig realized how to obtain (0.1) by means of an elementary

identity of Rellich type (see (0.2)). Since this discovery, and its further applications

to a more general class of divergence form operators, the theory of boundary value

problems (BVP’s) for second order operators has been built on the use of L2 Rellich

type identities. This holds true even for BVP’s associated with systems of elliptic

equations, higher order elliptic equations and parabolic equations. (See [P] and [K]

for a discussion and some references.

To be precise, consider the Laplacian in a domain above the graph of a Lipschitz

function {t > ϕ(x)} with ‖∇ϕ‖∞ ≤ M < ∞. The mapping (x, t) 7→ (x, t − ϕ(x))

is a biLipschitzian ‘flattening’ of this domain and maps the Laplacian to an elliptic

divergence form operator L = divA∇, where A = (aij) is symmetric and has merely

bounded coefficients. Dahlberg’s result ([D]) on the L2 solvability of the Dirichlet

problem for Laplace’s equation in {t > ϕ(x)}, i.e., that (0.1) holds, translates to

L2 solvability of the Dirichlet problem for L in R
n
+. Because this is not a property

universally possessed by such operators ([CFK]) (even the A∞ condition mentioned

below may fail), one asks what special property of such matrices is responsible for

this phenomenon. The answer lies in the fact the coefficients of A are independent of

the t-variable. And indeed, the Rellich identity of [JK] applies to all such operators

(symmetric and time-independent) to yield (0.1). Specifically, let L = divA∇ be an

operator of this type, and u a solution to L. Then

(0.2) div [A∇u.∇u~e] = 2div [Dtu A∇u],

where ~e = (0, . . . , 0, 1). Now apply the divergence theorem to (0.2) in, say, the domain

{t > ϕ(x)} where ϕ is Lipschitz. Here ~N , the unit normal, exists a.e., and 〈~e, ~N〉 has a

positive lower bound. Then this boundary integral identity, the estimate on 〈~e, ~N〉 and

the ellipticity assumption on A proves that ‖A∇u. ~N‖L2(dσ) ≈ ‖∇Tu‖L2(dσ). However,

the derivation of (0.2) requires symmetry of the matrix. The question is: how crucial

is this assumption in order to obtain the desired consequence of (0.2), namely, L2

solvability of the Dirichlet problem. This is the problem addressed in section 3.
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Another interesting, and little understood, situation where no Rellich identity is pos-

sible is the case where the matrix A and the solution to L are complex valued. Here

the issues of solvability of BVP’s are closely connected with fundamental questions

concerning the Cauchy integral operator and analytic perturbations of operators. In

[KM], the direct connection is made—see also [K] for the reformulation of a problem

of Kato on square roots of such operators in terms of a BVP.

In fact, a complex valued solution to L = divA∇ where A is complex elliptic can be

represented as a vector solution (by separating into real and imaginary parts) of a

real, elliptic but skew-symmetric system of equations. So there is a closer connection

between the complex valued situation and the non-symmetric one than merely the

absence of a Rellich identity. Recently, Verchota and Vogel ([VV]) have made a sys-

tematic study of non-symmetric elliptic systems in planar domains, and found some

surprising positive as well as negative results.

In this paper, motivated initially by the study of non-symmetric elliptic equations,

we prove two theorems which give sufficient conditions for the elliptic measure of an

elliptic divergence form operator to belong to A∞, with respect to surface measure,

on the boundary of Lipschitz domain in R
n. By the general theory of such operators

([CFMS]), this A∞ condition implies solvability of the Lp Dirichlet problem for some

value of p which depends on the operator. In section 3 we verify this general criterion

for a class of divergence form non-symmetric operators. These are the ‘time indepen-

dent’ coefficient operators in R
2, for which (0.1) would be proven via Rellich identities

in the symmetric case. Without symmetry, we only obtain A∞, but we also provide an

example to show that this is sharp. Thus the L2 solvability of the Dirichlet problem

may fail in this context, but Lp solvability, for some value of p, holds.

We have two main criteria for A∞, in any dimension, which are both sharp as the

example will show. Theorem (2.3) says that if any solution u to Lu = 0 can be

arbitrarily well approximated in a Lipschitz domain by smooth functions satisfying a

certain technical condition, then dωL belongs to A∞ with respect to surface measure

on the boundary of that domain. This ‘ε-approximability’ condition arises in the work

of Varopoulos ([V]) and Garnett ([G]). Indeed, the first clue that such a condition

may be connected to A∞ appears in Corollary 6.2, p.348 of [G], where a ‘quantitative’

Fatou theorem is proved. This is explained at the beginning of §2.

Our second main theorem (2.9) results essentially from the observation that Dahlberg’s

proof of ε-approximability of harmonic functions in Lipschitz domains applies in a more

general setting. That is, his proof works for any class of operators for which one has

an Lp norm equivalence between the non-tangential maximal function and the square

function of solutions, again for a class of domains to be specified later. (See section 1

for the relevant definitions.)
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The positive results contained here should have broad applications. Indeed, the con-

dition can be verified for a class of operators whose coefficients satisfy a Carleson

condition ([LH] and [KP]). The investigation initiated in section 3 generates some in-

teresting questions. For example, what are the higher dimensional analogs of these

two dimensional results? What condition can one assume, in addition to ellipticity,

which cancels the effect of non-symmetry? Finally, the true role of the existence of

Rellich type identities awaits further understanding.

1. Definitions and Background ”*”

In this section we give some terminology to be used throughout and state the main

properties of solutions to divergence form elliptic equations that we will need.

We will usually be defining solutions in Lipschitz domains Ω ⊆ R
n. Such a domain

satisfies uniform interior and exterior cone conditions (and hence classical Dirichlet

problems for, say, the Laplacian are solvable there). There follows a definition which

pays closer attention to the constants involved in measuring the ‘Lipschitz character’

of these domains.

Definition. Z ⊆ R
n is an M -cylinder of diameter d if there exists a coordinate system

(x, t) such that

Z = {(x, t) : |x| ≤ d,−2Md ≤ t ≤ 2Md}

and, for s > 0

sZ = {(x, t) : |x| ≤ sd,−2sMd ≤ t ≤ 2sMd}.

Definition. Ω ⊂ R
n is a Lipschitz domain with character (M,N, co) if there exists a

positive scale r and there exists at most N M -cylinders {Zj}Nj=1 of diameter d, with
r
c0

≤ d ≤ c0r such that

(i) 4Zj ∩ ∂Ω is the graph of a Lipschitz function ϕj (in the coordinate system of

Zj) where ‖ϕj‖∞ ≤M , and ϕj(0) = 0.

(ii) ∂Ω =
⋃
j
(Zj ∩ ∂Ω); and Zj ∩ Ω ⊇ {(x, t) : |x| ≤ d, dist ((x, t), ∂Ω) ≤ d/2}

If Q ∈ ∂Ω and Br(Q) = {X : |X − Q| ≤ r}, then ∆r(Q) (or sometimes just ∆r) will

denote Br(Q) ∩ Ω. The Carleson region above ∆r(Q) is T (∆r) = Ω ∩Br(Q).

For Ω a Lipschitz domain, we define non-tangential approach regions, for each Q ∈ ∂Ω,

Γ(Q) = Γα(Q) = {X ∈ Ω : |X −Q| ≤ (1 + α)dist (X, ∂Ω)}
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where α is taken large enough (only depending on the Lipschitz character). In [D4],

Dahlberg defines a collection of non-tangential approach regions {Γ(Q)} which he calls

a regular family of cones. Essentially these are right circular cones, with respect to

a coordinate system defining the Lipschitz graph, which are contained in the domain.

We shall sometimes use this terminology.

Let Ω be Lipschitz and {Γα(Q)}Q∈∂Ω a regular family of cones (or non-tangential

approach regions). Let Γdα(Q) = Γα(Q) ∩ Bd(Q) be the d-truncated cone. If v(X) is

continuous in Ω, we define Nα,dv(Q) = sup{|v(X)| : X ∈ Γdα(Q)}, a non-tangential

maximal function of v in Ω. The square function of v at Q relative to the family

{Γdα(Q)} is

Sα,dv(Q) =

{∫

Γdα(Q)

|∇v(X)|2 (dist (X, ∂Ω))
2−n

dX

} 1
2

.

When α and d are understood we will suppress the dependence and just use the

notation Nv and Sv.

Let now A(X) = (aij(X))ni,j=1 be a real n×n matrix, aij ∈ L∞, satisfying the uniform

ellipticity condition:

(1.1) There exists a λ > 0 such that for all ξ ∈ R
n\{0},

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ−1|ξ|2.

The matrix A will not be assumed symmetric.

Remark: Future reference to ‘the ellipticity constant’ will mean a constant that

depends on both λ and ‖aij‖L∞ .

The space W 2
1,loc (Ω) denotes {f ∈ L2

loc (Ω) : ϕf ∈W 2
1 (Ω) ∀ϕ ∈ C∞

0 (Ω)} where W 2
1 (Ω)

is the usual Sobolev space {f ∈ L2(Ω) :
∫
Ω
|f |2 +

∫
Ω
|∇f |2 < +∞}.

Definition 1.2. A function u ∈W 2
1,loc (Ω) is a solution in Ω to Lu = divA(X)∇u = 0

if

(1.2)

∫

Ω

aij(X)Diu Djϕ = 0 ∀ ϕ ∈ C∞
0 (Ω).

The main ingredients of the De Giorgi-Nash-Moser theory for solutions to elliptic

divergence form equations hold as well for the case where A(·) is not symmetric. This

was observed by Morrey ([Mor]). The starting point for these regularity results is the

following fundamental estimate. (The abbreviation 6

∫
E
fdµ is employed for the average

(
∫
E
fdµ/µ(E)).)
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(1.3) (Cacciopoli). If u ≥ 0 is an L-subsolution in Ω (i.e. the integral in (1.2) is

non-positive) and if B2r(X) ≤ Ω, then

6
∫

Br(X)

|∇u(Z)|2dZ ≤ C

r2
6
∫

B2r(X)

u(Z)2dZ,

where C depends on ellipticity and dimension.

The interior regularity estimates are as follows. Here, osc
Br

u = sup
Br

u − inf
Br
u, denotes

the oscillation of u over the ball Br.

(1.4) If u is a nonnegative subsolution in Ω and B2r ⊂ Ω then

sup
Br

u ≤ C

(
6
∫

B2r

up
) 1
p

for any p > 0 and C = C(λ, n, p).

(1.5) (interior Hölder continuity). If u is a solution to L in Ω then

osc
Br

u ≤ C
( r
R

)α (
6
∫

BR

u2

) 1
2

,

for some 0 < α < 1, α = α(λ, n) and 0 < r < R < dist (X, ∂Ω).

The important fact here is that the Hölder continuity rate of the solution only depends

on the ellipticity of the operator.

(1.6) (Harnack inequality). If u is a nonnegative solution to L in Ω and B2r ⊂ Ω,

then

sup
Br

u ≤ C inf
Br
u.

(1.7) If u is a solution to L in Ω and B2r ⊂ Ω then there is a p > 2, p = p(λ, n), such

that (
6
∫

Br

|∇u|p
) 1
p

≤ C

(
6
∫

B2r

|∇u|2
) 1

2

.

(1.8) (Maximum principle). If u is a solution to L in Ω, which is continuous in a

neighborhood of ∂Ω, then

sup
Ω
u ≤ sup

∂Ω
u.
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For domains whose boundary has some regularity (including the class of Lipschitz

domains) there are boundary analogs of the Hölder continuity and other interior es-

timates above. Such regularity estimates hold when solutions vanish on a portion of

the boundary. Under the same hypotheses as their interior analogs, we have

(1.3.B) (Boundary Cacciopoli) If u ≡ 0 on ∆2r, then

6
∫

T (∆r)

|∇u|2 ≤ C

r2
6
∫

T (∆2r)

|u|2,

whenever Lu = 0 in T (∆2r).

(1.5.B) If Lu = 0 in T (∆2r), and if u ≡ 0 on ∆2r, then

osc
T (∆ρ)

u ≤ C
(ρ
r

)α
(
6
∫

T (∆2r)

u2

) 1
2

,

where ρ < r and the surface balls ∆2r and ∆ρ have the same center.

From (1.5.B) one can deduce an estimate for nonnegative solutions u of L in a region

T (∆2r(Q)), which vanish on ∆2r(Q)

(1.9) u(X) ≤ C

( |X −Q|
r

)α
supu
T2r(Q)

where α = α(λ, r) and X is any point of T (∆r(Q)).

The results of Littman, Stampacchia and Weinberger ([LSW]) are also valid in the

non-symmetric setting. In particular, a Lipschitz domain Ω is regular for the Dirichlet

problem, meaning that for every g ∈ Lip(∂Ω), the generalized solution to Lu = 0 in

Ω, u = g on ∂Ω, given by Lax-Milgram, is in fact continuous in Ω. Thus the mapping

g 7→ ug(X) which is defined for g ∈ C(∂Ω) and for which ug(X) is the solution

to the Dirichlet problem with data g is a bounded positive linear functional. The

Riesz representation theorem implies the existence of a family of elliptic probability

measures {dωXL } associated to L. Since, by Harnack’s inequality, these are all mutually

absolutely continuous, as X varies over Ω, we shall fix a point X0 in Ω and call

dωL = dωX0

L the elliptic measure associated to ∂Ω, so that

(1.10) ug(X0) =

∫

∂Ω

g(Q)dωL(Q), ∀ g ∈ C(∂Ω).

We are interested in the relationship between the elliptic measure dωL and the surface

measure dσ for a given domain Ω. Examples ([CFK]) show that even in the symmetric
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case, dωL and dσ may be singular if the coefficients of the matrix are merely bounded

and measurable. What further assumptions on the coefficients are required to insure,

say, mutual absolute continuity, or other stronger connections between these measures

(see [FKP]). To study these questions, we need to introduce the Green’s function and

determine its relationship to elliptic measure. In [GW], Gruter and Widman made a

systematic study of the Green’s function, without assuming symmetry of the matrix.

Theorem 1.11. ([GW]) There exists a positive function G(X,Y ) with values in R ∪
{+∞} such that for all Y ∈ Ω and any r > 0,

(i) G(·, Y ) ∈W 2
1 (Ω\Br(Y )) ∩

◦
W1

1(Ω)

(ii) ∀ ϕ ∈ C∞
0 (Ω), ∫

Ω

aij(X)DiG(X,Y )Djϕ(X) = ϕ(Y )

(iii) G(Y,X) = G∗(X,Y ), where G∗ satisfies (i) and (ii) for A∗, the adjoint of A

(iv) G(X,Y ) ≤ C(λ)|X − Y |2−n for all X,Y ∈ Ω

(v) G(X,Y ) ≥ c(λ)|X − Y |2−n for all X,Y ∈ Ω with |X − Y | ≤ 1
2
dist (Y, ∂Ω)

(vi) G(·, Y ) ∈
◦
W
p
1(Ω) for all 1 ≤ p ≤ n/n− 1, uniformly in Y .

(vii) G(X,Y ) ≤ c(λ){dist (Y, ∂Ω)}α|X − Y |2−n−α, α = α(λ, n).

(viii) |G(X,Y ) −G(Z, Y )| ≤ Cλ|X − Zz|α{|X − Y |2−n−α + |Z − Y |2−n−α}

Note that in dimension n = 2 the singularity in the bounds on the Green’s function

would be logarithmic.

If the coefficients of A and the boundary of Ω were C∞, Green’s theorem would give:

u(Y ) =

∫

Ω

L∗G∗(X,Y )u(X)dX

=

∫

Ω

div [A∗∇G∗(X,Y )u(X)]dX

−
∫

Ω

A∗∇G∗(X,Y ).∇u(X)dX

=

∫

∂Ω

u(Q)A∗(Q)∇G∗(Q, Y ). ~N(Q)dσ(Q)

+

∫

Ω

G∗(X,Y )Lu(Y )dY.

where ~N(Q) is the unit normal to the boundary. That is, we find that dωYL (Q) =

A∗(Q)∇G∗(Q, Y ). ~N(Q)dσ(Q), and the solution to the Dirichlet problem with data g
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is given by

u(X) =

∫

∂Ω

g(Q)A∗(Q)∇G∗(Q,X). ~N(Q)dσ(Q).

In general, to establish the relationship between the Green’s function and elliptic

measure is more delicate. This was carried out in [CFMS] (owing a great deal to the

estimates in [HW]) for symmetric elliptic operators L. However, a careful inspection

of the proofs of the results therein will show that all the estimates remain valid (with

G replacing G∗ where appropriate) even in the non-symmetric case. We summarize

these below.

Properties of the elliptic measure

(1.12) ωXL (∆r(Q)) ≥ c0

for allX ∈ Bcr(Ar(Q)), where the pointAr(Q) ∈ Ω is chosen so that dist(Ar(Q), ∂Ω) '
|Ar(Q)−Q| ≈ r, and c = c(M), M = the Lipschitz character of Ω (see [K], pg. 8, for

a more detailed discussion of the required geometric properties of domains for which

these estimates hold.)

(1.13) For X ∈ cBcr(Ar(Q)) ∩ Ω,

(i) rn−2G(X,Ar(Q)) ≤ CωXL (∆2r(Q)).

ωXL (∆r(Q)) ≤ Crn−2G(X,Ar(Q))(ii)

= Crn−2G∗(Ar(Q), X).

(1.14) (Comparison principle). If u, v are nonnegative solutions in T (∆2r(Q)),

continuous in T (∆2r) and vanishing on ∆2r(Q), then there exists a constant C =

C(M), such that ∀ X ∈ T (∆r),

C−1u(Ar(Q))

v(Ar(Q))
≤ u(X)

v(X)
≤ C

u(Ar(Q))

v(Ar(Q))
.

The kernel function K(X,Q) is defined to be K(X,Q) =
dωXL
dωL

, the Radon-Nikodym

derivative. It satisfies the following two estimates.

(1.15) (i) If X ∈ Γα(P ) with |X − P | ≈ r ≈ dist (X, ∂Ω) then K(X,Q) ≈ 1
ωL(∆r(P )) ,

for all Q ∈ ∆r(P ).

(ii) for all X ∈ Ω, |K(X,Q1) −K(X,Q2)| ≤ CX |Q1 − Q2|α where α depends

on the Lipschitz character of Ω (and on L).

We are interested, for the purposes of solving boundary value problems, in the relation-

ship between dωL and dσ, on the boundary of Ω. We need the following definitions,

which involve dilation invariant conditions—those which are most natural in the con-

text of Lipschitz domains.
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Definition 1.16. [G-C, RdeF] Let ∆ denote a surface ball contained in ∂Ω.

(i) dµ ∈ A∞(dν) if, for any ε > 0, there exists a δ > 0 such that if E ⊆ ∆,

ν(E)

ν(∆)
< δ ⇒ µ(E)

µ(∆)
< ε.

(ii) dµ ∈ Bq(dν) if dµ is absolutely continuous with respect to dν and f = dµ
∂ν

satisfies
(∫

∆

fq
dν

ν(∆)

) 1
q

≤ C

(∫

∆

f
dν

ν(∆)

)
.

Definition 1.17. The Dirichlet problem (D)p with data in Lp(dσ) is solvable in Ω

for L if whenever f ∈ C(∂Ω), the solution u to the classical Dirichlet problem (u|∂Ω =

f ∈ C(∂Ω); u ∈ C(Ω)) satisfies the estimate

(1.18) ‖N(u)‖Lp(dσ) ≤ C‖f‖Lp(dσ)

where C depends only on the Lipschitz character of Ω, and the ellipticity of L.

Because N(u)(Q) is comparable to

MωL(f)(Q) = sup
∆3Q

∫

∆

f(P )
dωL(P )

ωL(∆)

when u = f on ∂Ω, the theory of weights ([M]) tells us that (D)p is solvable for L if

and only if dωL ∈ B′
p(dσ), where 1

p + 1
p′ = 1. Therefore, since A∞ =

⋃
q>1

Bq, it follows

that dωL ∈ A∞(dσ) if and only if there exists a p < +∞ for which (D)p is solvable for

L.

2. Square function estimates and A∞.

We shall prove two main theorems in this section—each valid in R
n for any n, and for

solutions to elliptic divergence form operators which are not necessarily assumed to be

symmetric.

Definition 2.1. Let Ω be a bounded Lipschitz domain in R
n and let L = divA∇,

an elliptic divergence form operator whose matrix has coefficients which are bounded

and measurable. A weak solution u to Lu = 0 in Ω, with ‖u‖∞ ≤ 1, is said to be
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ε-approximable if there exists a ϕ ∈ C∞(Ω) such that ‖u − ϕ‖∞ < ε in Ω and such

that for all surface balls ∆(r,Q) = ∂Ω ∩ B(r,Q),

(2.2)

∫

T (∆(r,Q))

|∇ϕ|dX ≤ Cεσ(∆),

where T (∆(r,Q)) = B(r,Q) ∩ Ω is the Carleson region associated to ∆(r,Q), and Cε
depends also on the Lipschitz character of Ω.

The concept of ε-approximability arises quite naturally and has been studied ex-

tensively for harmonic functions. Consider L = ∆ and Ω the (unbounded) domain

R
n
+ = {(x, y) ∈ R

n−1 ×R : y > 0}. If u is a bounded harmonic function, or more gen-

erally, the Poisson extension of a BMO function, then the quantity y|∇u(x, y)|2dx dy
is a Carleson measure ([G]). That is, for every cube I ⊂ R

n−1, and if `(I) = diameter

of I, then
∫
x∈I

∫ `(I)
y=0

y|∇u(x, y)|2dx dy ≤ C‖u‖2
BMO|I| which is precisely the state-

ment (2.2) for this domain. A natural question, inspired by methods of proof of both

H1 − BMO duality ([F-St]) and the Corona Theorem ([Ca2] and [G]), is whether in

fact the simpler expression |∇u|dxdy is Carleson. This is not true, but the knowledge

that u may be arbitrarily well approximated by a continuous function ϕ whose gradi-

ent gives rise to a Carleson measure provides alternate methods of proof of both these

results. For harmonic functions in the upper half space, a construction which proves

this may be found in Garnett’s book [G], building on earlier work of Varopoulos ([V]).

Indeed, Garnett draws a corollary, [p.348, of [G]], which he calls a ‘quantitative Fa-

tou theorem’, and which provides the first solid connection between ε-approximability

and quantitative properties of harmonic measure. Later, Dahlberg, in [D5], extended

Garnett’s result to harmonic functions in bounded Lipschitz domains. We shall make

some further remarks about Dahlberg’s extension later in connection with our second

main theorem, which turns out to be essentially a small observation on a proof in [D1].

Theorem 2.3. Let L = divA∇ be elliptic, where A = (aij) is a (not necessarily

symmetric) matrix of bounded measurable functions. Let Ω ⊆ R
n be a Lipschitz do-

main, containing 0. Then there exists an ε, depending on ellipticity of L and the

Lipschitz character of Ω such that if every solution u to Lu = 0, with ‖u‖∞ ≤ 1, is

ε-approximable on Ω, then dωL belongs to A∞(dσ), where dσ = surface measure on

∂Ω. That is, given η > 0, there exists a δ depending on ε, ellipticity, the Lipschitz

character of Ω and approximation constants such that whenever E ⊆ ∆r ⊆ ∂Ω, we

have σ(E)/σ(∆r) < η implies ωL(E)/ωL(∆r) < δ.

We will need some results on the elliptic measure dωL = dω on ∂Ω to establish (2.3).

Fix Ω to be a bounded Lipschitz domain containing the unit ball of R
n, B1, and

contained in BM , the ball of radius M . Let M also be an upper bound for the number
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of coordinate patches required to cover ∂Ω by graphs of Lipschitz functions whose

Lipschitz constant will also be no greater than M . This domain then possesses a

dyadic grid (see [Ch]), a collection of subsets {Ij,l} of ∂Ω, where for each fixed j ≥ 0:

(i)
⋃
l

Ij,l = ∂Ω; I0
j,l1

∩ I0
j,l2

= ∅ if l1 6= l2 and ω(∂Ij,l) = 0 for all j, l.

(ii) Both ∅ and ∂Ω belong to {Ij,l}j,l
(iii) ∆j,l ⊆ Ij,l ⊆ M∆j,l, where ∆j,l = B(2−j , Ql) ∩ ∂Ω. Ql is called the center of

Ij,l.

(iv) If
◦
I
j,l

∩
◦
I
j′,l

6= ∅, then either Ij,l ⊆ Ij′,l or Ij′,l ⊆ Ij,l. And there exist a C(M) < 1

such that ω(Ij,l) < C(M)ω(Ij′,l) when Ij,l ⊆ Ij′,l.

(v) Any open set O ⊂ ∂Ω can be decomposed as O =
⋃
j,l

Ij,l, where the Ij,l are

non-overlapping. Moreover, for each Ij,l in this decomposition, there exists a

Pj,l ∈ ∂Ω\O such that dist (Pj,l, Ij,l) ' diam (Ij,l).

We note that if the domain Ω contains an r-ball Br and is contained in BMr, then

there is a rescaled version of this dyadic grid in which the constants 2−j are replaced

by 2−jr, and the other constants do not depend on r.

Definition 2.4. Let ε0 be given and small. If E ⊆ ∂Ω, a good ε0-cover for E of length

k is a collection of nested open sets {Oi}ki=1 with E ⊆ Ok ⊆ Ok−1 ⊆ · · · ⊆ O0 = ∂Ω

where each Ol =
∞⋃
i=1

S
(l)
i and so that

(i) each S
(l)
i belongs to the dyadic grid for ∂Ω, and

(ii) for all 1 ≤ l ≤ k, ω(Ol ∩ S(l−1)
i ) ≤ ε0ω(S

(l−1)
i ).

Note that condition (ii) of Definition (2.4) above implies that each S
(l)
i is properly

contained in some S
(l−1)
j . To see this, observe that since Ol ⊆ Ol−1, S

(l)
i must intersect

some S
(l−1)
j . The inclusion S

(l−1)
j ⊆ S

(l)
i is not possible for ω(S

(l−1)
j ) ≤ ω(S

(l−1)
j ∩Ol)

and (ii) gives a contradiction.

If in (2.4) above we can take k = +∞ then {Ol} is called a good cover of infinite

length.

Lemma 2.5. If {Oi} is a good ε0-cover of E of length k and k ≥ l > m ≥ 1, then

ω(S
(m)
j ∩ Ol) ≤ εl−m0 ω(S

(m)
j ).
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Proof. From the remark following the definition above, we have

Om+1 ∩ S(m)
j =

⋃
{S(m+1)

i : S
(m+1)
i ⊂ S

(m)
j }

and the inequality (ii) of (2.4) can be iterated l −m times.

Lemma 2.6. Given ε0 > 0, there exists a δ0 > 0 such that if E ⊆ ∂Ω and ω(E) ≤ δ0,

then E has a good ε0-cover of length k, with k → ∞ as ω(E) → 0. (In fact, k ≈
ε0 log

(
C

ω(E)

)
.)

Proof. Let 0 < ε′0 < 1 be fixed–to be determined later. Let U be an open set

containing E with ω(U) < 2ω(E), and set Ok = {x : Mω(XU )(x) > ε′0}, where

Mω(g)(x) = sup{
∫

∆

g
dω

ω(∆)
: ∆ 3 x,∆ ⊆ ∂Ω}.

Since U is open, U ⊆ Ok and since ω is doubling, ω(Ok) ≤ C
ε′0
ω(U) < 2C

ε′0
ω(E). If

2C
ε′0
ω(E) is less than 1

2
, then Ok has a Whitney decomposition, Ok =

⋃
i

S
(k)
i , and for

each S
(k)
i there exists a point P

(k)
i ∈ c

Ok such that dist(P
(k)
i , S

(k)
i ) ' diam(S

(k)
i ). Since

P
(k)
i ∈ c

Ok, if ∆ is any surface ball containing P
(k)
i , then ω(U∩∆)

ω(∆) ≤ ε′0. Therefore,

there is a choice of ε′0 which depends only on the doubling constant of ω and on ε0 which

guarantees that
ω(U∩S(k)

i
)

ω(S
(k)
i

)
≤ ε0. Thus, given ε0, choose ε′0 as above, and then choose

δ0 so that 2Cω(E) < ε′0/2. Let k be the largest integer such that
(
C
ε′0

)k
ω(E) < 1

4
.

For k − 1 ≤ j ≤ 1, set Oj−1 = {x : Mω(XOj ) > ε′0}. It is straightforward to verify

that {Oi}ki=1 is a good ε0-cover.

Remark 2.7. If Ω is an arbitrary Lipschitz domain and ω is a doubling measure on

∂Ω, then we may dilate Ω to get a new domain Ω′ with B1 ⊆ Ω′ ⊆ BM and apply

Lemma (2.6) to Ω′. Because the proof of (2.6) depends only on the doubling constant

of ω, this rescaling will prove the lemma for arbitrary Lipschitz domains as well.

We now draw a corollary of the approximation hypothesis on bounded solutions u,

which is a small modification of Corollary (6.2) of [G]. The cones {Γ(Q)}Q∈∂Ω form a

regular family, i.e. non-tangential approach regions. We shall use them to define the

‘oscillation function’ of a solution u. Let r < 1 and let Γr(Q) = Γ(Q) ∩ Br(Q) be the

r-truncated cone at Q. If Xj = (xj, yj) ∈ Γr(Q), let y(Xj −Q) denote yj, the second

coordinate. Define, for θ < 1, the oscillation function N(Γr, ε, θ, Q) by

(2.8)

N(Γr, ε, θ, Q) ≥ k if there exists k points X1, . . . , Xk ∈ Γr(Q)

such that y(Xj −Q) < θy(Xj−1 −Q),

and for which |u(Xj) − u(Xj−1)| ≥ ε.
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Lemma 2.9. Suppose u is ε
4 -approximable in Ω ⊂ R

n. Then

∫

∂Ω∩Br(Q)

N(Γr, ε, θ, Q)dσ(Q) ≤ Crn−1,

where C depends on ε, θ and the Lipschitz constant of Ω.

Proof. Let {Γ̃(Q)} be another family of regular cones with Γ̃(Q) ⊃ Γ(Q). Set

Ar(ϕ)(Q) =
∫
Γ̃r(Q)

|∇ϕ| dX
|X−Q|n−1 , where Γ̃r(Q) = Γ̃(Q) ∩ Br(Q). We claim that

if N(Γr, ε, θ, Q) ≥ k and ϕ approximates u in the sense of (2.1) for ε0 = ε
4 then

Ar(ϕ)(Q) ≥ kCε,θ. Because

∫

∆r

Ar(ϕ)(Q)dσ(Q) ≤ C

∫

T (∆r)

|∇ϕ(x)|dX

which is bounded by Crn−1, C = C(M, ε), the claim proves the lemma. Moreover, by

a dilation it suffices to prove the claim for r = 1.

To see the claim, we can assume that Q = 0 and that the cones Γ(Q)\Γ̃(Q) are of the

form {(x, y) : |x| < αy}. Suppose that NΓ
ε (0) > k and fix the points Xj = (xj, yj),

|xj | < αyj , 0 ≤ yk ≤ yk−1 ≤ · · · ≤ y1 ≤ 1, yj ≤ θyj−1 for which |u(Xj)−u(Xj−1)| ≥ ε.

Because u is Holder continuous and ‖u‖∞ ≤ 1, there exists a δ, depending only on

ε and the ellipticity of L, such that |u(X) − u(Xj)| < ε/8 whenever X ∈ {(x, yj) :

|x − xj | < δyj} = lj . A similar statement holds at Xj−1 for all Y ∈ lj−1 and hence,

for any X ∈ lj and Y ∈ lj−1, |u(X) − u(Y )| ≥ 3ε/4. We may also choose δ to insure

that both segments lj, lj−1 belong to the cone Γ̃(0).

Let ϕ be a smooth ε
4
-approximant to u in the sense of (2.1). Then |ϕ(X)−ϕ(Y )| ≥ ε/4

when X ∈ lj and Y ∈ lj−1. For (z, yj) ∈ lj , and 1 ≤ t ≤ tj = yj−1/yj , set

Xt =

(
(z − xj)t+

(
1 − t− 1

tj − 1

)
xj +

t− 1

tj − 1
xj−1, tyj

)
.

Then Xt ∈ Γ̃(0) and at t = tj , Xtj ∈ lj−1, while X1 ∈ lj by assumption. Thus,∣∣∣
∫ tj
1

∂
∂tϕ(Xt)dt

∣∣∣ ≥ ε/4. Also,

∂

∂t
Xt =

(
(z − xj) −

1

tj − 1
xj +

1

tj − 1
xj−1, yj

)

=

(
(z − xj) +

xj−1 − xj
tj − 1

, yj

)
,

and so
∣∣ ∂
∂tXt

∣∣ ≤ δyj +
2αyj−1

tj−1 + yj ≤ Cyj , since yj−1 − yj ≥ (1 − θ)yj−1.
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Consider the change of variables ρ : (z, t) 7→ Xt = (x, s), where |z − xj | ≤ δyj ,

1 ≤ t ≤ tj . The mapping is one to one and we have that dzdt =
(yj)

n−2

sn−1 dxds, since the

Jacobian is given by the inverse of

det




t (∗)
. . .

t
(0) yj


 = tn−1yj = (tyj)

n−1y2−n
j = sn−1y2−n

j .

Therefore, if Γ̃j = Γ̃ ∩ {(x, y) : yj ≤ y ≤ yj−1},
∫

Γ̃j

|∇ϕ|dxds
sn−1

≥ Cδ

{
1

δyn−1
j

∫

|z−xj |≤δyj

∫ tj

1

∣∣∣∣
∂ϕ

∂t
(Xt))

∣∣∣∣ dtdz
}

≥ Cδ
ε

4
,

and summing in j we conclude that the claim holds.

Proof of (2.3). Let E ⊆ ∂Ω be given, with ω(E)
ω(∆r)

≤ δ. Let Ω′ be a Lipschitz

domain containing T (∆r), with Lipschitz constant bounded by that of Ω and for

which diam(Ω′) ≤ Mr and ∂Ω′ ∩ ∂Ω ⊆ ∆2r. Let Ar be a point of Ω′ whose distance

to ∂Ω′ is comparable to r, with constants depending only on the Lipschitz constant

of Ω. Let dωArL,Ω′ be the elliptic measure for L in the domain Ω′ with respect to the

point Ar. Let’s abbreviate this measure ω′. Then, by the comparison principle, since

ω(E)/ω(∆r) ≤ δ, ω′(E) ≤ Cδ. By Lemma 2.6, construct a good ε0-cover of E ⊆ ∂Ω′

of length k, where ε0 will be determined. That is, we have a collection of nested open

sets {Oi}ki=0 with Oi =
⋃
j

S
(i)
j , each S

(i)
j is contained in some S

(i−1)
j′ and for each

k ≥ l > m ≥ 1, we have ω′(S(m)
j ∩ Ol) ≤ εl−m0 ω′(S(m)

j ). Set f =
k∑

m=0
(−1)mXOm , and

u(X) =
∫
∂Ω′ K(X,Q)f(Q)dω′(Q), the solution to Lu = 0 in Ω′ with data f . Note

that 0 ≤ f ≤ 1.

If both ε and ε0 have been chosen appropriately then we will show that there is a θ < 1

such that N(Γr, ε, θ, Q) ≥ ck for all Q ∈ E. By Lemma (2.9),

ckσ(E) ≤
∫

E

N(Γr, ε, θ, Q)dσ(Q)

≤
∫

∆r

N(Γr, ε, θ, Q)dσ(Q)

≤ C(ε, θ)rn−1.

Thus σ(E) ≤ C
k r

n−1.
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To prove the estimate on the oscillation function, let m be an even integer, 0 < m ≤ k

and Q be any point of E. Then Q ∈ Om and so there is an element S
(m)
j0

⊆ Om of

the dyadic grid which contains Q. Let Qj0 denote the center of S
(m)
j0

and pick a point

X
(m)
j0

in Ω′ with dist(X
(m)
j0

, ∂Ω′) ≈ |X(m)
j0

− Qj0 | ≈ diam(S
(m)
j0

). Any such X
(m)
j0

is in

Γr(Q). Moreover,

u(X
(m)
j0

) ≥
∫

S
(m)
j0

K(X
(m)
j0

, P )f(P )dω′(P )

≥ C

ω′(S(m)
j0

)

∫

S
(m)
j0

f(P )dω′(P )

by estimate (1.15) on K(X
(m)
j0

, Q) for Q ∈ S
(m)
j0

, and the doubling properties of ω′.
Also,

1

ω′(S(m)
j0

)

∫

S
(m)
j0

f(P )dω′(P ) =
1

ω(S
(m)
j0

)

∫

S
(m)
j0

m∑

l=0

(−1)lXOl
dω′

+
1

ω′(S(m)
j0

)

∫

S
(m)
j0

k∑

l=m+1

(−1)lXOl
dω′

= I + II.

since S
(m)
j0

⊆ Ol, for l = 0, . . . ,m and m is even,
m∑
l=0

(−1)l = 1, thus term I = 1. Term

II is, in absolute value, bounded above by

1

ω′(S(m)
j1)

)

k∑

l=m+1

ω′(Ol ∩ S(m)
j0

) ≤ 1

ω′(S(m)
j0

)

k∑

l=m+1

εl−m0 ω′(S(m)
j0

)

≤ 2ε0,

provided that ε0 <
1
2 .

Therefore u(X
(m)
j0

) ≥ 1 − 2ε0. Our objective now is to find points Yj , for j ≤ k and j

odd, such that u(Yj) ≤ c0 where 1 − 2ε0 − c0 ≥ ε > 0 determines ε and this gives the

lower bound on N(Γr, ε, θ, Q).

Let m be odd, 0 < m ≤ k and let Q ∈ E so that there is an S
(m)
j0

such that Q ∈ S
(m)
j0

.

If Qj0 denotes the center of S
(m)
j0

, choose X
(m)
j0,η

∈ Ω such that

dist (X
(m)
j0,η

, ∂Ω) ≈ |X(m)
j0,η

−Qj0 | ≈ η diam(S
(m)
j0

),
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for η < 1 to be determined. The Hölder continuity estimate (1.9) guarantees that
∫

cS
(m)
j0

K(X
(m)
j0,η

, P )f(P )dω′(P ) ≤
∫

cB2−m (Qj0 )

K(X
(m)
j0,η

, P )f(P )dω′(P )

= 1 −
∫

B2−m(Qj0
)

K(X
(m)
j0,η

, P )f(P )dω′(P ),

so
∫

cS
(m)
j0

K(X
(m)
j0,η

, P )f(P )dω′(P ) ≤ Cηα.

Therefore

u(X
(m)
j0,η

) ≤
∫

S
(m)
j0

K(X
(m)
j0,η

, P )f(P )dω′(P ) + Cηα

=

∫

S
(m)
j0

K(X
(m)
j0,η

, P )

(
m∑

l=0

(−1)lXOl

)
dω′

+

∫

S
(m)
j0

K(X
(m)
j0,η

, P )

(
k∑

l=m+1

(−1)lXOl

)
dω′ + Cηα.

On S
(m)
j0

,
m∑
l=0

(−1)lXOl
= 0 since m is odd and so

u(X
(m)
j0,η

) ≤ Cηα +

∫

S
(m)
j0

K(X
(m)
j0,η

, P )

(
k∑

l=m+1

(−1)lXOl

)
dω′

≤ Cηα +
k∑

l=m+1

∫

S
(m)
j0

K(X
(m)
j0,η

, Q)XOl
dω′.

By Harnack’s inequality for positive solutions, and the doubling property of the elliptic

measure we have K(X
(m)
j0,η

, Q) ≤ Cη

ω′(S
(m)
j0

)
for Q ∈ S

(m)
j0

, and this yields

u(X
(m)
j0,η

) ≤ Cηα + Cη

k∑

l=m+1

εl−m0

≤ Cηα + Cηε0.

η and ε0 will be chosen later, at this point we assume they satisfy Cηα ≤ 1/8, and

Cηε0 ≤ 1/8. Choose Ym ∈ Γr(Q) such that

dist (Y(m), ∂Ω) ≈ |Y(m) −Q| ≈ η diam(S
(m)
j0

),
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then |Ym −X
(m)
j0,η

| ≤ C(η + 1)diam(S
(m)
j0

). Note that 1− u is a non negative harmonic

function in Ω′. Harnack’s inequality guarantees that

1 − u(Ym) ≥ Cη(1 − u(X
(m)
j0,η

)) ≥ Cη(1 − Cηα − Cηε0) ≥ C ′η.

Hence u(Ym) ≤ 1 − C ′η. From now we also assume that 4e0 ≤ C ′η.

For Q ∈ E, consider the sequence {Xm}km=0, where Xm = X
(m)
j0

for m even and

Xm = Ym for m odd, m = 0, 1, . . . , k. The estimates above show that provided

Cηε0 ≤ 1/8 and 4ε0 ≤ C ′η, |u(Xm) − u(Xm′)| ≥ C′η
2

whenever m is odd and m′ is

even. Moreover note that

|y(X2`+1 −Q)| ≤ |X2`+1 −Q| ≤ Cηdiam(S
(2`+1)
j0

)

≤ Cηdiam(S
(2`)
j0

) ≤ Cηdist (X2`, ∂Ω)

≤ Cη|X2` −Q| ≤ C ′′η|y(X2` −Q)|.

Here C ′′ > 0 depends of the aperture of the cone. We now choose η ∈ (0, 1) satisfying

Cηα ≤ 1/8 and C ′′η ≤ √
η. ε0 is chosen accordingly, satisfying the conditions specified

above. Under these assumptions |y(X2`+1 − Q)| ≤ √
η|y(X2` − Q)|. To insure that

heights y(Xm−Q) decrease as well, we need to choose a new sequence {Xm}. In order

to do that, note that for p ≥ 1,

|y(X2p+2` −Q)| ≤ |X2p+2` −Q| ≤ Cdiam(S
(2p+2`)
j0

)

≤ C2−pdiam(S
(2`+1)
j0

) ≤ C ′ 2
−p

η
|X2`+1 −Q|

≤ C ′′ 2
−p

η
|y(X2`+1 −Q)|.

Choose p ≥ 1 such that C ′′ 2−p

η ≤ √
η. This guarantees that |y(X2p+2` − Q)| ≤

√
η|y(X2`+1 − Q)|. Let X0 = X0, X1 = X1 and X2 = X(2p), X3 = X(2p+1) and

in general, X2` = X(2`p). By skipping this fixed number of points in the sequence,

we obtain a new sequence, {Xm} ⊂ Γr(Q), of length a fixed fraction of k. More-

over |y(Xm+1 − Q)| ≤ √
η|y(Xm − Q)|, and |u(Xm) − u(Xm+1)| ≥ Cη/2. Thus

N(Γr, Cη/2,
√
η,Q) ≥ ck. Here η ∈ (0, 1) only depends on the aperture of the cone,

and on the Lipschitz character of the domain Ω.

Our second main theorem provides a criterion for testing when ε-approximability holds.

The condition is useful—it can be verified in nontrivial instances. The next section

is devoted to one such instance: two dimensional non-symmetric elliptic divergence

form equations with non-smooth coefficients, independent of one of the variables. A

particular example computed there shows that Theorem (2.3) (as well as Theorem 2.9)

is sharp in the sense that no stronger conclusion than A∞ can be drawn.
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Theorem 2.9. Suppose that for all bounded Lipschitz domains Ω ⊆ R
n and any

solution u to Lu = divA∇u = 0, with u vanishing at some fixed point in Ω, where L

is elliptic, A is bounded and measurable, one can prove the estimates

∫

∂Ω

N2(u)dσ ≤ C1

∫

Ω

δ(X)|∇u(X)|2dX ≤ C2

∫

∂Ω

N2(u)dσ,

for δ(X) = dist (X, ∂Ω), with constants depending only the Lipschitz character of Ω.

Then, on any such domain Ω, dωΩ
L belongs to A∞(dσ).

Remark (2.10). In [D5], B. Dahlberg proved that harmonic functions in Lipschitz

domains are ε-approximable for any ε > 0. His proof used the square function estimates

(2.9) for harmonic functions that he had recently shown in [D4]. The other properties

of harmonic functions used in the proof, like the mean value property and the pointwise

estimates of gradients in terms of the function itself, may all be replaced by interior

estimates, Harnack’s inequality, maximum principles, L2 averages of gradients and

Cacciopoli inequalities. In other words, Dahlberg’s proof is valid for any class of

solutions which possess the properties which follow from the De Giorgi-Nash-Moser

theory and, in addition, satisfy (2.9). As a final comment, we note that it suffices, by

purely real variable arguments, to prove square function estimates in any Lp, 0 < p <

∞, from which (2.9)—the p = 2 case—may be derived.

It may also be important to note that the same conclusion of the theorem may be

drawn from slightly weaker hypothesis. Suppose one wishes to verify that dω belongs

to A∞(dσ) on a domain Ω ⊂ R
n. Then, it suffices to prove that (2.9) holds on any

Lipschitz domain which is a subdomain of Ω. This is apparent from the construction

in Dahlberg’s paper.

An application of Theorem 2.9 which yields a new result follows in the next section.

Theorem 2.9 may also be applied to Laplace’s equation in Lipschitz domains to prove

that harmonic measure is an A∞ weight relative to surface measure. This conclusion

is not, of course, the sharp result, but the argument is fairly elementary. First, the

results of [DKPV] show that
∫
∂Ω
S2(u)dσ ≤ c

∫
∂Ω
N2(u)dσ for ∆u = 0 in Ω, and also

that ∫

∂Ω

u2dσ ≤ c

∫

∂Ω

S2(u)dσ + c

(∫

∂Ω

S2(u)dσ

) 1
2

·
(∫

∂Ω

N2(u)dσ

) 1
2

for (normalized) solutions ∆u = 0 in Ω. Then, the stopping time argument for 3.15

of the next section shows how to get
∫
∂Ω
N2(u)dσ ≤ c

∫
∂Ω
S2(u)dσ from this latter

inequality.
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3. Non-symmetric Elliptic Equations in R
2.

Our aim in this section is to prove the following theorem, by showing that the square

function estimates of Theorem 2. hold.

Theorem 3.1. Let L = divA∇ be an elliptic operator in R
2 with bounded measurable

coefficients. Suppose that there exists a fixed unit vector ~e such that A(x, t) = A((x, t) ·
~e). Then, the elliptic measure dwL belongs to A∞(∂Ω, dσ) on any bounded Lipschitz

domain Ω ⊆ R
2.

The theorem has an interesting corollary, pointed out to us by L. Escauriaza. In

dimension 2, if L = Σaij(x)DiDj is a non-divergence form operator, symmetric and

elliptic, then Lu = 0 is equivalent to L̃u = 0, where L̃ is a (non-symmetric) elliptic

operator in divergence form. Thus, in two dimensions, the Dirichlet problem for such

symmetric non-divergence elliptic operators (L∞ coefficients but independent of the

variable) is solvable with data in Lp(∂Ω) for some p.

The theorem 3.1 is sharp in the sense that A∞ is the best possible conclusion. The

example which shows this is as follows

(3.2) Example for Poor regularity of the harmonic measure.

Let H be the upper half plane in R
2 given by t > 0, where z = (x, t) is a point of R

2.

Consider the problem:

utt + uxx +DtmDxu−DxmDtu = 0

with Dirichlet boundary data and m(x) ∈ L∞. Thus, u is a weak solution if for all

ϕ ∈
◦
W 1,2,

∫
H

(ut +mux)ϕt + (ux −mut)ϕt = 0. Let L = div

(
1 m

−m 1

)
∇ denote

the operator from
◦
W 1,2 to W−1,2 and L̄ its adjoint.

Let G(z, z̃) denote the Green’s function for L, i.e.,

L

∫

H

G(z, z̃)f(z̃)dz̃ = f(z)

and

L̄

∫

H

G(z, z̃)g(z)dz = g(z̃),

so that harmonic measure for L at z in H is given by DtG(z, (x, t))|t=0. Let

m(x) =

{
−k, for x < 0
k, for x > 0

where k is some constant and denote this operator Lk, and its adjoint by L−k.
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Theorem (3.2.1). The harmonic measure dωz is given by h(x)dx where there exists

a c > 0 such that c−1 ≤ h(x)|x|β ≤ c for β = 2 arctan k
π

and for |x| < 1.

Remark. As a corollary of the theorem, we see that A∞ is the strongest conclusion

one can draw since β → 1 as k → ∞.

Proof of Theorem (3.2.1). The theorem follows from the comparison principle and

the computation of an explicit solution to L−k in H, which is zero at t = 0. We claim

that if α = 1 − β, where β = β(k) is defined in (3.2.1), then

u(x, t) = Im

{
(x+ it)α, for x > 0
(−x+ it)α, for x < 0

satisfies L−ku = 0 in H. The computation is simplified by the following observations:

(1) Any solution to L−k(Lk) is harmonic in the quarter planes {x > 0, t > 0} and

{x < 0, t > 0}.
(2) Any solution which is 0 at t = 0 is smooth in these quarter planes up to the

boundary if one omits (0, 0). This can be seen by writing the problems as a

system of elliptic equations for which the regularity is standard.

Thus, u is a solution to the adjoint problem if and only if u is harmonic in the quarter

planes, smooth up to the boundary (omitting (0, 0)), continuous at t = 0 and satisfies

the transmission condition:

[u−x − u+
x ] − 2kut = 0, on {x = 0}.

This latter condition follows from

0 =

∫

H−

(ut + kux)ϕt + (ux − kut)ϕx

+

∫

H+

(ut − kux)ϕt + (ux + kut)ϕx

=

∫

R+

[(u−x − u+
x ) − 2kut]ϕdt

Then, to complete the proof of (3.2.1), we compute the derivatives of u at x = 0:

u−x = −α Im (iα−1tα−1)

u+
x = α Im (iα−1tα−1)

ut = α Im (iαtα−1)



22 C. KENIG*, H. KOCH**, J. PIPHER* AND T. TORO***

and
Im (iα−1) = sin((α− 1)π/2)

= − sin(βπ/2),

Im (iα) = cos((α− 1)π/2)

= cos(βπ/2).

Hence, u is a solution if and only if k = tan(βπ/2).

Our strategy for proving (3.1) is to establish the L2 norm equivalence of the non-

tangential maximal function (N) and the square function (S) of solutions to L on any

bounded Lipschitz domain. The proof is complicated so we outline the main steps

below. The precise statements can be found in the lemmas which follow the outline.

Step 1 requires the most work, and much of what follows is devoted to its proof.

Without loss of generality, assume A(x, t) = A(x) from now on.

Step 1. We prove a localized version of the L2 equivalence in the special case where:

(i) Ω is the domain above a graph.

(ii) the graph which gives the boundary of Ω is Lipschitz with respect to some

coordinate system (i.e., in any direction).

(iii) the matrix A is upper triangular.

(iv) the Lipschitz constant of the graph is small.

By ‘localized version’ we shall mean an integral over a portion of the boundary, and

there will be error terms of lower (estimable) order. Thus there are three assumptions

to be removed: The fact that A is triangular, that the boundary is a graph of a single

function, and that the Lipschitz constant is small.

Step 2: The L2 norm equivalence between (N) and (S) is established for solutions in

any bounded Lipschitz domain (with small Lipschitz constant) to L = divA∇, when

A is upper triangular.

That is, we remove the restriction that ∂Ω is a graph.

Step 3: On any bounded Lipschitz domain, with arbitrary Lipschitz constant, the Lp

(for any 0 < p < ∞) equivalence between (N) and (S) is established for solution to

L = divA∇ with A upper triangular. The ‘build-up scheme’ of G. David [Da] is used

here to remove the restriction on the smallness of the Lipschitz constant.

Step 4: Establish the Lp estimates of step 3 for A upper triangular for solutions above

a graph (in any coordinate system), with arbitrary Lipschitz constant.

We remark that Step 4 differs from Step 1 in that the Lipschitz constant need not be

small. Because the proof here uses good-λ inequalities, we needed to first establish the

Lp estimates on all bounded domains (Step 3).
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Step 5: Establish the results of step 4 for any A as in theorem 3.1, but only for graphs

with small Lipschitz constant. That is, the restriction that A be upper triangular

is removed, but only with this extra assumption. This change-of-variable argument

uses two dimensions in a crucial way. It may therefore be possible to prove higher

dimensional analogs of Theorem 3.1 for matrices of a special form, obviating the need

for this special change of variable.

Step 6: Establish the results of Step 1 for general matrices A. This is a localized

version of the results of Step 5.

Step 7: The arguments of Step 2 may be repeated to show the result of Step 3, but

for general matrices A, completing the proof.

We are assuming that for (x, t) ∈ R
2 and that A(x, t) = A(x) =

(
a(x) b(x)
c(x) d(x)

)
is real

and elliptic: ∃λ s.t. A(x)
(
ξ
η

)
·
(
ξ
η

)
≥ λ−1(|ξ|2| η|2) and ‖A‖∞ ≤ λ. Then u is a solution

of L = divA∇ in Ω ⊆ R
2 if

∫
Ω
A∇u · ∇ϕ = 0 ∇ϕ ∈ Lip0(Ω). We shall make use of

various changes of variables in what follows and so we record here how such changes of

variables transform solutions. Suppose divA∇u = 0 in Ω and Φ : Ω̃ → Ω is the change

of variables Φ(z, s) = (Φ1(z, s),Φ2(z, s)) for (z, s) ∈ Ω̃, Φ(z, s) = (x, t) ∈ Ω. Define

v(z, s) = u ◦ Φ in Ω̃, and denote DΦ(z, s) =

(
Φ1,z Φ2,z

Φ1,s Φ2,s

)
, JΦ(z, s) = | detDΦ|.

Then dx dt = JΦ(z, s)dz ds, ∇u ◦ Φ = (DΦ)−1∇v and changing variables in (3.2) one

obtains:

0 =

∫

Ω̃

A ◦ Φ · (DΦ)−1∇v(DΦ)−1∇(ϕ ◦ Φ)|JΦ|dz ds.

That is, divB∇v = 0 in Ω̃ where B = |JΦ|(DΦ−1)tA ◦ Φ(DΦ)−1.

Definition 3.3. Let ~e be a unit vector and ~e⊥ be a unit vector orthogonal to ~e. A

Lipschitz graph domain in the direction ~e is a domain Ω of the form

{(x, t) : ~e⊥ · (x, t) > ϕ((x, t).~e)} = Ω~e,ϕ,

where ϕ is Lipschitz (‖∇ϕ‖∞ ≤M).

We shall generally assume, where convenient and without loss of generality that ϕ(0) =

0. We shall first argue that it is possible to consider three special choices of ~e above

and consider only those special domains Ω~e,ϕ corresponding to these choices. To use

this reduction in each of the steps above, we shall need to prove that there is no harm

in simultaneously assuming that the Lipschitz constant of ϕ is small.

Lemma 3.4. Given a graph ϕ and associated direction (e1, e2) = ~e, e1, e2 ≥ 0, then

for ε > 0 and ε′ > 0, there exists a δ > 0 δ = δ(ε) such that

(i) If ‖ϕ′‖∞ ≤ ε/4 and e2 ≤ δe1 then Ω~e,ϕ = Ω(1,0),ψ where ‖ψ′‖∞ ≤ ε.
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(ii) If ‖ϕ′‖∞ ≤ ε/4 and e1 ≤ δe2, then Ω~e,ϕ = Ω(0,1),ψ where ‖ψ′‖∞ ≤ ε.

(iii) If e1 ≥ δe2, e2 ≥ δe1 and ‖ϕ′‖∞ ≤ ε′δ3/3, then

Ω~e,ϕ = {e1t > e2x+ ψ(x)}

where ‖ψ′‖∞ ≤ ε′.

We first note that the restriction e1, e2 ≥ 0 of the Lemma is eliminable. For suppose

Ω~e,ϕ is given with, say, e1 < 0 and e2 ≥ 0. Let Φ(z, s) = (−z, s) = (x, t) ∈ Ω be a map

Φ : Ω̃ 7→ Ω; that is, Ω̃ = {(z, s) : e1 · (−z, s) ≥ ϕ((−z, s) · ~e). Then if ~α = (−e1, e2),
we have Ω̃ = {(z, s) : α⊥ · (z, s) ≥ ϕ((z, s) · ~α)}. Observe that the Lipschitz constant

remains unchanged and that the structure of the matrix A in divA∇ (as well as the

size of its coefficients) is not changed by such a transformation.

Proof of Lemma 3.4 Let ε > 0 be given and ‖ϕ′‖∞ < ε/2. For δ > 0 to be

determined, assume first that ~e = (e1, e2) satisfies e2 ≤ δe1. Then 1 = e21 + e22 ≤
(1 + δ2)e21. We search for ψ = ψ(x) with ‖ψ′‖∞ < ε such that Ω~e,ϕ = Ω(1,0)ψ, i.e.

(3.5) e⊥ · (x, t) = ϕ((x, t) · ~e) if and only if t = ψ(x).

To solve for ψ(x), let h(x) = e1x+e2ψ(x). Then (3.5) is the condition −e2x+e1ψ(x) =

ϕ(h(x)). If h is 1−1, then −e2h−1(x)+e1ψ ◦h−1(x) = ϕ(x). Also, from the definition

of h, x = e1h
−1 + e2ψ ◦ h−1 and therefore, −e2h−1 + e1

e2
(x− e1h

−1) = ϕ, or h−1(x) =

e1x− e2ϕ(x). Because ‖ϕ′‖∞ < ε/2, ‖(h−1)′‖∞ ≥ (1− δε/2)e1 > 0 when δ < 1 and so

h−1 is increasing. This determines h and hence ψ since e1ψ(x) = e2x+ ϕ ◦ h(x). And

‖ψ′‖∞ ≤ e2
e1

+ ‖ϕ′‖∞ · ‖h′‖∞ ≤ ε as long as δ < ε/2, and (1 − δε/2)e1 ≥ (1−ε2/4)√
1+δ2

≥ 1
2 .

The case e1 ≤ δe2 with δ < ε/2 results in Ω~e,ϕ = Ω(0,1),ψ for a ψ satisfying ‖ψ′‖∞ < ε.

So we consider now the case where e2 > δe1 and e1 > δe2. Then 1 = e21 + e22 ≤
e2i (1 + δ−2) implies that both e1 and e2 are larger than 1

(1+δ−2)
1
2
. In this case, we

claim that there exists a ψ s.t.

(3.6) e⊥ · (x, t) = ϕ((x, t) · ~e) if and only if e1t = e2x+ ψ(x).

Condition (3.6) says that ψ must be defined by

ψ(x) = ϕ(e1x+
e22
e1
x+

e2
e1
ψ(x))

= ϕ(
1

e1
x+

e2
e1
ψ(x)).
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Let h(x) = 1
e1
x + e2

e1
ψ(x). Then ψ = ϕ ◦ h, or ψ ◦ h−1 = ϕ. Since x = h ◦ h−1(x) =

1
e1
h−1+ e2

e1
ψ◦h−1, solving for h−1, we find that h−1(x) = e1x−e2ϕ(x) and (h−1)′(x) =

e1 − e2ϕ
′(x). Then

(h−1)′ ≥ 1

(1 + δ−2)1/2
− ‖ϕ′‖∞

=
δ − ‖ϕ′‖∞
(1 + δ2)1/2

≥ δ − ε′δ3/3

(1 + δ2)1/2

≥ 0.

and so
‖ψ′‖∞ ≤ ‖ϕ′‖∞‖h′‖∞

≤ ε′δ3

3

√
2

δ

3

3 − ε′δ2
=

√
2δ2ε′

3 − ε′δ2
,

which is less than ε′ when also
√

2δ2/3 − δ2ε′ ≤ 1, i.e. δ < 1.

Remark on Approximation arguments In carrying out the steps of the argument

to come, in particular in Step 1, we may assume that the solutions are a priori smooth

and that the coefficients of the matrix are smooth. For if A is elliptic (but not neces-

sarily symmetric) and {Aj} is a smooth approximating sequence to A, i.e., Aj → A

and Aj has C∞ coefficients, then dwXj → dwX weakly as measures, and uniformly for

X in compact subsets. Thus if dwj is shown to belong to A∞(dσ), uniformly in j, then

dw will also. The convergence of the approximating measures dwj to dw was proven

in Section 7 of [KP1], under the assumption that A was symmetric. This assumption

can be eliminated, and all the lemmas there will hold in our non-symmetric case once

the following is established.

Approximation Lemma. Let Aj → A a.e. and in L2, and suppose uj, u ∈
◦
W 2

1(Ω)

are such that Ljuj ≡ divAj∇uj = divAj∇f and Lu ≡ divA∇u = divA∇f , for

f ∈ Lip(Ω̄), then
∫
A∇uj · ∇uj →

∫
A∇u · ∇u.

Proof. Consider

∫
A∇uj · ∇uj =

∫
Aj∇uj · ∇uj +

∫
(A− Aj)∇uj · ∇uj .

To bound the second integral above, we use the fact that there exists a p0 > 2 such that

uj ∈
◦
W

p0
1 uniformly in j (see Lemma 7.1 of [KP1]), obtaining, by Hölder’s inequality,

|
∫

(A−Aj)∇uj ,∇uj| ≤ (

∫
|A− Aj|p

′
0 |∇uj |p

′
0)1/p

′
0 · (
∫

|∇uj |p0)1/p0
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and a further use of Hölder’s inequality on the integral with |A−Aj |p
′
0 shows that this

tends to zero as j → ∞. Then

∫
Aj∇uj · ∇uj =

∫
Aj∇f · ∇uj

=

∫
(Aj − A)∇f · ∇uj +

∫
A∇f · ∇uj .

Again, the first integral tends to zero as j → ∞ and
∫
A∇f · ∇uj →

∫
A∇f · ∇u

because uj tends weakly to u in
◦
W 2

1, and indeed each derivative Dxkuj tends weakly

in L2 to the corresponding derivative Dxku.

To see this, note that for any ϕ ∈
◦
W 2

1(Ω)
∫
A∇uj · ∇ϕ →

∫
A∇u · ∇ϕ and by Lax-

Milgram this convergence suffices to conclude that uj ⇀ u weakly in
◦
W 2

1(Ω), i.e.,∫
∇uj · ∇ψ →

∫
∇u · ∇ψ as j → ∞. The component-wise convergence of ∇uj follows

from the fact that, by passing to a subsequence, the uniform boundedness in L2 of

|Dxkuj | insures weak convergence and the weak limit must then be Dxku.

It also suffices, for the simple convergence of the measures dwj to dw, to argue that

a subsequence of solutions uj converges in Cα(Ω̄) norm to u, and hence uniformly on

compact sets. This follows, in dimension n = 2, simply from the compactness of the

embedding of
◦
W

p0
1 in Cα(Ω̄) for some α > 0.

We now begin Step 1 in the proof of Theorem (3.1). We assume that the matrix A

has coefficients independent of the t-variable and is upper triangular and elliptic; that

is, A =

(
1 b(x)
0 γ(x)

)
. There are two inequalities to prove for the equivalence in norm

of the expressions N(·) and S(·) on three different types of graphs. The first result

is a localized version of the domination of N by S in L2 for solutions above graphs

t = ϕ(x), where ϕ is Lipschitz and satisfies ‖ϕ′‖∞ < ε. The expressions N(a,d) and

S(a,d) denote, as usual, N and S defined with respect to cones Γda of aperture a and

truncated at height d. And ∆r denotes a surface ball on the graph of t = ϕ(x) of

radius r centered at the origin (0, ϕ(0)).

Theorem 3.7. Let O = {(x, t) : |x| < 2, ϕ(x) < t < ϕ(x) + 2} and suppose that

Lu = divA∇u = 0 in O. There exists ε > 0 so that there are constants C1, a = a(ε)

and C2 = C2(a) such that

∫

∆1/4

N2
(a,1/2)(u)dσ ≤ C2

∫

∆7/8

S2
(4a,3/2)(u)dσ(3.7.1)

+ C2

∫∫

K

u2dX,
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where K is a compact subset of O at distance 1
4 from the graph of ϕ.

The theorem will follow from a stopping time argument, a localization, and good-λ

inequalities via the next lemma.

Lemma 3.8. Let u be a solution to L in O, as in Theorem 3.7. Then there exists an

a0 = a0(ε) such that for all a > a0 and any α > 0, there is a compact set K ⊂⊂ O so

that

∫

∆1/2

u2dσ ≤ Cα

∫

∆3/4

S2
(4a,1)(u)dσ + Cα

∫∫

K

u2dX(3.8.1)

+ (α+ C‖ϕ′‖1/2
∞ )

∫

∆3/4

N2
(a,α)(u)dσ

+ Cα

(∫

∆3/4

S2
(4a,1)(u)dσ

)1
2

·
(∫

∆3/4

N2
(a,α)(u)dσ

) 1
2

.

Proof of Lemma 3.8: We remark that the apertures a, 4a of N(·) and S(·) depend

on the Lipschitz constant. The truncation α of N(·) can be chosen arbitrarily small—

and will be chosen to depend on a in order to prove Theorem 3.7. It may also be

assumed a priori that the coefficients of A are smooth.

Let θ(x) be a C∞ bump function supported in {|x| < 3
4} with θ ≡ 1 when |x| < 1

2 and

let µ(t) be C1 with support in |t| < 2α, µ ≡ 1 when |t| < α. Let ρ : R
2
+ → {t > ϕ(x)}

be defined by ρ(z, s) = (z, F (z, s)) where F (z, s) = s+ ηs ∗ ηs ∗ϕ. This is a variant on

the Dahlberg-Kenig-Stein adapted distance function [D3]. The C∞ function η is an

approximate identity, supported in the interval {|x| < 1
2
}—so that (z, 0) 7→ (z, ϕ(z)).

Set v = u ◦ ρ. Set G(z, s) = ηs ∗ ηs ∗ ϕ. Then v verifies a divergence form equation,

namely divB∇v = 0 where

B =

(
1 +Gs −Gz + b

−Gz G2
z−Gzb+γ
1+Gs

)

and b and γ depend only on z.

Observe that G2
z −Gzb+ γ =

(
1 b
0 γ

)(
−Gz

1

)
·
(
−Gz

1

)
≥ λ(1 +G2

z) and so we can
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bound
∫
∆1/2

u2dσ from above by

∫
[G2

z −Gzb+ γ]θ(z)µ(0)v2dz

= −
∫ ∞

s=0

∫

R

Ds([G
2
z −Gzb+ γ]θ(z)µ(s)v2(z, s))dz ds

= −
∫ ∞

0

∫

R

[G2
z −Gzb+ γ]θ(z)µ′(s)v2dz ds

−
∫ ∞

0

∫

R

[G2
z −Gzb+ γ]θ(z)µ(s)2vDsv dz ds

−
∫ ∞

0

∫

R

Ds[G
2
z −Gzb+ γ]θ(z)µ(s)v2(z, s)dz ds

= 1© + 2© + 3©.

The term 3© is the delicate one—we leave this argument for last. Term 1© is bounded

by C
∫∫
K0
v2dz ds where C = C(λ) and K0 = supp (µ′). Any such expression, in turn,

can be bounded by
∫∫

K

v2dz ds+

∫

|x|<3/4

S2(v)dx,

where K is at a fixed distance from the boundary {s = 0}, say distance 1
4 by appropri-

ately choosing the aperture of S(·). This (fairly standard) uses a variant of Poincaré’s

inequality to introduce derivatives of v—see [St, p. 213], for the argument for harmonic

functions, and substitute interior estimates for the mean value property.

In term 2©, we introduce the expression 1 = Ds(s) in order to integrate by parts:

2© = −
∫ ∞

0

∫

R

2[G2
z −Gzb+ γ]θµvDs(v)Ds(s)dzds

=

∫ ∞

0

∫

R

2vDsvθµDs[G
2
z −Gzb+ γ]sdzds

+

∫ ∞

0

∫

R

2vDsvθµ′[G2
z −Gzb+ γ]sdzds

+

∫ ∞

0

∫

R

2vDssvθu[G
2
z −Gzb+ γ]sdzds

+

∫ ∞

0

∫

R

2(Dsv)
2θµ[G2

z −Gzb+ γ]sdzds

= 2©a + 2©b + 2©c + 2©d.
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The integral 2©d is dominated by a square function expression:

2©d ≤ C

∫∫
θµs|Dsv|2dzds

≤ C

∫∫

X∈O

δ(X)|∇u(X)|2dX ≤ C

∫

∆3/4

S2(u)dσ.

We shall often suppress the dependence of the constant C on the ellipticity of the

matrix and of the apertures of S(·) and of N(·) on the constants a = a(ε) and the

truncation. It will be important, in the stopping time argument which follows, to keep

track of them however.

The Cauchy-Schwarz inequality guarantees that the term 2©b, is bounded by

(
∫∫

θµs|Dsv|2dz ds)
1
2 · (

∫∫
K
v2dz ds)

1
2 , where K is a compact subset of ρ−1(O). For

2©a we use the fact that s|Gzs|2 is a Carleson measure to bound this integral by

C

(∫∫
s|Dsv|2θµdz ds

) 1
2

·
(∫∫

v2θµs|Gzs|2dz ds
)

≤ C

(∫∫

X∈G
δ(x)|∇u(x)|2dX

) 1
2

·
(∫

∆3/4

N2(u)dσ

) 1
2

≤ C

(∫

∆3/4

S2(u)dσ

)1
2

·
(∫

∆3/4

N2(u)dσ

) 1
2

.

For term 2©c, we use the equation that v satisfies. Since

Ds

(
[G2

z −Gzb+ γ]

Gs + 1
Dsv

)

=
1

Gs + 1
Ds([G

2
z −Gzb+ γ]Dsv) −

Gss
(Gs + 1)2

[G2
z −Gzb+ γ]Dsv,

we have

Dssv[G
2
z −Gzb+ γ] = (Gs + 1)Ds

(
[G2

z −Gzb+ γ]

Gs + 1
Dsv

)

−Ds[G
2
z −Gzb+ γ]Dsv +

Gss
Gs + 1

[G2
z −Gzb+ γ]Dsv.

The last two summands contain terms which are handled exactly as in 2©a above, and

so we consider how the equation transforms the first summand above.

(Gs + 1)Ds

(
[G2

z −Gzb+ γ]

Gs + 1
Dsv

)
(3.9)

= −(Gs + 1)Dz([Gs + 1]Dzv) − (Gs + 1)Dz((−Gz + b)Dsv)

+ (Gs + 1)Ds(GzDzv).
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Inserting this expression into the integral in 2©c yields three expressions in which we

integrate by parts. The first is

−
∫ ∞

0

∫

R

2sv(z, s)(Gs + 1)Dz([Gs + 1]Dzv)θµ dz ds

=

∫ ∞

0

∫

R

2[Gs + 1]Dzv Dz{θµ(Gs + 1)v}s dz ds.

This gives rise to terms bounded by
∫
S2(u)dσ (when Dz falls on v), and to a product

(
∫
N2(u)dσ)

1
2 ·(
∫
S2(u)dσ)

1
2 (whenDz falls onG and one invokes the Carleson measure

property of |∇∇G|2s dz ds). There is also a term of the form

∫ ∞

0

∫

R

2svθ′(z)µ(s)(Gs + 1)2Dzv dz ds(3.10)

≤ C

(∫∫
s|θ′|µv2dz ds

) 1
2

·
(∫∫

s|Dzv|2θ′µdz ds
)

≤ C
√
α

(∫

|z|≤3/4

N2(v)dz

) 1
2

·
(∫

|z|≤3/4

S2(v)dz

) 1
2

since s ≤ 2α. (We remark that the non-tangential maximal functions N(v), N(u)

above may be assumed to be truncated at height α, as the difference is absorbed in

the error terms
∫∫
K
v2, together with the integrals involving square functions.

The second term from the right hand side of (3.9) is

−
∫∫

2svθµ(Gs + 1)Dz((−Gz + b)Dsv)dz ds

=

∫∫
2s(Dsv ·Dzv)2(Gs + 1)(−Gz + b)θµdz ds

+

∫∫
2svθµGsz(−Gz + b)Dsv dz ds

+

∫∫
2svθ′µ(Gs + 1)(−Gz + b)Ds(v)dz ds.

The first integral above is bounded by
∫
S2(v)dx; the second integral is bounded by

C(
∫∫

s|Gsz|2v2θµdz ds)
1
2 · (

∫∫
s|Dsv|2θµdz ds) which is dominated by a product of

‖N(v)‖L2 · ‖S(v)‖L2 via the Carleson measure property of s|∇∇G|2dz ds as usual.

The third integral above is handed just as (3.10).
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The third term from (3.9) yields an integral:
∫∫

2svθµ(Gs + 1)Ds(GzDzv)dz ds

= −
∫∫

2svθµ(Gs + 1)GzsDzvdz ds

−
∫∫

2svθµ(Gs + 1)GzDzsv dz ds.

For the first integral above we invoke the Carleson property of Gzs as usual and for

the second integral above we integrate by parts one more time but in the z variable.

All the expressions which arise are similar to those we have handled before.

Finally, term 3© is equal to

(3.10.1)

∫∫
v2θµ[2GzGsz − bGsz]dz ds.

Recall that Gz = ηs ∗ ηs ∗ ϕ′ and so Gzs = 2Dsηs ∗ ηs ∗ ϕ′ = 2Dz(ψs ∗ ηs ∗ ϕ′) where

ψ̂(ξ) = η̂′(ξ), and η is chosen to be even. Because, whenever f ∈ L∞, the expression

|ψs ∗ f |2 dzdss is a Carleson measure, we have
∫∫

v2θµGzGzs = −2

∫∫
Dz(v

2θµGz)ψs ∗ ηs ∗ ϕ′dz ds

= −4

∫∫
Dzv v θµGzψs ∗ ηs ∗ ϕ′dz ds

− 2

∫∫
v2θ′µGzψs ∗ ηs ∗ ϕ′dz ds

− 2

∫∫
v2θµGzzψs ∗ ηs ∗ ϕ′dz ds.

The first integral above is bounded by a constant times:

(∫∫
|Dzv|2sθµdz ds

) 1
2

·
(∫∫

v2θµ
|ψs ∗ ηs ∗ ϕ′|2

s
dzds

) 1
2

≤
(∫

|x|<3/4

S2(v)dx

) 1
2

·
(∫

|x|<3/4

N2(v)dx

) 1
2

.

A bound of α
∫
∆3/4

N2
a,α)(u)dσ comes from the second integral—handled like (3.10)—

since |ψs ∗ ηs ∗ ϕ′| ≤ ‖ϕ′‖∞, and the third integral is bounded by:

(∫∫
v2θµ|Gzz|2sdzds

) 1
2

·
(∫∫

v2θµ
|ψs ∗ ηs ∗ ϕ′|

s
dzds

)

≤ C‖ϕ′‖∞
∫
N2(v)dx.
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We must use here the fact that the Carleson measure norm (of either quantity) is small

(since ‖ϕ′‖∞ < ε) because this term must ultimately be regarded as an error term in

the main inequality. It remains to handle the integral
∫∫

v2θµbGzsdzds which is more

delicate because a straightforward integration by parts in z is impossible as b(z) is not

differentiable.

The following calculation shows how the special double convolution form of the change

of variable is used.
∫∫

v2θµbGzsdzds = 2

∫∫
v2θµbηs ∗Dz(ψs ∗ ϕ′)dzds(3.11)

= 2

∫∫
θ̃(z)ηs ∗ (v2θb)µDz(ψs ∗ ϕ′)dzds,

where θ̃ is C∞ and θ̃ ≡ 1 in |z| ≤ 3/4 and supported in |z| < 7/8. We split the left

hand side of (3.11) into two terms T1 + T2, where

T1 =

∫∫
v2µ(s)ηs ∗ (θb)θ̃(z)Dz(ψs ∗ ϕ′)dzds

and

T2 =

∫∫
Dz(ψs ∗ ϕ′)θ̃(z)µ(s)[ηs ∗ (v2θb) − v2ηs ∗ (θb)]dzds.

In term T1, we integrate by parts in z obtaining

T1 = −
∫∫

ψs ∗ ϕ′2vDzvµηs ∗ (θb)θ̃(z)dzds

−
∫∫

ψs ∗ ϕ′v2µθ̃′(z)ηs ∗ (θb)dzds+

−
∫∫

(ψs ∗ ϕ′)v2µθ̃Dz(ηs ∗ (θb))dzds.

Since |ψs∗ϕ′|2
s dzds is a Carleson measure, the first two integrals can be estimated by

the usual arguments. The third integral is equal to

−
∫∫

(ψs ∗ ϕ′)v2µθ̃(η′)s ∗ (θb)
1

s
dzds

≤
(∫∫ |ψs ∗ ϕ′|2

s
v2µθ̃dzds

) 1
2

·
(∫∫ |(η′)s ∗ (θb)|2

s
v2µθ̃dzds

) 1
2

≤ C‖φ′‖
1
2∞

∫

|z|<7/8

N2(v)dz,

where, again, we have used the fact that the Carleson norms are small.
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Setting ψ̃ = ψ′(z), we have

|T2| ≤
∫∫

(z,s)

|ψ̃s ∗ ϕ′|
s

|ηs ∗ (v2θb) − v2ηs ∗ θb| · θ̃µdzds.

Since,

|ηs ∗ (v2θb) − v2ηs ∗ (θb)(z)| =

∣∣∣∣
∫
ηs(z

′ − z)θb(z′) · [v2(z′, s) − v2(z, s)]dz′
∣∣∣∣

≤
∣∣∣∣
∫
ηs(z

′ − z)|θb|[v(z′, s) − v(z, s)]2dz′
∣∣∣∣

+ 2|v(z, s)|
∣∣∣∣
∫
ηs(z

′ − z)θb(z′)[v(z′, s) − v(z, s)]dz′
∣∣∣∣

we have |T2| ≤ T 1
2 + T 2

2 , where

T 2
2 ≤

(∫∫

(z,s)

θ̃µ
|ψ̃s ∗ ϕ′|2

s
|v(z, s)|2dzds

) 1
2

· ‖b‖∞

·
(∫∫

(z,s)

θ̃µ
1

s

∣∣∣∣
∫
ηs(z

′ − z)[v(z′, s) − v(t, s)]dz′
∣∣∣∣
2

dzds

) 1
2

by an application of the Cauchy inequality. The first integral in the above product is

bounded by ε
(∫

|x|<3/4
N2(v)dx

) 1
2

and the square of the second is bounded by

(∫∫

(z,s)

θ̃µ
1

s

∫
ηs(z

′ − z)|v(z′, s) − v(z, s)|2dz′dzds
)

≤ C

∫∫

(z,s)

θ̃µ

(∫

|z−z′|<2s

|∇v(z′, s)|2s2dz′
)
dzds

≤ C

∫

(z′,s)

θ̃µs|∇v(z′, s)|2dz′ds ≤ C

∫

|z|<3/4

S2(v)dx.

This also shows how to estimate T 1
2 , since

T 1
2 =

∣∣∣∣∣

∫∫

(z,s)

|ψ̃s ∗ ϕ′|
s

θ̃µ

∣∣∣∣
∫
ηs(z

′ − z)θb(z′)[v(z′, s) − v(z, s)]2dz′
∣∣∣∣ dzds

∣∣∣∣∣

≤ ‖ϕ′‖∞
∫∫

(z,s)

θ̃µ

s

∣∣∣∣
∫
ηs(z

′ − z)[v(z′, s) − v(z, s)]2dz′
∣∣∣∣ dzds
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and the argument proceeds as for T 2
2 After changing variables to recover the solution

u, this proves the inequality of Lemma 3.8.

The proof of theorem 3.7 requires two lemmas, both of which will be used repeatedly.

The first lemma is a stopping time argument which is used to prove bounds on ‖N(u)‖,
from an inequality only involving ‖u‖.

Let us fix a graph t = ψ(x)—we shall make use of the fact that the inequality (3.8.1)

is available for any Lipschitz graph whose Lipschitz constant is sufficiently small.

Let Lu = 0 in the region O of Theorem 3.7 and let v(x, t) = u(x, t)θ(x)µα(t− ψ(x)),

where µα =

{
1, 0 < t < α/2
0, t > α

, and θ(x) = 1 for |x| ≤ 3
4 , supp θ ⊆ {|x| < 7

8},
0 ≤ θ ≤ 1. The constant α is to be determined, which is related to the size of the

aperture of the cones used to define N and S.

Fix an integer j > 0, and fix an aperture a > 0. The choice of a will depend on

‖ψ′‖∞ and will be determined later. Set Ej = {(x, ψ(x) : N(a,α/2)u(x, ψ(x)) >

2j , S(4a,β)(u)(x, ψ(x)) ≤ ρ2j} ∩ {|x| < 1
4
}. The truncation β is chosen so that

Γβ4a(x, ψ(x)) ⊆ {|x| ≤ 3
4 , t < 1} when |x| < 1

4 ; that is, β ≈ c
a . Now fix α = 2

3β.

The constant ρ = ρ(a) will be determined later. Define

hj(x) = sup{t ≥ ψ(x) : sup
(z,s)∈Γa(x,t)

|v(z, s)| > 2j}

where Γa(x, t) = {(z, s) : |z − x| ≤ a(s− t), s > t}.

Lemma 3.13. The function hj(x) is Lipschitz with constant 1
a
.

Proof: Let x1, x2 be given with x2 > x1 and suppose hj(x1) = t1. Let

t̃ = t1 + 1
a
(x2 − x1). Since Γa(x2, t̃) ⊂ Γa(x1, t1) ⊆ {t > ψ(x)}, we see that t̃ > ψ(x2).

Then hj(x2) ≤ t̃; for if not, there would exist a cone Γa(x2, t2), properly contained

in Γa(x1, t1), for which |v(z, s)| > 2j for some (z, s) ∈ Γa(x2, t2). To see this, note

that Γa(x2, t̃) ⊆ Γa(x1, t1) so one may choose t2 ∈ (t̃, hj(x2)). But this would imply

hj(x1) > t1, a contradiction. Moreover, by a similar argument, if ˜̃t = t1 − 1
a (x2 − x1),

then it can be seen that hj(x2) >
˜̃t. Altogether, |hj(x2) − hj(x1)| ≤ 1

a |x2 − x1|.

We now claim:

(3.14). There exists a ρ = ρ(a) such that for x ∈ Ej, there is an interval J , with

4J ⊆ {|x| < 3
4
}, such that |u(z, hj(z))| > 2j−1 when z ∈ J and such that x ∈ 4J .

Let x ∈ Ej (so that |x| < 1
4 and also N(a,α/2)(u)(x, ψ(x)) > 2j). For such x, hj(x) >

ψ(x), since there exists (z, s) ∈ Γa(x, ψ(x)) such that |v(z, s)| > 2j (and we may assume
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that v is continuous up to the boundary). For any ψ(x) < t < hj(x), there exists a

point (z, s) ∈ Γa(x) where |v(z, s)| > 2j , but for any δ > 0, |v| ≤ 2j in Γa(x, hj(x)+δ).

Thus |v| ≤ 2j in int(Γ(x, hj(x))) and there exists an (x0, t0) on ∂Γ(x, hj(x)) such that

|v(x0, t0)| = 2j . Also, by definition of hj , hj(x0) = t0.

Set now A = {(z, s) : |z − x0| ≤ a(t0 − ψ(x)), |s − t0| ≤ 1
2
(t0 − ψ(x)). Then A ⊆

Γβ4a(x, ψ(x)): for if (z, s) ∈ A, then |z−x| ≤ |z−x0|+ |x−x0| ≤ a(t0 −ψ(x))+ a(t0−
hj(x)), since |x−x0| = a(t0−hj(x)). Thus |z−x| ≤ 2a(t0−ψ(x)) ≤ 4a(s−ψ(x)). And

if |s− t0| ≤ 1
2 (t0 − ψ(x)), then s− ψ(x) ≤ 3

2 (t0 − ψ(x)) ≤ 3
2α ≤ β since t0 − ψ(x) ≤ α

be the choice of the cut-off function µα.

Let B = {(z, s) : |z− x0| < (a− 1)(t0 −ψ(x)), |s− t0| < 1
4
(t0 −ψ(x))}. Then we shall

see that |u(z, s) − u(x0, t0)| ≤ C
√
a(
∫
A
|∇u|2) 1

2 . To show this, write B as a union of

boxes Ij of side lengths (t0 − ψ(x)) × 1
4
(t0 − ψ(x)) whose doubles Ĩj are contained in

A and such that no more than two of the Ĩj overlap. Because u is a solution in each

Ij , we have the estimate:

osc
Ij

(u) ≤ C(t0 − ψ(x))

∫

Ĩj

|∇u|.

Adding these estimates, we obtain

|u(z, s) − u(x0, t0)| ≤
C

t0 − ψ(x)

∫

A

|∇u| ≤ C

(t0 − ψ(x))
(

∫

A

|∇u|2) 1
2 ·

√
a(t0 − ψ(x)).

Because A ⊆ Γβ4a(x), (
∫
A
|∇u|2) 1

2 ≤ ρ2j and so if (z, s) ∈ B, then |u(z, s)−u(x0, t0)| ≤
Cρ

√
a2j. Now choose ρ so that Cρ

√
a ≤ 1

2 . Set J = {z : |z − x0| ≤ 1
4a(t0 − ψ(x))}.

If z ∈ J , (z, hj(z)) ∈ B and hence u(z, hj(z)) > 2j−1. (|u(x0, t0)| > |v(x0, t0)| = 2j .)

Also, |x − x0| = a(t0 − hj(x)) ≤ a(t0 − ψ(x)), so that x ∈ 4J ⊆ {|x|) < 3
4}, which

proves claim 3.14.

Lemma 3.15. Let Λ be the graph of a Lipschitz function ϕ(x), with ‖ϕ′‖∞ < ε
4 ,

where ε is as in Theorem 3.7. Let M(·) denote the Λ-maximal function, for f defined

on Λ: Mf(x, ϕ(x)) = sup
x/∈I
I⊆R

1
|I|
∫
I
|f(y, ϕ(y)|dy. If dσ = surface measure on Λ, and with

the notation of Lemma 3.8, where a denotes the aperture of the cones, we have the

following good-λ inequality:

Given γ < 1 there exists C(γ), C(γ) → 0 as γ → 0 such that

σ{Na(u) > 2λ,M(S4a(u)) ≤ γλ, (M(S2
4a(u)))

1
4 · (M(N2

a (u)))
1
4 ≤ γλ,

(M((α+ C‖ϕ′‖∞)
1
2N2

a (u)))
1
2 ≤ γλ} ≤ C(γ)σ{Na(u) > λ/32}.
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We first state a rescaled version of Lemma 3.8. (We also need rescaled versions of 3.13

and 3.14).

(3.16). Let Or = {(x, t) : |x| ≤ 2r, ψ(x) < t < ψ(x) + 2r} with ‖ψ′‖∞ ≤ ε, and sup-

pose Lu = 0 in Or. Then, if Ar is any point of Or with distance to ∂Or approximately

r, there exists an a0 = a0(ε) such that for all a > a0 and for all 0 < α < 1,

∫

∆r/2

u2dσ ≤ Cα

∫

∆r

S2
(4a,r)(u)dσ(3.16)

+ Cαu
2(Ar)r + (α+ C‖ϕ′‖

1
2∞)

∫

∆r

N2
(a,αr)(u)dσ

+ Cα(

∫

∆r

S2
4a,r(u)dσ)

1
2 · (

∫

∆r

N2
(a,αr)(u)dσ)

1
2 .

This follows easily from Lemma 3.8 by rescaling. The term
∫∫
Kr
u2dX, where K is a

compact subset of Or has been replaced by the quantity u2(Ar) · r+
∫
∆r
S2

(4a,r)(µ)dσ.

We combine (3.16) with the stopping time functions hj(x) as follows; it suffices to prove

(3.15) for λ = 2j . Let {∆i} be a Whitney decomposition of {Na(u) > λ
32}. (Notice

that the cones here are infinite cones—there is no truncation parameter.) We assume

Fj ⊆ ∆i 6= ∅, and γ < ρ in 3.14, where Fj is the set appearing on the right hand side of

the inequality in 3.15, with λ = 2j. That is, ∆i ⊂ Λ ∩Bi, where Bi is a ball of radius

ri and there exists a point Pi ∈ 2Bi with dist (Pi,Λ) ≥ ri such that |u(Pi)| ≤ 1
322j . If

γ is sufficiently small, then the truncated maximal function N(a,α/2)(u)(x, ψ(x)) is still

larger than 2j/2 for x ∈ ∆i ∩ Fj . (See [D4] or [DJK]). Let hj(x) be defined as before,

relative to the domain Λ, so that if Mj(·) denotes the maximal function with respect

to the graph of hj , then Mj(uχ4∆i
)(x, hj(x)) > 2j/16 when (x, ψ(x)) ∈ Λ∩Fj∩∆i. In

fact, if ũ(x) = u(x)−u(Pi), then Mj(ũχ4∆i
)(x, hj(x)) > 2j/32. Thus, by the maximal

function theorem,

σ(Fj ∩ ∆i) ≤ C

(
32

2j

)2 ∫

4∆i

ũ2(x, hj(x))dσj(x).

We now apply (3.16) with ∆r/2 = 4∆i (i.e. r = 8ri) and observe that ũ(Ar) = 0

if Ar is chosen to be Pi. Also note that ‖h′j‖∞ < ε. There are several terms

which result as an upper bound for 2−2j
∫
4∆i

ũ2(x, hj(x))dσj(x), and the first is:

C2−2j
∫
5∆i

S2
(4a,ri),hj

(u)dσ. Here the subscript in the S(·) function means that we

are using the square function relative to the domain above the graph of hj . But the

cones Γ(4a,ri),hj used to define these square functions at a point (x, hj(x)) are contained
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in the cones Γ(4a,ri) at (x, ϕ(x)). Therefore this first term is bounded by

2−2j 6
∫

4∆i

S2
(4a)(u)dσ · |4∆i| ≤

≤ 2−2j |4∆i| ·M(S2
(4a)(u))(x0, ϕ(x0))

for any (x0, ϕ(x0)) ∈ ∆i∩Fj , which is then less than C|∆i| ·γ2, by the definition of Fj
and the fact that Fj ∩∆i 6= ∅. The other terms which arise from (3.16) are handled in

the same way, introducing maximal functions, and using the bounds on these maximal

functions from the definition of Fj .

The good-λ inequality of Lemma 3.15 can be used to prove that, for any Λ, with

small Lipschitz constant, depending on p, and for appropriate choice of γ = γ(p), the

Lp-inequality, valid for p > 2:

(3.17) ‖Na(u)‖Lp(dσ) ≤ Cp‖S4a(u)‖Lp(dσ).

(Here we have used the fact that α+ C‖ϕ′‖
1
2∞ is small.)

In order to recover the localized L2 version of this Lp inequality we state and prove a

localization theorem, a version of which will also be needed in Step 6 of the proof.

Theorem 3.18. Let L = divA∇ and let Ω~e,ϕ be the domain above the graph of ϕ,

‖ϕ′‖∞ < ε. Assume that estimate (3.17), as well as its converse—the domination of

‖S(u)‖p by ‖N(u)‖p—holds on all Lipschitz graphs with Lipschitz constant bounded by

2ε contained in Ω~e,ϕ, for some p > p0, with p0 depending only on ellipticity, and for

any solution u to L in Ω~e,ϕ. Let B1 = {(x, t) : |(x, t) ·~e| < 1, ϕ((x, t) ·~e) < (x, t) ·~e1 <
ϕ((x, t) · ~e) + 1}, and suppose that Lu = 0 in Ω̃ = Ω~e,ϕ ∩B1.

Then, we have

(3.19)

∫

∂Ω̃∩|(x,t)·~e|< 1
2

Np(u)dσ ≤ C

∫

∂Ω̃∩{|(x,t)·~e|< 3
4}
Sp(u)dσ + CK max |u|p

where K is a compact subset of Ω̃.

Proof: We will assume that ~e = (1, 0). The proof will show that there is no loss of

generality in doing this. We will also work with non-tangential maximal functions and

square functions defined with respect to truncated cones which remain in Ω̃. (The

truncation will be then of the order of ε and the aperture will depend on ε as well.)

Consider now ψ Lipschitz, with ϕ ≡ ψ on |x| > 1, |x| < 5
8 , ‖ψ′‖∞ ≤ 3

2 ε, and such that
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for 5
8

+ 1
16

≤ |x| ≤ 3
4
, we have ϕ(x) < ψ(x). We now consider the domain

˜̃
Ω ⊂ Ω̃,

given by
˜̃
Ω = {(x, t) : |x| < 3

4
, ψ(x) < t < ψ(x) +

3

4
}.

Let now
˜̃
K = ∂

˜̃
Ω\{(x, ψ(x)) : |x| < 5

8 + 1
16}, and note that

˜̃
K ⊂⊂ Ω̃. Thus, by interior

regularity we can find K̃ ⊂⊂ Ω and α = α(λ) > 0, so that

sup

X∈˜̃K
|u(X)|+ sup

X,X∈˜̃K

|u(X)− u(X ′)|
|X −X ′|α ≤ C

K̃
max
K̃

|u|.

Fix now θ1(x), 0 ≤ θ1 ≤ 1, θ1 ∈ C∞, with θ1 ≡ 1 on |x| ≤ 5
8 + 1

16 , supp θ1 ⊂ {|x| <
5
8

+ 3
32
}. We now split u = u1 + u2, in

˜̃
Ω, where Lui = 0 in

˜̃
Ω, and

u2|
∂˜̃Ω =

{
0 on top part and lateral parts of ∂

˜̃
Ω

u(x, ψ(x)) · θ1(x) on {t = ψ(x)}⋃∂ ˜̃Ω

Note that u1|
∂˜̃Ω ∈ Cα(∂

˜̃
Ω), with norm controlled by C

K̃
max
K̃

|u|. The same follows

then for u1 in
˜̃
Ω, by boundary regularity. From this, it easily follows that

∫
∂˜̃Ω S

p(u1)+

Np(u1) ≤ C
K̃

max
K̃

|u|p. We now turn to estimating u2. Let θ ∈ C∞
0 , 0 ≤ θ ≤ 1 be

identically 1 on |x| < 5
8 + 3

32 + 1
256 , with supp θ ⊆ {|x| < 5

8 + 3
32 + 1

128}, and let µ ∈ C∞
0

be supported in |t| < 1
2
, µ ≡ 1 for |t| < 1

4
. Finally, let v(x, t) = θ(x)µ(t−ψ(x))·u2(x, t),

be defined in Ωψ. Decompose v = v1 + v2, in Ωψ, where
{
Lv1 = 0 in Ωψ
v1|∂Ωψ = v|∂Ωψ

and Lv2 = Lv in Ωψ, with v2|∂Ωψ ≡ 0.

Claim (3.20). (Here Nψ and Sψ denote the non-truncated versions.)
∫

∂Ωψ

(Nψ(v2))
p + Spψ(v2)dσ ≤ C

F̃
sup
F̃

|u2|p,

where F̃ ⊂ ˜̃
Ω, and F̃ ⊂⊂ Ω̃.

From (3.17) it follows that
∫
∂Ωψ

Nψ(v1)
pdσ ≤ C

∫
∂Ωψ

Spψ(v1), but

∫

∂Ωψ

Sψ(v1)
p ≤ Cp

∫

∂Ωψ

Sψ(v1 + v2)
p + Sψ(v2)

p

≤ Cp

∫

∂Ωψ

Sψ(v)p + Cp

∫

∂Ωψ

Sψ(v2)
p
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Now,

∇v = θ(x)µ(t− ψ(x))∇u2

+ (u2(x, t) ·
∂θ

∂x
µ(t− ψ(x) − ∂ψ

∂x
µ′(t− ψ(x))θ(x), u2(x, t)θ(x)(µ

′(t− ψ(x))).

Note that supp ∂θ
∂x

⊂ { 5
8
+ 3

32
+ 1

256
< |x| < 5

8
+ 3

32
+ 1

128
} and supp µ′ ⊂ { 1

4
< |t| < 1

2
}.

Thus, there exists a set F ⊂ ˜̃
Ω, with F ⊂⊂ Ω̃, such that the second term in the sum

is bounded by C sup
F

|u2|. We then obtain

∫

∂Ωψ

Sψ(v)p ≤
∫

∂˜̃Ω∩{(x,ψ(x)):|x|< 5
8+ 3

32+ 1
64}

Sp(u2) + Cmax
F̃

|u2|p,

where F̃ ⊂ ˜̃
Ω, and F̃ ⊂⊂ Ω̃. A similar, but simpler, argument shows that

∫

∂Ω̃∩{(x,ϕ(x):|x|< 1
2}
N(u2)

pdσ ≤
∫

∂Ωψ

Nψ(v)p + C sup
F̃

|u2|,

where F̃ is as above. Gathering our estimates, we obtain

∫
N(u2)

pdσ

∂Ω̃∩{(x,ϕ(x)):|x|< 1
2}

≤ C sup
F̃

|u2|p +

∫

∂Ωψ

Nψ(v2)
p + Cp

∫

∂Ωψ

Sψ(v1)
p

≤ Cp sup
F̃

|u2|p + Cp

∫

∂Ωψ

Nψ(v2)
p + Cp

∫
S(u2)

p

∂˜̃Ω∩{(x,ψ(x)):|x|< 5
8+ 3

32+ 1
64}

+ Cp

∫

∂Ωψ

S(v2)
p

≤ Cp sup
F̃

|u2|p + Cp

∫
S(u2)

p,

∂˜̃Ω∩{|x|< 5
8+ 3

32+ 1
64}
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by (3.20). But then,

∫
N(u)pdσ

∂Ω̃∩{|x|< 1
2}

≤
∫

N(u2)
pdσ

∂Ω̃∩{|x|< 1
2}

+

∫
N(u1)

pdσ

∂Ω̃∩{|x|< 1
2}

≤ C sup
K̃

|u|p + C sup
F̃

|u2|p + C

∫
S(u2)

p

∂˜̃Ω∩{|x|< 5
8+ 3

32+ 1
64}

≤ C sup
K̃

|u|p + C sup
F̃

|u|p + C sup
F̃

|u1|p

+ C

∫
S(u)p

∂Ω̃∩{|x|< 3
4}

+C

∫
S(u1)

p

∂˜̃Ω∩{|x|< 5
8+ 1

16+ 1
32+ 1

64}

≤ C sup
K

|u|p + C

∫
S(u)p

∂Ω̃∩{|x|< 3
4}

,

as desired, where K ⊂⊂ Ω̃.

We next turn to the proof of (3.20). We first compute

Lv2 = divA(θ(x)µ(x− ψ(t)))∇u2 + divAu2∇(θ(x)µ(t− ψ(x)))

= A∇(θ(x)µ(x− ψ(t))) · ∇u2 + divAu2∇(θ(x)µ(t− ψ)).

Note that, as in the estimate for S(v) above, ∇(θ(x)µ(t−ψ(x) is supported in F̃ ⊂ ˜̃
Ω,

with F̃ ⊂⊂ Ω̃. In fact, note that

supp∇(θ(x)µ(t− ψ(x))) ⊂

{(x, t) ∈ ˜̃Ω :
5

8
+

3

32
+

1

256
< |x| < 5

8
+

3

32
+

1

128
, 0 < t− ψ(x) <

1

2
}

∪ {(x, t) ∈ ˜̃Ω : |x| < 5

8
+

3

32
+

1

128
,
1

4
< t− ψ(x) < 1} = E1 ∪ E2.

Note that the E2 is compactly contained in Ω̃, while for the first set, note that

supp u2(x, ψ(x)) ⊂ {(x, ψ(x)) : |x| < 5
8

+ 3
32
}. This implies by the Cacciopoli in-

equality (which is valid up to the boundary for functions vanishing on the boundary)

that
∫∫
E1

|∇u2|2 ≤ C
∫∫
˜̃E1

u2
2, and in fact, by the N. Meyers estimate (see [Gi] for

example)
∫∫
E1

|∇u2|q ≤ C
∫∫
˜̃E1

|u2|q, for q > 2, where q depends only on ellipticity.

Here
˜̃
E1 = {(x, t) ⊂ ˜̃

Ω : 5
8 + 3

32 + 1
512 < |x| < 5

8 + 3
32 + 1

64 , 0 < t−ψ(x) < 5
8}. Note that

F̃ =
˜̃
E1∪ Ẽ2 ⊂ ˜̃

Ω, and F̃ ⊂⊂ Ω̃. These arguments show that Lv2 = f2 +div f1, where,
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for some q > 2, we have ‖f1‖L∞(Ωψ) + ‖f2‖Lq(Ωψ) ≤ Cmax
F̃

|u2|. The vanishing of v2

on ∂Ωψ, the Cacciopoli estimate up to the boundary, and the N. Meyers improvement

now give

(3.21) ‖∇v2‖Lq(|x|≤10,0≤t−ψ(x)≤12) ≤ C‖f1‖L∞(Ωψ) + ‖f2‖Lq(Ωψ),

for q > 2 and thus, by the Sobolev embedding theorem, we obtain

‖v2‖Cα(|x|≤8,0≤t−ψ(x)≤10) ≤ Cmax
F̃

|u2|,

where α = α > 0.

We now will show that v2 decays at infinity, that is, |v2(x)| ≤ (Cmax
F̃

|u2|) · |x|−β, for

|x| > 4, and β > 0, depending only on ellipticity. The decay estimate argument which

follows is fairly elementary and general—in higher dimensions one can apply a similar

argument to the ratio of the solution with the fundamental solution to also get the

sharp rate of decay.

(3.22). (Decay at ∞). Assume that Lw = 0 in Ω ∩ {|x| > 2}, 0 ≤ w ≤ 1, and that

w ≡ 0 on ∂Ω ∩ {|x| > 2}. Then there exists β > 0 such that w(x) ≤ C|x|−β for |x|.

To prove (3.22), we first show that there exists a constant µ, depending only on

ellipticity and on the Lipschitz constant, such that w(x) ≤ µ in Ω ∩ {|x| ≤ 4}. By

Harnack at the boundary, since w vanishes on ∂Ω, there exists an η0 > 0 and a µ < 1

such that w(z) ≤ µ for all z ∈ Ω with |z − 4| < η0 or |z + 4| < η0. Consider the

solution h = 1 − w. By interior Harnack, since h is nonnegative, there is a positive

lower bound, call it ν, for h on Ω ∩ {|x| = 4}. Thus −ν + 1 is an upper bound for v

and by the maximum principle, we have v ≤ µ ≡ 1 − ν, for all x ∈ Ω with |x| ≤ 4.

An iteration of this argument using µ as a pointwise bound for w leads ultimately to

a decay of |x|−β for some β depending on ellipticity.

By (3.22) and (3.21), as well as the maximum principle, and the fact that Lv2 = 0

in {|x| > 2} ∩ Ωψ, we obtain the classical bound for v2. Then, if p0 is chosen so that

p0β > 1, we have ∫

∂Ωψ

Nψ(v2)
pdσ ≤ C

F̃
sup
F̃

|u2|p.

It remains to estimate
∫
∂Ωψ

Sψ(v2)
p to establish the claim. We use the converse in-

equality to (3.17) as follows: Construct a Lipschitz graph Λ, with Lipschitz constant

less than ε such that Λ ⊆ Ωψ\{|x| ≤ 2} and Λ ∩ ∂Ωψ = ∂Ωψ ∩ {|x| ≥ M}, for

M = M(‖ψ′‖∞). In the domain above the graph Λ, v2 is a solution to L and hence,
∫

Λ

Sp(v2)dσ ≤ C

∫

Λ

Np(v2)dσ.
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This controls
∫
∂Ωψ\{|x|≥M} S

p(v2)dσ. Let Q ∈ {|x| ≤ M} ∩ ∂Ωψ—and we need

only consider a truncated cone ΓM (Q), as the infinite part of the cone is controlled

just as in the previous argument. But, the estimate (3.21) (extended to the range

{|x| < M, 0 < t− ψ(Q) < 2M}) implies that

(∫

ΓM (Q)

|∇v2|2
) 1

2

≤ Cmax
F̃

|u2|, and

the proof is concluded. �

Remark. Under the conditions of (3.18), we also have the inequality
∫

∂Ω̃∩|(x,t)·~e|< 1
2

Sp(u)dσ ≤ C

∫

∂Ω̃∩|(x,t)·~e|< 3
4

Np(u)dσ + CK max
K

|u|p,

by a similar argument as that given for (3.18).

From the localized Lp estimate (3.19) it is standard, by means of good-λ inequalities

to obtain (localized) Lr estimates for any r, ([F-St], for example). Some care must

be taken to keep the Lipschitz constant small. To use our localization theorem 3.18,

we need, since the argument required it, the converse inequality to (3.17). In fact,

the arguments are similar, but there will be no need to build up from the case of

small Lipschitz constant for x-graphs. And, there is no need to use a stopping time

argument.

Theorem 3.23. Let O = {(x, t) : |x| < 2, ϕ(x) < t < ϕ(x) + 2} and suppose

Lu = divA∇u = 0 in O, where ‖ϕ′‖∞ ≤ M < +∞, for some M . Then there exists

an aperture a = a(M) and constant C = C(M), such that

∫

∆ 1
2

S2
(a,1)(u)dσ ≤ C

(∫

∆1

S2
a,1(u)dσ

) 1
2

·
(∫

∆1

N2
(a,1)(u)dσ

) 1
2

+ C

∫

∆1

N2
(a,1)(u)dσ.

Proof. We invoke the change of variable ρ(z, s) = (kz, s + G(z, s))) where k is a

constant, depending on M , chosen so that this transformation is one to one. As

before, set v = u ◦ ρ and the equation v verifies (locally) in R
2
+ is divB∇v = 0, where

B =

(
Gs + k −Gz + b

−Gz G2
z−Gzb+γ
Gs+k

)
.

If θ ∈ C∞ has support in |z| ≤ 1, θ ≡ 1 in |z| < 3
4

and µ(s) has support in 0 < s < 1,

µ ≡ 1 in {s < 1
2}, then it suffices to estimate

(3.24)∫∫

(z,s)

s|∇v(z, s)|2θ(z)µ(s)dz ds ≤ C0

∫∫

(z,s)

sθ(z)µ(s)M∇v(z, s) · ∇v(z, s)dz ds
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where

M =

(
(Gs + k)2 (Gs + k)(−2Gz + b)/2

(Gs + k)(−2Gz + b)/2 G2
z −Gzb+ γ

)
.

Expanding M∇v · ∇v yields three integrals to evaluate, the first of which is

∫∫
(Gs + k)2|Dzv|2sθ(z)µ(s)dz ds

= −
∫∫

v Dz[s(Gs + k)2Dzvθ(z)µ(s)]dz ds

= −
∫∫

vGsz(Gs + k)Dzvθ(z)µ(s)sdz ds+

−
∫∫

v

Dz((Gs + k)Dzv)(Gs + k)θ(z)µ(s)sdz ds

−
∫∫

v(Gs + k)2θ′(z)Dzvµ(s)sdz ds

= a1 + a2 + a3

By familiar arguments (see 3.10 for example), terms a1 and a3 are bounded by

(∫

{|z|<1}
N2(v)

) 1
2

·
(∫

{|z|<1}
S2(v)

) 1
2

.

The term a2 contains part of the equation that v satisfies and will be combined later

with others to yield divB∇v.

The second integral arising from (3.24) is:

∫∫
[G2

z −Gzb+ γ]|Dsv|2sθ(z)µ(s)dz ds

= −
∫∫

vDsv[G
2
z −Gzb+ γ]θ(z)µ(s)dz ds

−
∫∫

vDsv[G
2
z −Gzb+ γ]θ(z)µ′(s)sdz ds

−
∫∫

vDs

[
(G2

z −Gzb+ γ)

(Gs + k)
Dsv

]
(Gs + k)θ(z)µ(s)sdz ds

+

∫∫
vDsv[G

2
z −Gzb+ γ]sθ(z)µ(s)

Gss
(Gs + k)2

dz ds

= b1 + b2 + b3 + b4.

Term b3 will be combined with term a2. Term b1 is a boundary integral,
∫
v2[G2

z −
Gzb+ γ]θ(z)µ(v)dz, plus the solid integral

∫∫
v2Ds[G

2
z−Gzb+ γ]θ(z)µ(s)dz ds, which
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is estimated as in (3.10.1) by a sum of
∫
|z|<1

N2(v)+
(∫

|z|<1
N2(v)

) 1
2 ·
(∫

|z|<1
S2(v)

) 1
2

.

Terms b2 and b4 are also bounded by the product in the sum above.

The last integral arising from 3.16 is:

∫∫
s(Gs + k)(−2Gz + b)DsvDzvθ(z)µ(s)dz ds

=

∫∫
s(Gs + k)(−Gz + b)DsvDzvθ(z)µ(s)dz ds

+

∫∫
s(Gs + k)(−Gz)DsvDzvθ(z)µ(s)dz ds

= I + II.

In I, we integrate by parts in z obtaining

−
∫∫

sv(Gs + k)Dz[(−Gz + b)Dsv]θ(z)µ(s)dz ds

−
∫∫

sv(−Gz + b)DsvGszθ(z)µ(s)dz ds

−
∫∫

sv(−Gz + b)Dsv(Gs + k)θ′(z)µ(s)dz ds

= C1 + C2 + C3.

Term C1 contains part of the equation divB∇v, Terms C2 and C3 are bounded by(∫
|z|<1

N2v
) 1

2 ·
(∫

|z|<1
S2
v

) 1
2

.

For II, we integrate by parts in s obtaining

−
∫∫

(Gs + k)(−Gz)Dz(v2/2)θ(z)µ(s)dz ds

−
∫∫

Ds[(−Gz)Dzv]v(Gs + k)sθ(z)µ(s)dz ds

−
∫∫

vDzv(−Gz)Gsssθ(z)µ(s)dz ds

−
∫∫

vDzv(−Gz)(Gs + k)sθ(z)µ′(s)dz ds

= d1 + d2 + d3 + d4.

Note that d2 + a2 + c1 + b3 = 0, since divB∇v = 0. The only term that requires some

additional manipulation is d1. Note that, after integrating by parts in z, we need to
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bound the integral

∫∫
v2Gzz(Gs + k)θ(z)µ(s)dz ds+

∫∫
v2Gzs(−Gz)θµdz ds(3.25)

+

∫∫
v2(Gs + k)(−Gz)θ′µdz ds.

To handle the first term introduce 1 = Ds(s) and integrate by parts in s again. To

estimate the expression
∫∫

sv2Gzzs(Gs + k)θ(z)µ(s)dz ds, integrate by parts again in

z. All these manipulations have the final effect of introducing Gzs in place of Gzz in

the expression (3.25) and, as before, Gzs = Dz(ψs ∗ ηs ∗ ϕ′) and we use the additional

fact that |ψs∗ηs∗ϕ′|2dz dss is a Carleson measure. Using the analogous fact for Gss, we

can also control
∫∫

v2GzzGssθ(z)µ(s)dz ds. The second term in (3.25) already contains

Gzs, and thus is handled by the same argument as above—the last term in (3.25) is

the simplest.

We complete the proof of Theorem 3.7 as follows. From (3.23), one may now also obtain

a version of (3.23) on graphs, for any p > 2. This follows from a good-λ inequality

of the same type as in Lemma 3.15. By (3.17) and (3.23) for graphs, we have now

satisfied the hypotheses of the localization Theorem 3.18, and we obtain localized Lp

estimates (3.19) for p sufficiently large. A standard argument, again using good-λ

inequalities, allows us to recover the desired localized estimates in L2—taking care not

to increase too much the Lipschitz constants. Indeed, we’ll get such estimates for any

Lq, q > 0, obtaining Theorem 3.7 in particular.

We now assume we are in the situation of (ii) of Lemma 3.4, i.e. the graph has the

form x = ϕ(t), ‖ϕ′‖∞ < ε, and ε small. Because the matrix has coefficients which are

independent of the variable t, not x, the proof in this case is not merely a repetition

of the earlier one.

Theorem 3.26. If Lu = divA∇u = 0 in O = {(x, t) : |t| < 2, ϕ(t) < x < ϕ(t) + 2},
and ‖ϕ′‖∞ is sufficiently small, then the inequality (3.7.1) of Theorem 3.7 holds for

u.

Proof. The result follows from a stopping time argument, just as in the x-graph case

and so it suffices to establish (3.8.1) as well as the converse inequality, which is easier

to derive. For the localization, we introduce as before θ(s) and µ(z), θ supported in

|s| < 3
4 , µ supported in |z| ≤ 2α and the change of variable ρ(z, s) = (F (z, s), s) where
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F (z, s) = z + ηz ∗ ϕ(s) mapping {z > 0} 7→ {(x, t) : x > ϕ(t)}. Then, if v = u ◦ ρ,
∫

|t|< 1
2

v2(0, s)ds ≤
∫
v2(0, s)θ(s)µ(0)ds

= −
∫∫

Dz(v
2(z, s)θ(s)µ(z))ds dz

= −2

∫∫
vDzvθµdz ds− 2

∫∫
v2θµ′dz ds.

The second integral above is an error term of the form
∫∫
K
v2dz ds. At this point

K = K(α), but the dependence on α is removed by the same argument as in lemma

3.5. In the first integral, introduce 1 = Dz(z) and integrate by parts to obtain

2

∫∫
vDzzvθµz dz ds+ 2

∫∫
(Dzv)

2θµz dz ds+ 2

∫∫
zvDzvθµ

′(z)dz ds,

of which only the first expression requires new arguments.

Note that Dzzv(Dxxu◦ρ)F 2
z +(Dxu◦ρ)Fzz where, by Dxu, we mean to differentiate u

with respect to its first variable. And,
∫∫

(u◦ρ)(Dxu◦ρ)θ(s)µ(z)Fzzzdz ds is bounded

by the product ‖N(u)‖L2(∆ 3
4
) · ‖S(u)‖L2(∆ 3

4
) since z|Fzz |2dz ds is a Carleson measure.

Consider now ∫∫
zF 2

z θµv(Dxxu ◦ ρ)dz ds =

= −
∫∫

zF 2
z θµv(DxbDtu ◦ ρ)dz ds+

−
∫∫

zF 2
z θµv(γDttu ◦ ρ)dz ds

= I + II.

I = −
∫∫

zFzθµvDz(bDtu ◦ ρ)dz ds =

=

∫∫
b(Dtu ◦ ρ)DzvθµzFzdz ds+

+

∫∫
b(Dtu ◦ ρ)vθµ′zFzdz ds+

+

∫∫
(bDtu ◦ ρ)vθµFzdz ds+

+

∫∫
(bDtu ◦ ρ)vθµzFzzdz ds.
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Claim 3.27.
∣∣∫∫ b(Dtu ◦ ρ)vθµFzdz ds

∣∣ ≤ (α+ ‖b‖∞ε)
∫
N2(u)dσ.

To see this, change variables again, by means of ρ−1 to re-express this as an integral

in Ω: ∫∫
b(x)Dtu(x, t)u(x, t)(θµ ◦ ρ−1)dx dt

=

∫∫
Dt

[
b
u2

2
θµ ◦ ρ−1

]
dx dt+

−
∫∫

b(x)
u2

2
Dt(θµ ◦ ρ−1)dx dt

≤
∣∣∣∣∣

∫

|t|< 3
4

b(ϕ(t))
u2

2
(ϕ(t), t)ϕ′(t)(θµ ◦ ρ−1)(ϕ(t), t)dt

∣∣∣∣∣

+ α

∫

|t|< 3
4

N2(µ)dσ,

by the support properties of θµ · ρ−1 and the formula
∫∞
−∞

∫
x>ϕ(t)

Dtw(x, t)dx dt =∫∞
−∞ w(ϕ(t), t)ϕ′(t)dt—and the ε in the right hand side of (3.27) comes from the fact

that ‖ϕ′‖∞ ≤ ε. The other terms comprising I are handled much as before, and it

remains to consider II. Here we use the identity Ds(h ◦ ρ) = Dz(h ◦ ρ)Fs
Fz

+ Dth ◦ ρ,
valid for any h, to write

II = −
∫∫

zF 2
z θµvDs(γDtu ◦ ρ)dz ds+

∫∫
θµzFzFsDz(γDtu ◦ ρ)v dz ds

=

∫∫
z(γDtu ◦ ρ)Ds(vF 2

z θµ)dz ds−
∫∫

(γDtu ◦ ρ)DzvzFsFzθµdz ds+

−
∫∫

(γDtu ◦ ρ)vFsFzθµdz ds−
∫∫

(γDtu ◦ ρ)vz(Fsz + Fzz)θµ dz ds,

of which integrals only the third needs further examination. Writing ψ = ρ−1, we

express this as an integral back over the region above the graph by

(3.28)

∫∫
γ(x)Dtu(x, t)(θµ ◦ ψ)u(x, t)(Fs ◦ ψ)dx dt.

Since γ(x) is bounded from above and below, we can write H ′(x) = γ(x), i.e., H(x) is

a primitive of γ, where H is increasing. Set ϕ̃(t) = H ◦ ϕ(t), a new Lipschitz graph,

and make the change of variables y = H(x). Then, if we also use the notation H(x, t)

for (H(x), t), we have

(3.28) =

∫∫
Dtv(y, t)v(y, t)α(y, t)β(y, t)dydt
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where v = u ◦H−1, α = Ft ◦ ψ ◦H−1 and β = θµ ◦ ψ ◦H−1 and the integration (for

α small) is in Õ = {(y, t) : ϕ̃(t) < y < ϕ̃(t) + 1, |t| < 1}.

We change variables again, by means of a transformation ρ̃(w, t) = (F̃ (w, t), t), defined

just as ρ was defined for the region O, which maps {w > 0} into Õ. Thus,

(3.28) =

∫∫
(Dtv ◦ ρ̃) v ◦ ρ̃ α ◦ ρ̃ β ◦ ρ̃ F̃w dw dt

=

∫∫
v ◦ ρ̃ α ◦ ρ̃ β ◦ ρ̃ F̃wDt(v ◦ ρ̃)dw dt

−
∫∫

v ◦ ρ̃ α ◦ ρ̃ β ◦ ρ̃ F̃w
(
∂v

∂y
◦ ρ̃
)
F̃t dw dt

= A+ B

We have, setting ψ̃ = ρ̃−1,

B = −
∫∫

α(y, t)β(y, t)
∂

∂y
(v2)F̃t ◦ ψ̃dy dt

=

∫∫
v2 ∂

∂y
[(F̃t ◦ ψ̃)αβ]dy dt+

−
∫
v2(ϕ̃(t), t)α(ϕ̃(t), t)β(ϕ̃(t), t)(F̃t ◦ ψ̃)(ϕ̃(t), t)dt

= B1 + B2

Since v(ϕ̃(t), t) = u(ϕ(t), t), α(ϕ̃(t), t) = (Ft ◦ ψ)(ϕ(t), t), β(ϕ̃(t), t) = (θµ ◦ ψ)(ϕ(t), t),

we have B2 ≤
∣∣∣
∫
|t|<1

u2(ϕ(t), t)ϕ′(t)ϕ̃′(t) dt
∣∣∣ ≤ ε

∫
∆1
N2(u)dσ, for ε small.

We write B1 = B11 +B12 + B13, where

B11 =

∫∫
v2 ∂α

∂y
F̃t ◦ ψ̃β dy dt,

B12 =

∫∫
v2α

∂

∂y
(F̃t ◦ ψ̃)β dy dt,

B13 =

∫∫
v2αF̃t ◦ ψ̃

∂β

∂y
dy dt.

B13 is handed by familiar arguments, and we now turn to B11.

Recall that α(y, t) = Ft ◦ ψ ◦ H−1, and that H−1(y, t) = (H−1(y), t). Hence,
∂
∂y (Ft ◦ψ) ◦H−1 = ∂

∂x (Ft ◦ψ) ◦H−1 ∂
∂yH

−1, and since ∂
∂yH

−1 dy dt = dx dt, a change
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of variables gives

B11 =

∫∫
u2(x, t)

∂

∂x
(Ft ◦ ψ) · F̃t ◦ ψ̃ ◦H(θµ ◦ ψ)dx dt

=

∫∫
(u2 ◦ ρ)(z, t) ∂

∂x
(Ft ◦ ψ) ◦ ρ · F̃t ◦ ψ̃ ◦H ◦ ρ̃ · θuFz dz dt

=

∫∫
u2 ◦ ρ(z, t) ∂

∂z
Ft(z, t) · F̃t ◦ ψ̃ ◦H ◦ ρ̃θµ dz dt.

Recall now that ∂
∂z
Ft = ∂

∂t
Qz ∗ ϕ′, and integrate by parts in t in the last integral.

We then get the desired bound using the Carleson measure property of Qz ∗ϕ′, which

gives a small error term, since ‖ϕ′‖∞ ≤ ε.

In order to estimate B12, we change variables by ρ̃, to obtain

B12 =

∫∫
v2 ◦ ρ̃(w, t)α ◦ ρ̃ ∂

∂y
(F̃t ◦ ψ̃) ◦ ρ̃ β ◦ ρ̃F̃wdw dt

=

∫∫
v2 ◦ ρ̃(w, t)α ◦ ρ̃ ∂

∂w
F̃t β ◦ ρ̃ dw dt.

Again, ∂
∂w F̃t = ∂

∂tQw ∗ ϕ̃′, and the term can be handled, upon integration by parts, in

a similar manner as B11.

Term A requires a different sort of argument, via a method first used by Dahlberg in

[D3].

Let T denote the Hilbert transform and Λ
1
2 denote the operator of 1

2 -order derivative

in the t variable. Then,

A =

∫ ∞

−∞

∫

w>0

v ◦ ρ̃Dt(v ◦ ρ̃)α ◦ ρ̃ β ◦ ρ̃ F̃w dw dt

=

∫∫
Λ

1
2 (α ◦ ρ̃ F̃wβ ◦ ρ̃ v ◦ ρ̃)TΛ

1
2 (v ◦ β̃ ◦ ρ̃) dt dw

where β̃ has similar support properties to β, and β̃ · β = β. Thus

A ≤
(∫∫

|Λ 1
2 (α ◦ ρ̃ F̃w β ◦ ρ̃ v ◦ ρ̃)|2dt dw

) 1
2

·
(∫∫

|Λ 1
2 (v ◦ β̃ ◦ ρ̃)|2dt dw

)
.

For each fixed w, the Sobolev trace theorem yields

∫∫
|Λ 1

2 (v ◦ β̃ ◦ ρ̃)|2 dw dt ≤ C

∫

w>0

(∫

t

∫

z>0

|∇z,t(v ◦ β̃ ◦ ρ̃)(w + z, t)|2dz dt
)
dw

≤ C

∫∫
|∇z,t(v ◦ β̃ ◦ ρ̃)(z, t)|2z dz dt.
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Similarly the square of the other factor is bounded from above by a constant times

∫∫
|∇z,t(β ◦ ρ̃ α ◦ ρ̃ F̃w v ◦ ρ̃)|2z dz dt

in which we will use the Carleson measure properties of |∇F̃w|, |∇(α◦ρ̃)|, and |∇(β◦ρ̃)|.

This together with arguments repeated from the x-graph situation and the stopping

time lemma, which goes over without modification, completes the proof of (3.26).

We have, in addition, the analog of theorem 3.26, the domination of the square function

by the non-tangential maximal function. (Recall, this is also needed in the proof of

localization for 3.26.)

Theorem 3.28. If O = {(x, t) : |t| < 2, ϕ(t) < x < ϕ(t)+2}, and Lu = divA∇u = 0

in O, then the conclusion of Theorem (3.23) holds, with S(u), N(u) defined with respect

to the graph x = ϕ(t).

The proof follows from the argument given to establish 3.26. In fact, an examination

of that proof shows that (with the notation of 3.26):

∫
v2(0, s)θ(s)µ(0)ds= 2

∫∫
|Dzv|2θµ z dz ds+ 2

∫∫
bDtu ◦ ρDsv F 2

z θµ dz ds

+ 2

∫∫
zγDtu ◦ ρDsv F 2

z θµ dz ds

− 2

∫∫
zγ Dtu ◦ ρDzv z FsFzθµ dz ds+E,

where |E| is bounded from above by the left hand side of (3.23). Finally, since Dsv =

Dzv
Fs
Fz
Dtu◦ρ, and Dzv = Dxu◦ρFz, the right hand side of the above equality becomes

2

∫∫
z|Dxu ◦ ρ|2θµF 2

z dz ds

+ 2

∫∫
bDtu ◦ ρDxu ◦ ρ θµF 2

z dz ds

+ 2

∫∫
zγ|Dtu ◦ ρ|2θµF 2

z dz ds+ E,

and our claim follows from ellipticity.

Let us now suppose that we are in the situation of (iii) of Lemma 3.4. That is,

Ω = {e1t > e2x+ ϕ(x)}, ‖ϕ′‖∞ < ε′ and e1 ≥ δe2 and e2 ≥ δe1.
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Theorem 3.30. Let O = Ω∩ {(x, t) : |t+ x| < 2, e2x+ϕ(x) < e1t < 2 + e2x+ϕ(x)}
and suppose that Lu = divA∇u = 0 in O. Then given δ, there exists ε′ > 0, depending

on δ, so that there exist constants C1, a = a(ε), C2(a) such that if ‖ϕ′‖∞ < ε′

∫

∆ 1
4

N(a, d)(u)2dσ ≤ C1

∫

∆ 7
8

S2
(4a, 32 )(u)dσ(3.31)

+ C2

∫∫

K

u2dx,

where K is a compact subset of O at distance 1
4

from the boundary of O and ∆s =

B(0, s) ∩ {e1t = e2x+ ϕ(x)}.

We shall prove the analog of (3.8.1) for a suitable choice of ε′. This suffices since

the stopping time argument is independent of the graph. Set e = (e1, e2) and e⊥ =

(−e2,+e1). We define a transformation ρ(z, s) = (z, s + H(z, s)) mapping {(z, s) :

(z, s) · e⊥ > 0} onto Ω, by setting H(z, s) = 1
e1
G(z, (z, s) · e⊥) where G(z, α) =

ηα ∗ ηα ∗ ϕ(z)/e1. Observe that if (z, s) · e⊥ = 0, H(z, s) = 1
e1
G(z, 0) = ϕ(z)

e1
and

therefore (z, s+H(z, s)) · e⊥ = (z, s+ ϕ(z)/e1) · (−e2, e1) = (z, s) · e⊥ + ϕ(z) = ϕ(z).

If we set v = u ◦ ρ, then v will satisfy an equation divB∇u = 0 which we write:

Ds([H
2
z −Hzb+ γ]Dsv)(3.32)

=
Hss

Hs + 1
[H2

z −Hzb+ γ]Dsv − (Hs + 1)Dz[(Hs + 1)Dzv]+

− (Hs + 1)Dz([−Hz + b]Dsv) − (Hs + 1)Ds[−HzDzv].

Again, by ellipticity of A, there exists a λ > 0 such thatH2
z−Hzb+d > λ(H2

z+1) > λ..

Consider

(3.33) e1

∫

z∈R

[H2
z −Hzb+ γ]v2(z,

e2
e1
z)θ((e1 +

e22
e1

)z)µ(0)dz

where θ(·) has support in {|z| < 1} and µ(·) has support in {0 < s < α}, where α

is, as in Lemma 3.8, dependent on the apertures of the cones used to define N(·) and

S(·).
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Then

= −e1
∫∫

(z,s)

Ds([H
2
z −Hzb+ γ]v2(z, s)θ((z, s) · e)µ((z, s) · e⊥))dz ds(3.33)

= −e1
∫∫

(2HzHzs −Hzsb)v
2(z, s)θ((z, s) · e)µ((z, s) · e⊥)dz ds

− 2e1

∫∫
[H2

z −Hzb+ γ]v(z, s)Dsvθ((z, s) · e)µ((z, s) · e⊥)dz ds

− e1

∫∫
[H2

z −Hzb+ γ]v2(z, s){θ′((z, s) · e)µ((z, s) · e⊥)e2

+ θ((z, s) · e)µ′((z, s) · e⊥)e1}dz ds
= I + II + III.

In II, we write e1 = Ds((z, s) · e⊥) inside the integral and integrate by parts. Thus

II = 2

∫∫

(z,s)

((z, s) · e⊥)|Dsv|2θµ[H2
z −Hzb+ γ]dz ds+

+ 2

∫∫

(z,s)

((z, s) · e⊥)Ds([H
2
z −Hzb+ γ]Dsv)vθµdz ds

+ 2

∫∫

(z,s)

((z, s) · e⊥)[H2
z −Hzb+ γ]vDsvDs(θµ)dz ds

= II1 + II2 + II3.

(Note that the first term II1 is bounded by
∫
{s= e2

e1
z} S

2(v)dz since (z, s)·e⊥ = distance

of (z, s) to the line {s = e2
e1
z}.) In term II2, we use the equation in the form (3.32):

II2 = 2

∫∫
((z, s) · e⊥)[H2

z −Hzb+ γ]
Hss

1 +Hs
vDs(v)θµdz ds+

− 2

∫∫
((z, s) · e⊥)(Hs + 1)Dz((Hs + 1)Dzv)vθµdz ds+

− 2

∫∫
((z, s) · e⊥)(Hs + 1)Dz(−Hz + b)Dsv)θµ dz ds+

− 2

∫∫
((z, s) · e⊥)(Hs + 1)Ds(−HzDzv)vθµ dz ds

= II2,1 + II2,2 + II2,3 + II2,4.
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Then

II2,2 = 2

∫∫
((z, s) · e⊥)(Hs + 1)2(Dzv)

2θµdz ds+

+ 2

∫∫
((z, s) · e⊥)Hsz(Hs + 1)Dzvvθµdz ds+

+ 2

∫∫
((z, s) · e⊥)(Hs + 1)2DzvvDz(θµ)dz ds+

+ 2

∫∫
(−e2)(Hs + 1)2Dz(v

2/2)θµ dz ds,

and the fourth integral above can, in turn, be expressed:

− 2e2

∫∫
(Hs + 1)2Dz(v

2/2)θµ dz ds

= −e2
∫

(Hs + 1)2v2(
e1
e2
s, s)µ(0)θ(

e1
e2

2
s+ e2s) ds+

+ 2e2

∫∫
Hsz(Hs + 1)v2θµ dz ds+ e2

∫∫
(Hs + 1)2v2Dz(θµ)dz ds.

Similarly, we find

II2,3 = 2

∫∫
(z, s) · e⊥(Hs + 1)(−Hz + b)DsvDzvθµ dz ds+

+ 2

∫∫
(z, s) · e⊥Hsz(−Hz + b)v Dsvθµ dz ds+

+ 2

∫∫
(z, s) · e⊥(Hs + 1)(−Hz + b)v Ds v Dz(θµ)dz ds+

+ e2

∫∫
Hss(−Hz + b)v2 θµ dz ds+

+ e2

∫∫
(Hs + 1)(−Hzs)v

2θµ dz ds+

+ e2

∫∫
(Hs + 1)(−Hz + b)v2Ds(θµ)dz ds+

+ e2

∫ ∞

−∞
(Hs + 1)(−Hz + b)v2(z,

e2
e1
z)µ(0)θ(e1z +

e22
e1
z)dz,
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and

II2,4 = 2

∫∫
((z, s) · e⊥) Hss (−HzDzv) v θµ dz ds+

+ 2

∫∫
((z, s) · e⊥)(Hs + 1)(−Hz)Dzv Dsv θµ dz ds+

+ 2

∫∫
((z, s) · e⊥)(Hs + 1)(−HzDzv)v Ds(θµ)dz ds+

+ e1

∫
(Hs + 1)(−Hz)v

2(
e1
e2
s, s)θ(

e21
e2
s+ e2s)µ(0)dz

− e1

∫∫
(Hs + 1)(−Hzz)v

2 µθ dz ds

− e1

∫∫
Hsz(−Hz)v

2 θµ dz ds

− e1

∫∫
(Hs + 1)(−Hz)v

2Dz(θµ) dz ds.

We now collect the boundary terms (including (3.33)) and combine them using the

change of variable: e2
e1

∫∞
−∞ f(z, e2e1 z)dz =

∫∞
−∞ f( e1e2 s, s)ds, and the sum of these terms

is equal to

(3.36)

∫
v2(z,

e2
e1
z)µ(0)θ((e1 +

e22
e1
z)E(z,

e2
e1
z)dz,

where

E(·) = e1[H
2
z −Hzb+ γ] +

e22
e1

(Hs + 1)2 − e2(Hs + 1)(−Hz + b) + e2(Hs + 1)Hz.

Expanding this expression, we find that

e1E(·) = {e21γ + e22 − e1e2b} + e21[H
2
z − bHz](3.37)

+ e22H
2
s + 2e22Hs + e2e1{HsHz + 2Hz − bHs}

+ e1e2[HsHz +Hz].

The boundary sum (3.36) is clearly bounded from above by a constant times
1
e1

∫
v2(z, e2e1 )θ((e1 +

e22
e1

)z)dz, but also from below if ‖∇H‖∞ is sufficiently small. For

the quantity

{e21γ + e22 − e1e2b} =

(
1 b
0 γ

)(
−e2
e1

)
·
(
−e2
e1

)

which is bounded from below by λ−1{e21 + e22} = λ−1, and so if we choose ‖ϕ′‖∞
sufficiently small, then (3.37) will be bounded from below. We have, so far, an equality

of the form

(3.36) = I + II1 + III + II2 + the non-boundary integrals of II2,2 + II2,3 + II2,4.
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For most of these expressions, the analysis is very similar to that of Lemma 3.8. We

make a few further observations however to show the dependence of choice of ε′ on the

δ relating e1 and e2. For example, consider term I,

I = −e1
∫∫

(2HzHzs −Hzsb)v
2(z, s)θµ dz ds.

Since H(z, s) = 1
e1
G(z, e1s− e2z),

Hz = e−1
1 [D1G(z, e1s− e2z) − e2D2G(z, e1s− e2z)]

and Hsz = D1D2G(z, e1s − e2z) − e2D2D2G(z, e1s − e2z). Obviously, ‖∇H‖∞ ≤
C
δ ‖ϕ′‖∞ ≤ Cε

δ so that Cε′

δ ≤ Cλ−1

100 to fulfill the first restriction that (3.36) have a

non-negative lower bound. Then term I can be handled exactly as (3.10.1) from the

x-graph situation, with the following observation: For
∫∫

Hzsbv
2 θµ dz ds, we make

another change of variable ρ(x, t) = (x, (t1 + e2x)/e1) = (z, s), so that, if w(x, t) =

v(x, (t1 + e2x)/e1), pulling back to the (z, s) plane introduces quantities depending on

δ; ‖N(w)‖L2(dx) ≤ C
δ2 ‖N(v)‖L2(dx). Thus the error terms are multiplied by constants

of the form ε′/δN , for some N , and it suffices to choose ε′ so small so that this is

smaller than ε.

Finally, the statement of Theorem 3.23 (the inverse inequality) is valid where O is

replaced by the region in Theorem 3.30. This completes Step 1, and we may now state

the main theorem for Lipschitz domains with small Lipschitz constant (i.e., Step 2).

Theorem 3.38. Let A(x) =

(
1 b(x)
0 γ(x)

)
be an upper triangular matrix, and L =

divA∇ be the elliptic operator whose matrix is A, defined for (x, t) ∈ R
2 with coef-

ficients independent of one of the variables. Then there exists an ε0 > 0 sufficiently

small such that for any bounded Lipschitz domain Ω with Lipschitz character (ε0, N, c0)

and any solution u to Lu = 0 in Ω we have

(i) If u is normalized so that u(X0) = 0 for some X0 ∈ Ω of distance to the

boundary at least c0/4, then there exists an aperture a and a truncation d of a

regular family of cones, both depending only on (ε0, N, c0) so that if N(·) is the

non-tangential maximal operator associated to Ω, defined for these cones, then

(3.39)

∫

∂Ω

N2(u)dσ ≤ C

∫∫

Ω

d(X)|∇u(X)|2dX

where C depends only on the Lipschitz character of Ω.

(ii) If a, d are as in (i) and the square function S(·) is defined with respect to these

cones, then without assuming any normalization on u, we have,

(3.40)

∫

∂Ω

S2(u)dσ ≤ C

∫

∂Ω

N2(u)dσ

where C = C(ε0, N, c0).
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To prove this theorem for general Lipschitz domains, we will use the small constant

result (3.38) and a ‘build-up’ scheme of G. David. This small constant base case is a

straightforward result of the previous localized results in the three types of Lipschitz

graphs, together with the reduction to graphs of these types.

Briefly, the argument for (3.39) goes as follows (see also [DJK]). If Ω is a domain

of Lipschitz character (ε0, N, C0) then there exists cylinders {Zj}Nj=1 with associated

Lipschitz functions {ϕj}Nj=1, as in the definition in §1, satisfying ‖ϕ′
j‖∞ < ε0. Given

u, with Lu = 0 in Ω, we wish to estimate
∫
∆j
N2
a,d(u)dσ, where ∆j = Zj ∩ ∂Ω and

a, d depend on ε0. By our previous results of Steps 1 and 2, we may assume, without

loss of generality, that 4Zj ∩ ∂Ω is the intersection of 4Zj with one of three types of

domains in Lemma 3.4. We then choose ε so small that 3.7 and 3.26 hold. Then choose

δ = δ(ε) as in Lemma 3.4. For this δ, choose ε′ as in 3.30. If ε0 is smaller than both

ε/2 and ε′δ3

3 , we have the conclusion of 3.7, 3.26 and 3.30 available for all graphs, by

Lemma 3.4. Then
∫

∆j

N2(u)dσ ≤ C(ε0)

∫∫

2Zj∩Ω

δj(X)|∇u(X)|2dX + C(ε0)

∫∫

Kj

u2dX

for Kj ⊂⊂ Ω, where δj(X) = dist (X, ∂Ω ∩ Zj). Summing on j and observing that
N∑

j=1

χ4∆j
(Q) ≤ C(N,C0), we obtain inequality (3.39) modulo the factor C

∫∫
K
u2dX,

where C = C(N, c0, ε0) and K ⊂⊂ Ω is bounded away from ∂Ω by a constant C =

C(c0). The normalization guarantees that
∫∫
K
u2dX ≤ C

∫∫
Ω
δ(X)|∇u(x)|2 where

δ(X) = dist (X, ∂Ω), by a Poincaré type inequality and the fact that the domain is

Lipschitz.

The argument for the converse is much the same and shall be omitted.

Remark: Once (3.39) and (3.40) are established for one family of regular cones, they

follow for any other family, by standard real variable arguments ([D4], for instance).

We begin the arguments for Step 3 in order to establish the following:

Theorem 3.41. Under the hypotheses of Theorem 3.26, but for Lipschitz domains of

arbitrary Lipschitz character (M,N, c0), the inequalities of (3.39) and (3.40) hold.

In fact, the Lp equivalence between S(·) and N(·) will follow from the proof below.

Theorem (3.41) will result from an iterative procedure:

Lemma 3.42. Suppose that inequalities (3.39) and (3.40) hold for all domains Ω

with Lipschitz character ( 19
20M,N, c0). Then they hold for all domains with Lipschitz

character (M,N,C0).
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We shall use the one dimensional versions of following lemmas due to G. David,

Lemma 3.43A. [Da]. Let F : R × R → R be a function of two variables (x, y)

such that for each y, x 7→ F (x, y) is Lipschitz with constant M , and for each x,

y 7→ F (x, y) is Lipschitz with constant M1. Let I, J be compact intervals. Then, there

exists a function G(x, y) with the following properties

(i) G(x, y) ≥ F (x, y) on I × J .

(ii) If E = {(x, y) ∈ I × J : F (x, y) = G(x, y)}, then |E| > 3
8
|I| |J |.

(iii) The function y 7→ G(x, y) is Lipschitz with constant M2 and moreover, either

−M ≤ ∂G
∂x

(x, y) ≤ 4M/5 for each y, or −4M/5 ≤ ∂G
∂x

(x, y) ≤M for each y.

Lemma 3.43B. [Da]. Suppose G(x, y) is a function satisfying property (iii) above,

but on all of R × R. Let Γ denote the graph of G in R × R × R. Then there exists a

new orthonormal coordinate system such that

(i) Γ is the graph, in these new coordinates, of a function H(X,Y ) which is Lip-

schitz with constant 9
10
M in X and with constant C(M)M1 in Y . Here C(M)

is a function of M which can be chosen bounded by 5
4 .

(ii) The change of variables ρ(x, y) = (X,Y ) such that (x, y,G(x, y)) =

(X,Y,H(X,Y )) is bi-Lipschitz with constants bounded by C(1 + (MM1)/(1 +

M2)).

These two lemmas yield the following, whose proof we will sketch.

Lemma 3.43. Let F be a Lipschitz function on R and set I = [−1, 1]. Suppose

‖F ′‖∞ ≤ M and that F (0) = 0. For s > 0, let sI = [−s, s]. Let CI(M) denote the

cylinder 1
2
I × {|t| ≤ M |I|}. Then, there exists N , c0 and αM and a domain Ω of

Lipschitz character ( 9
10M,N, c0) such that

(i) Ω ≤ C 9
8 I

∩ {t > F (x)}

and (ii) |∂Ω ∩ {(x, F (x)) : x ∈ I}| ≥ αM , where |E| denotes the projected measure,

i.e., |E| = |{x ∈ I : (x, F (x)) ∈ E}|, and N and c0 may depend on M but not on F .

Remark: A dilation argument gives a similar result for intervals of arbitrary length—

the scaling is clear. This lemma is one of the main tools in the proof of (3.42). We

will establish good-λ inequalities in order to prove the Lp norm equivalence of the

non-tangential maximal function and square function. The domain whose existence is

guaranteed by Lemma 3.43 will replace certain ‘sawtooth regions’ which arise in the

course of proving these inequalities, and which will enable us to carry out an iterative

argument.
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Proof of (3.43). By Lemma 3.43A, applied to F (x, y) = F (x), we have a G(x) which

satisfies, for all x, either −4M
5

≤ G′ ≤M or −M ≤ G′ ≤ 4M
5

and also G(x) ≥ F (x) on

I, as well as |{x ∈ I : F (x) = G(x)}| ≥ 3
8 |I| = 3

8 . Let I ′ = 7
8I. Then |{x ∈ I ′ : F (x) =

G(x)}| ≥ 2
7
|I ′|.

Let m1 = max
x∈I

(G′), m2 = −min
x∈I

(G′). Now construct a G̃ such that

(i) G̃ = G on I ′

(ii) G̃ ≥ G on I

(iii) −4M
5 ≤ G̃′ ≤M , or −M ≤ G̃′ ≤ 4M

5

(iv) G̃ is linear on I\I ′.
Note that I ′ =

[−7
8 ,

7
8

]
and we may define G̃

(
7
8

)
= G

(
7
8

)
, G̃

(−7
8

)
= G

(−7
8

)
, and

G̃′
(x) ≡ m for 7

8 < x < 1, G̃′(x) = m2 for −1 < x < −7
8 , so that (iii) and (iv) are

clear. Then Ω is any domain whose boundary is either smooth or coincides with the

graph of G̃ in I and satisfies (i) of (3.43). (There are many possibilities for Ω.) Then,

by (3.43B) there exists a new coordinate system such that, in this coordinate system,

the graph of G̃ coincides with the graph of a function H whose Lipschitz constant is

bounded by 9
10M . The αM in (ii) comes from the bi-Lipschitz character of ρ in 3.43B.

�

Theorem 3.41 is proven by establishing the induction step (3.42).

Proof of (3.42). We begin by proving (3.39) for domains of Lipschitz character

(M,N,C0), assuming the same for domains of character ( 19
20
M,N,C0). The strategy

is to derive good-λ inequalities, which will result in Lp inequalities for all 0 < p <∞.

Such good-λ inequalities are fairly standard in this theory and so the details we provide

are primarily intended to elucidate the role of the build-up lemmas of David. For

further reference, the reader should consult [D4].

Fix then such an Ω and a family of regular cones, truncated at height c0 and let N(u)

be defined relative to these cones.

Let {Z1}Nj=1 be cylinders which determine the N coordinate patches of size between
1
c0

and c0, and set Ejλ = {Q ∈ ∂Ω : N(u)(Q) > λ} ∩Zj . Then each Ejλ has a Whitney

decomposition, that is, Ejλ =
⋃
i

∆j
i (Qi, ri) where

(i) Qi = (xi, ϕj(xi)).

(ii) ∆i(Qi, ri) = {(x, ϕj(x)) : x ∈ Ii} where Ii = {x : |x− xi| ≤ ri/2}.
(iii) the ∆i’s are of two types

(a) c0 ≥ ri ≥ c0
4 .

(b) ri <
c0
4 .

where, in case (b), there exists a Pi ∈ ∂Ω ∩ ∂Zj such that N(u)(Pi) ≤ λ and
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such that for all Q ∈ ∆i(Qi, ri), |Pi −Q| ≤ cnri.

Fix now a j, and for Q ∈ Zj , define Sju(Q) = (
∫
Γα(Q)

|∇u(x)|2dX)
1
2 where Γα(Q) is a

right circular cone with vertex at Q in the coordinate system of Zj , with aperture α

chosen so that the slope of this cone is M(1 + 1
20 ) and finally, Γα(Q) is assumed to be

truncated at height 2Md, d = diameter(Zj).

As is usual in this part of the proof of the good-λ inequality, one needs to define for

any set G ⊆ Zj ∩ ∂Ω, the set G∗
ε =

{
sup
∆3Q

(
|∆∩G|
|∆|

)
≤ ε

}
, where | · | denotes, as before,

the Lebesgue measure of the projection of the set onto the real axis.

Claim 3.44. There exists θ0 < 1, θ = θ(M,n) such that for any β > 1, there are

ε > 0 and γ > 0 such that

(3.45) |Ei| ≤ θ|∆i|

where
Ei = ∆i ∩ {N(u) > βλ} ∩ {S(u) ≤ γλ}∩

∩ {S(u) > γλ}∗ε .

Let us assume, without loss of generality, that ∂Ω ∩ Zj coincides with a graph of the

form t = ϕj(x).

The large balls ∆i in the Whitney decomposition (those for which ri ≥ co/4) are

handled just as in [D]. Briefly, from the normalization u(X0) = 0 for some X0 ∈ Ω and

the a priori finiteness of ‖S(u)‖p, for some p > 0, one shows, using interior estimates,

that for any K ⊂⊂ Ω,

sup
K

|u| ≤ C(K, ‖S(u)‖p).

From this point, the argument is similar to that for small balls, which follows. So we

turn to the proof of (3.33), where ri < c0/4. We are assuming that (3.27) holds for all

bounded Ω with Lipschitz character
(

19
20M,N,C0

)
with a constant C = C(M,N, c0).

A ‘sawtooth region, Ωi, over Ei’ (see [D]) may be constructed so that if F = {x ∈
Ii : (x, ϕj(x) ∈ E} is the projection of Ei onto Ii and if ψ(x) is defined to be ψ(x) =

ϕj(x) + M
20dist (x, F ) for x ∈ Ii, then we set

Ωi = {(x, t) : t > ψ(x)} ∩ CriIi (M +
1

20
M).

Here CriI (·) is the rescaled cylinder of Lemma 3.43, viz., CrI (B) = {(x, t) : |x| ≤ r, |t| ≤
Br}, and we observe that ‖ψ′‖∞ ≤ M + 1

20M . It follows that Ωi ⊆ 2Zj ∩ Ω, since

∆i ⊆ Zj ∩ ∂Ω implies that ri ≤ d and hence (M + 1
20M)ri ≤ 4Md.
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By Lemma 3.43, (or rather the rescaled version), there exists N , c0 and αM a domain

Ω̃i ⊆ Ωi, of Lipschitz character
(

9
10
M̃,N, c0

)
, where M̃ =

(
1 + 1

20

)
M , and such that

|∂Ω̃i ∩ {(x, ψ(x)) : x ∈ Ii}| ≥ riαM̃ . Let θ = 1 −
α
M̃

2 . Choose a point Ai ∈ Ω̃i whose

distance to ∂Ω̃i is larger than 9M̃
10

c0ri
4

. Choose a regular family of cones Γ̃(P ), P ∈ ∂Ω̃i,

for the domain Ω̃i with the additional property that if P ∈ ∂Ωi ∩ {(x, ψ(x)) : x ∈ Ii}
then Γ̃(P ) ⊇ Γ(P ) ∩ B(P, cr1) for suitable c, where the {Γ(P )} are the regular cones

associated to the domain Ω. Let Ñ(·) denote the non-tangential maximal function

for Ω̃ defined using the cones {Γ̃(P )}. Let ũ = u − u(Ai). By standard arguments,

(see [D], [DJK] for instance), for γ sufficiently small, Ñ(ũ)(P ) ≥ 1
2(β − 1)λ for P ∈

∂Ω̃i∩{(x, ψ(x)) : x ∈ F}. Suppose that 3.45 failed for this choice of θ, i.e., |Ei| > θ|∆i|.
Then, if Gi = {(x, ψ(x)) : x ∈ Ii}, we have that Ei ∩Gi = Ei and so

α
M̃
|Gi| = α

M̃
|∆i| ≤ |∂Ω̃i ∩Gi|

= |∂Ω̃i ∩Ei ∩Gi| + |∂Ω̃i ∩Gi\Ei|
≤ |∂Ω̃i ∩Ei| + |Gi\Ei|.

Therefore, since |Gi| = |Gi ∩ Ei| + |Gi\Ei| ≥ θ|Gi| + |Gi\Ei|, then α
M̃
|Gi| ≤ |∂Ω̃i ∩

Ei| + (1 − θ)|Gi| and if 1 − θ < α
M̃
/2, this implies |∂Ω̃i ∩ Ei| ≥ αM/2|Ii|.

This latter inequality is not possible for the right choice of γ and ε. To see this, observe

that

|∂Ω̃i ∩Ei| ≤
[

2

(β − 1)λ

]2 ∫

∂Ω̃i∩Ei
Ñ2(ũ)dx

where dx(E) = |E|, the Lebesgue measure of the projection of E onto R. If we

integrate Ñ2(ũ) over the larger set ∂Ω̃i, we can use inequality (3.39) for the domain

Ω̃i and hence, by the induction step,

|∂Ω̃i ∩Ei| ≤ C(M)
4

(β − 1)2λ2

∫∫

Ω̃i

d
Ω̃i

(X)|∇u(x)|2dx

≤ C(M)
4

(β − 1)λ2

∫∫

Ωi

dΩi(X)|∇u(x)|2dx

≤ C ′(M, ε)

(β − 1)2λ2

∫

∂Ωi∩Ei
S2(u)dx, for ε small,

≤ C ′(M, ε)

(β − 1)2λ2
γ2λ2|Ii|.

In this inequality, β is a fixed constant less than 1, chosen small enough so that

βpθ < 1/2, which means that the good-λ inequality has the Lp norm inequality as
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a consequence. The choice of θ has been determined by the proportionality constant

α
M̃

. So, in the above expression, once ε is chosen we are free to choose γ so that

C ′(M, ε) γ2

(β−1)2
<

α
M̃
2

, contradicting the earlier assumption that |Ei| > θ|∆i|.

The proof of (3.41) is completed by showing the converse inequality—the analog of

(3.40). Here, the build-up lemma of G. David enters in the same way, in the course of

proving a good-λ inequality. Of course, no normalization is needed for this direction—

the details are repetitive, and hence omitted.

Step 4 is preliminary to removing the restriction that the matrix A of L = divA∇ be

upper triangular. Essentially we need the statement (3.41) for A triangular, but for

Lipschitz graphs of arbitrary Lipschitz constant. This is accomplished by proving a

good-λ inequality, using the previous result for bounded domains.

Lemma 3.46. Let Ω~e,ϕ be a domain above the graph of a Lipschitz function ϕ with

respect to the direction ~e. Let A(x) =

(
1 b(x)
0 γ(x)

)
and suppose Lu = divA∇u = 0 in

Ω = Ω~e,ϕ. Then inequalities (3.39) and (3.40) (with appropriate normalizations) hold

for u and for any 0 < p <∞ as well as p = 2.

Proof. It suffices to prove the good-λ inequality (3.45), and its analog for the square

function. As in [D] and [DJK] and as we did for 3.42, one constructs sawtooth regions,

which are themselves bounded Lipschitz domains, and then invokes the L2-norm in-

equality on the bounded domains for the non-tangential maximal function and the

square function. This lemma is therefore a standard consequence of Theorem (3.41)

for bounded domains.

Step 5 in the outline is the removal of the restriction that the matrix A be triangular—

that is, the Lp equivalence between N and S holds for general A on graphs in any

direction with small Lipschitz constant. The next lemma shows how the restriction is

removed via a change of variable and the proof of the lemma explains the restriction

that the graph have small Lipschitz constant. In order to prove for example that

‖N(u)‖Lp(∂Ω,dσ) ≤ C‖S(u)‖Lp(∂Ω,dσ) for solutions in Ω to divA∇u = 0 (A arbitrary),

we use Lemma 3.35 below to transfer the inequality to another domain for a solution

to divB∇(·) = 0, where B is now triangular.

Lemma 3.35. Let Ω~e,ϕ (= Ω) be the domain above a Lipschitz graph ϕ in direction

~e with ‖ϕ′‖∞ ≤ ε. Let A be any elliptic matrix

(
a(x) b(x)
c(x) d(x)

)
, and suppose that

Lu = divA∇u = 0 in Ω. Then there exists, for sufficiently small ε depending on

ellipticity a change of variables φ : Ω̃ → Ω such that

(i) If v(z, s) = u ◦φ(z, s) then divB∇v = 0 in Ω̃, where B is upper triangular and
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independent of the s-variable, of form

(
1 b(z)
0 γ(z)

)
.

(ii) the domain Ω̃ is the domain above the graph of a Lipschitz function.

Proof: Consider the transformation φ(z, s) = (f(z), s+ g(z)), α 6= 0 with f ′ > 0. We

shall first place restrictions on f and g so that condition (i) above is met. The new

matrix B(z, s) in the equation that v = u ◦ φ satisfies is

(φ′)−1,tA ◦ φ(φ′)−1Jφ =
1

f ′(z)

(
1 0

−g′(z) f ′(z)

)
A ◦ φ

(
1 −g′(z)
0 f ′(z)

)

=
1

αf ′(z)

(
a ◦ f −a ◦ fg′ + b ◦ ff ′

(−g′a ◦ f + f ′c ◦ f) (g′)2a ◦ f − g′f ′c ◦ f − g′b ◦ ff ′ + (f ′)2d ◦ f

)
.

We want to choose f and g so that a ◦ f(z) = f ′(z) and so that g′a ◦ f = f ′c ◦ f . By

ellipticity, the coefficient a is bounded below by λ−1. If a(z) = f ′ ◦ f−1(z) = 1
(f−1)′

,

then f−1 can be defined as a primitive of 1/a and the bounds on a(z) guarantee that

f is increasing and Lipschitz. We then choose g so that c ◦ f(z) = g′(z) and g is

also Lipschitz. By Lemma 3.4 it suffices to consider three types of domains Ω~e,ϕ.

If Ω~e,ϕ = Ω(1,0),ϕ = {(x, t) : t > ϕ(x)} then Ω̃ has the form {(z, s) : s > ψ(z)}.
Here ψ is defined by ψ(z) = ϕ ◦ f(z) − g(z), which implies s = ψ(z) if and only if

s+ g(z) = ϕ ◦ f(z), or t = ϕ(x). If Ω~e,ϕ = Ω(0,1),ϕ then we shall be able to choose ψ

such that Ω̃ = {(z, s) : z > ψ(s)} if ‖ϕ′‖∞ is sufficiently small. For the boundaries of

Ω̃ and Ω to be in correspondence we need z = ψ(s) if and only if f(z) = ϕ(s+ g(z)).

Let z′ = f(z) (recall that f−1 exists) and thus we need z′ = f ◦ ψ(s) if and only if

z′ = ϕ(s+ g ◦ f−1(z′)). That is,

f ◦ ψ(s) = ϕ(s+ g ◦ f−1(z))

= ϕ(s+ g ◦ ψ(s)).

Set h(s) = αs+ g ◦ ψ(s). Then

s = h−1(s) + g ◦ ψ ◦ h−1(s) = h−1(s) + g ◦ f−1 ◦ ϕ(s),

since ψ ◦ h−1(s) = f−1 ◦ ϕ(s). Solving for h−1(s) = f−1 ◦ ϕ(s). Solving for h−1 gives

h−1(s) = s−g◦f−1 ◦ϕ(s), which is invertible as long as ‖(g◦f−1◦ϕ)′‖∞ < 1. So if we

choose ‖ϕ′‖∞ sufficiently small, depending on λ, we may solve for h−1 and hence ψ.

Finally, suppose that Ω~e,ϕ = {(x, t) : e1t > e2x+ ϕ(x)} where e1 ≥ δe2 and e2 ≥ δe1.

We claim that Ω̃ = {(z, s) : s > z + ψ(z)}. Here we need s = z + ψ(z) if and only if

e1(αs + g(z)) = e2f(z) + ϕ ◦ f(z), i.e., s = −g(z) + e2
e1
f(z) + 1

e1
ϕ ◦ f(z) = z + ψ(z).

Solving for ψ gives ψ(z) = −z + e2
e1
f(z) − g(z) + 1

e1
ϕ ◦ f(z).
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Our strategy now is to pass from the graph situation, for general matrices A, to the

case of bounded domains.

Step 6 has, essentially, been carried out in the proof of Theorem 3.18. We need to use

the results of Step 5 in order to verify the hypotheses, namely that N(·) and S(·) have

comparable Lp norms on small constant graphs.

Finally, the reduction to arbitrary bounded Lipschitz domains, in the situation of

general matrices (Step 7), is also a repetition of earlier arguments for Steps 2 and 3.

This completes the proof of Theorem 3.1.
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