13. \(\Rightarrow\) Suppose that \(X\) is not compact. Then there exist an open cover \(\{U_a\}_{a \in A}\) say, of \(X\), with property that \(X \setminus \bigcup_{i=1}^n U_{x_i} \neq \emptyset\) for any finite selection \(x_1, \ldots, x_n \in A\).

Setting \(F_a = X \setminus U_a\), we thus have a collection \(F = \{F_a\}_{a \in A}\) of closed sets in \(X\) with property:

\[
\bigcap_{i=1}^n F_a = \bigcap_{i=1}^n (X \setminus U_{x_i}) = X \setminus \bigcup_{i=1}^n U_{x_i} \neq \emptyset
\]

for any finite \(x_1, \ldots, x_n \in A\).

That is, \(F\) has the finite intersection property, then we have \(\bigcap_{a \in A} F_a \neq \emptyset\), i.e. \(X \setminus \bigcup_{a \in A} U_a \neq \emptyset\), which contradicts the assumption that \(U\) is an open cover of \(X\).

\[\therefore X \text{ is compact.}\]

\(\Leftarrow\) Assume \(X\) is compact. and suppose (for contradiction) that there is a collection \(F = \{F_a\}_{a \in A}\) of closed subsets of \(X\) with the f.i.p., but \(\bigcap_{a \in A} F_a \neq \emptyset\).

Set \(U_a = X \setminus F_a\), so \(\bigcup_{a \in A} U_a = X \setminus \bigcap_{a \in A} F_a = X\)

i.e. \(\{U_a\}\) is an open cover of \(X\). By compactness, there is a finite subcover. \(X \subseteq \bigcup_{i=1}^n U_{x_i}\), where \(\emptyset = X \setminus \bigcup_{i=1}^n U_{x_i} = \bigcap_{i=1}^n F_{x_i}\) \(\Rightarrow\) contradiction with f.i.p. \(\#\)
Suppose that \(f \) is continuous.

All open sets in \(G(f) \) are of the form \(f(\{x, f(x)\}) \mid x \in U \), \(f(x) \in V \)

for \(U \) open in \(X \), \(V \) open in \(\mathbb{R} \).

This set is equivalent to \(\{ (x, f(x)) \mid x \in U \cap f^{-1}(V) \} \).

Now suppose \(C = \{ O_x \mid O_x \text{ open in } G(f) \} \) is an open cover of \(G(f) \), since \(X \) is compact and all open sets in \(G(f) \) depend only on elements of \(X \), i.e.

\[
C = U \cup O_x = U \cup \{ (x, f(x)) \mid x \in U \cap f^{-1}(V) \}, \quad \text{size } \{ U \cap f^{-1}(V) \}
\]

is an open cover for \(X \), and \(X \) is compact, then we can find a finite subcover, then we can get a finite subcover of \(C \) correspondingly.

\[
\therefore G(f) \text{ is compact.}
\]

Now suppose \(G(f) \) is compact.

Let \(E \subset \mathbb{R} \) closed, the projection mapping \(\pi_2 : G(f) \to \mathbb{R} \) is continuous, so \(\pi_2^{-1}(E) \) is closed in \(G(f) \), we have that \(\pi_2^{-1}(E) \) is a closed subset of a compact set, so it's compact.

We also have \(\pi_1 : G(f) \to X \) continuous, \(\therefore \pi_1(\pi_2^{-1}(E)) = f^{-1}(E) \) is compact in \(X \), and \(X \) is Hausdorff, so \(f^{-1}(E) \) is closed, \(\therefore f \) is continuous.
injective: if \(f(x) = f(y) \), then \(d(f(x), f(y)) = 0 \Rightarrow f(x, y) \),
\[\Rightarrow x = y \]

surjective: let \(y = f(x) \), if \(y \in X \), i.e., \(x \notin Y \),
let \(x \in (X \setminus Y, f \equiv f(x, y)) \).

\(S = 0 \) then \(x \notin Y \). However, \(f \) is continuous, so \(f(X) \) is compact, but \(X \) is a metric space, so it's Hausdorff.
then all compact subsets are closed.
\[\therefore Y \text{ is closed} \Rightarrow Y = \overline{Y} \Rightarrow x \in \overline{Y} \text{ contradiction.} \]

\(S > 0 \)

define sequence \(\{ x_n \} \) by \(x_{n+1} = f(x_n) \).
Then for all \(m < n \),
\[f(x_m, x_n) \neq f(f(x_{m-1}), f(x_{m-1})) = f(f(x_{m-1}, x_{m-1})) \]
\[\vdots \]
\[= f(x_{n-m}, x_n) > S \]
\[\therefore x \text{ is not sequentially compact}. \]
\[\Rightarrow x \text{ is not compact}. \times \]
\[\therefore f \text{ is bijective} \]
Let \(X \) be a compact space, and let \(f : X \to (\mathbb{R} \cup \{\pm \infty\}) \) be a u.s.c. function. Let \(A = f(X) \) and \(\forall c \in A \), define \(F_c = \{ x \in X : f(x) > c \} = f^{-1}(\{c\}) \). Since \((-\infty, c) \) is closed in \(f \) and \(f \) is continuous, \(F_c \) is closed, also, notice that \(F_c \neq \emptyset \).

Now consider any finite subcollection \(\{F_{c_1}, \ldots, F_{c_n}\} \subseteq \{F_c : c \in A\} \), \(\bigcap_{i=1}^{n} F_{c_i} = \{ x \in X : f(x) > \max\{c_1, \ldots, c_n\} \} \).

That is, \(\bigcap_{i=1}^{n} F_{c_i} = F_{c_j} \neq \emptyset \), where \(c_j = \max\{c_1, \ldots, c_n\} \).

Therefore, \(f \) has a finite intersection property.

By problem 13, since \(X \) is compact, we have \(\bigcap_{c \in A} F_c \neq \emptyset \), so exist \(y \in \bigcap_{c \in A} F_c \), such that \(f(y) > c \) for all \(c \in A \).

\[\therefore f \text{ assumes maximum value at } y. \]