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Abstract

We establish Lp-solvability for 1 < p < ∞ of the Dirichlet Problem on Lip-
schitz domains with small Lipschitz constants for elliptic divergence and non-
divergence type operators with rough coefficients obeying a certain Carleson
condition with small norm.

1 Introduction

This paper continues the study, began in [10], of boundary value problem for second or-
der elliptic operators in either divergence or non-divergence form, when the coefficients
satisfy certain natural, minimal smoothness conditions. Specifically, we first consider
operators L of divergence form with lower order (drift) terms; that is, L = divA∇+b.∇
where b = (b1, ..., bn) and A(X) = (Aij(X)) is strongly elliptic in the sense that there
exists a positive constant λ such that

λ|ξ|2 ≤
∑
i,j

aij(x)ξiξj < λ−1|ξ|2,

for all X and all ~ξ ∈ Rn. The main results of this paper will be established first for L =
divA∇ and then extended to the full operator with drift terms, L = divA∇+b.∇, under
appropriate conditions on the vector b, via the work of S. Hoffman and J. Lewis[7].
It will then be straightforward to extend these results to non-divergence operators as
well. One feature of these theorems is that it is not assumed that the matrix A is
symmetric. We shall obtain solvability of the Dirichlet boundary value problem for a
class of operators (in both divergence and non-divergence form) when the data is in
Lp, for a full range of 1 < p < ∞.

The operators we consider here have coefficients satisfying a small, or a vanishing
Carleson measure condition (see Section 3). The condition on the coefficients is related
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to the condition in [10] as BMO is related to VMO, the space of vanishing mean
oscillation. Precise definitions are given in Section 2.

Operators whose coefficients satisfy the vanishing Carleson condition arise in several
contexts. For example, consider the Dirichlet boundary value problem associated to the
Laplacian in the region above a graph t = ϕ(x). When ϕ is C1, it was shown in [5] that
the Dirichlet (and Neumann) problems were solvable with data in Lp for 1 < p < ∞,
by the method of layer potentials. Our main theorem will contain and generalize this
result: the Dirichlet problem is solvable in this range of p when the boundary of the
domain is defined by t = ϕ(x) where ∇ϕ ∈ L∞

⋂
V MO. This corollary can be proven

using a change of variable, namely the mapping described below, a variant of Dahlberg’s
adapted distance function [1].

Let Ω denote the domain in Rn
+ given by t > ϕ(x). Consider the mapping [1] from

Rn
+ to Ω of the form

ρ(x, t) = (x, ct + θt ∗ ϕ(x)),

where c is a constant that depends on ‖∇ϕ‖∞ and can be chosen large enough to
insure that ρ is one-one. The function θ ∈ C∞

0 (Rn) is even, and θt(·) = t−nθ(·/t). The
pullback of ∆ from Ω to Rn+1

+ is also a symmetric elliptic operator, L = divA∇, where
A possesses the properties:

1. |∇A(x, t)| ≤ C/t.

2. t|∇A(x, t)|2dxdt is a Carleson measure.

(See section 2 for the definition of Carleson measure.)
In 1984, Dahlberg posed two conjectures. The first conjecture concerned pertur-

bation of operators. Suppose that, in the upper half space Rn+1
+ , one has an elliptic

operator L0 = divA0∇ for which the Dirichlet problem (Dp) with data in Lp(Rn, dx)
is solvable. Now suppose L1 = divA1∇ is a perturbation of L0 in the sense that

sup{|A1(x
′, t′)− A0(x

′, t′)|2 : |x− x′| < t/2}dx
dt

t

is a Carleson measure. Then, is the Dirichlet problem Dq for L1 also solvable, where
q may be larger than p? The conjecture has an equivalent formulation: does the
measure dωL1 belong to the Muckenhoupt class A∞(dωL0). This conjecture was solved
affirmatively in [6], where references to the prior work may also be found. Dahlberg’s
second conjecture concerned classes of operators whose coefficients satisfy an averaging
variant of conditions (1) and (2) above, as opposed to perturbations of reasonable
operators. For such operators (see Theorem 2.6 of [10] for precise conditions), it was
shown there that the A∞ condition holds, which means that Dp is solvable for some
p > 1. Here we consider the related question of what happens if the Carleson condition
is replaced by its VMO analog, and we show that the Dirichlet problem, Dp, for such
L is solvable for all p > 1.

Until recently, most positive results proving A∞ estimates for a class of elliptic
operators relied on L2 identities, in the spirit of [8], which in turn relied the assumption
that the matrix A was both real and symmetric. ([4] is one interesting exception to
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this.) But there are a variety of reasons for studying the non-symmetric situation.
These include the connections with nondivergence form equations, and the broader
issue of obtaining estimates on elliptic measure in the absence of special L2 identities
which relate tangential and normal derivatives.

In [9], the study of nonsymmetric divergence form operators with bounded mea-
surable coefficients was initiated. In [10], the methods of [9] were used to prove A∞
results for elliptic measures of operators satisfying the bounds and (a variant of) the
Carleson measure conditions (1) and (2) above. In this paper we develop the Ap results
in three contexts: second order divergence form operators whose coefficients satisify
gradient conditions, non-divergence form operators whose coefficients satisfy gradient
conditions, and divergence form operators whose coefficients satisfy a a Poincaré type
condition on differences instead of a gradient condition.

The paper is organized as follows. In Section 2, we give some definitions and state
the main results, as well deriving some quick corollaries. Section 3 contains the proofs
of several lemmas and in Section 4, we prove the main theorems.

We thank Carlos Kenig and Michael Taylor for helpful conversations and a couple
of technical observations.

2 Definitions and Statements of Main Theorems

Let us begin by defining introducing Carleson measures and square functions on do-
mains which are locally given by the graph of a function. We shall therefore assume
that our domains are Lipschitz.

Definition 2.1. Z ⊂ Rn is an M-cylinder of diameter d if there exists a coordinate
system (x, t) such that

Z = {(x, t) : |x| ≤ d, −2Md ≤ t ≤ 2Md}

and for s > 0,
sZ = {(x, t) : |x| < sd,−2Md ≤ t ≤ 2Md}.

Definition 2.2. Ω ⊂ Rn is a Lipschitz domain with Lipschitz ‘character’ (M,N, C0)
if there exists a positive scale r0 and at most N cylinders {Zj}N

j=1 of diameter d, with
r0

c0
≤ d ≤ c0r0 such that

(i) 8Zj ∩ ∂Ω is the graph of a Lipschitz function φj,

‖φj‖∞ ≤ M, φj(0) = 0,

(ii)

∂Ω =
⋃
j

(Zj ∩ ∂Ω)

(iii)

Zj ∩ Ω ⊃
{

(x, t) : |x| < d, dist ((x, t), ∂Ω) ≤ d

2

}
.

3



If Q ∈ ∂Ω and
Br(Q) = {x : |x−Q| ≤ r}

then ∆r(Q) denotes the surface ball Br(Q) ∩ ∂Ω and T (∆r) = Ω ∩ Br(Q) is the called
the Carleson region above ∆r(Q).

Definition 2.3. Let T (∆r) be a Carleson region associated to a surface ball ∆r in ∂Ω..
A measure µ in Ω is Carleson if there exists a constant C = C(r0) such that for all
r ≤ r0,

µ(T (∆r)) ≤ Cσ(∆r).

The best possible C is the Carleson norm. When dµ is Carleson we write dµ ∈ C.
If lim

r0→0
C(r0) = 0, then we say that the measure µ satisfies the vanishing Carleson

condition, and we denote this by writing dµ ∈ CV .

Definition 2.4. A cone of aperture a is a non-tangential approach region for Q ∈ ∂Ω
of the form

Γa(Q) = {X ∈ Ω : |X −Q| ≤ a dist(X, ∂Ω)}.
Sometimes it is necessary to truncate the height of Γ by h. Then Γa,h(Q) = Γa(Q) ∩
Bh(Q).

When p = 2, the square function appearing below is the classical square function
for a Lipschitz domain, as in [2] for example.

Definition 2.5. If Ω ⊂ Rn, the p-adapted square function in Q ∈ ∂Ω relative to a
family of cones Γ is

Spu(Q) =

(∫

Γ(Q)

|∇u(X)|2|u|p−2(X)dist(X, ∂Ω)2−ndX

)1/p

.

and the non-tangential maximal function at Q relative to Γ is

Nu(Q) = sup{|u(X)| : X ∈ Γ(Q)}.

There are several remarks in order here, since the solution u is not assumed to be
positive. Even in the case of harmonic functions, it is not obvious that the expressions
appearing in the integral are locally integrable. In fact, the following Cacciopoli type
inequality holds for |u|p−2|∇u|2:
Proposition 2.1. Suppose ∆u = 0 in Ω, Br is a ball of radius r such that B2r is
compactly contained in Ω, then, for p > 1,

∫

Br

|u|p−2|∇u|2dx ≤ Cp
1

r2

∫

B2r\Br

|u|pdx
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Proof. Set uε =
√

u2 + ε2 and observe that

|∇uε|2 =
u2|∇u|2
u2 + ε2

.

Therefore, |uε|p−2|∇uε|2 → |u|p−2|∇u|2 as ε → 0.
By Fatou, it suffices to control the lim inf of

∫
Br
|uε|p−2|∇uε|2dx. Compute the

Laplacian of uε:

∆uε =
|∇u|2ε2

(u2 + ε2)3/2
,

which is non-negative.
If we now compute the Laplacian of up

ε , we have that

∆up
ε = pup−1

ε ∆uε + p(p− 1)up−2
ε |∇uε|2. (2.1)

Let η be a C∞ function identically 1 on Br and supported in B2r. The first term
in 2.1 is positive, and so

∫
|uε|p−2|∇uε|2η2dx <

1

p(p− 1)

∫
∆up

εη
2dx.

Integration by parts and Cauchy-Schwarz gives that this is in turn bounded by

Cp

∫
p|uε|p−1|∇uε|η|∇η|dx ≤ Cp(

∫
|uε|p−2η2dx)1/2(

∫
|uε|p−2|uε|2|∇η|2dx)1/2,

where Cp ∼ 1
p−1

.
The limit as ε → 0 gives the inequality

∫
|u|p−2|∇u|2η2dx ≤ C

∫
|u|p|∇η|2dx.

The argument is perfectly general, and works for solutions u of Lu = 0 when
L = divA∇ is elliptic and A is bounded and measurable.

Thus we will use the fact that Proposition 2.1 holds for solutions Lu = 0 also.
This local integrabilty justifies an apriori assumption of finiteness of the p-adapted

square function and the integration by parts.

Definition 2.6. The Dirichlet problem with data in Lp(∂Ω, dσ) is solvable for L if the
solution u for continuous boundary data f satisfies the estimate

‖N(u)‖Lp(∂Ω,dσ) . ‖f‖Lp(∂Ω,dσ).

The implied constant depends only the ellipticity of the operator, the p, and the Lipschitz
constant of the domain as measured by the triple of Definition 2.2.

5



We now state our main Theorems, and some corollaries.

Theorem 2.2. Let 1 < p < ∞. Let L = divA∇ be an elliptic operator and let
Ω ⊂ Rn be a bounded Lipschitz domain with small Lipschitz constant M . Let δ(X) =
dist(X, ∂Ω) and suppose that A = (aij) has distributional derivatives so that

sup{δ(X)|∇aij(X)|2 : X ∈ Bδ(Z)/2(Z)} (2.2)

is the density of a Carleson measure in Ω with norm C. Then there exists ε(p) > 0
such that if C < ε(p) and M < ε(p), then the Lp Dirichlet problem for the operator L
is solvable.
In particular, if the domain Ω is C1 and A = (aij) satisfies the vanishing Carleson
condition, then the Dirichlet problem is solvable for all 1 < p < ∞. More generally,
the conclusion of the theorem holds in domains whose boundary is locally given by a
function φ such that ∇φ belongs to L∞ ∩ V MO.

The proof of Theorem 2.2 uses the the assumption that the expression in 2.2 is
small when the Carleson region is also small.

There is a reformulation of the gradient condition in terms of differences of values
which follows as a corollary. If Z is a point in Ω, let avg(a(Z)) denote the average of
the function a over the interior ball Bδ(Z)/2(Z).

Corollary 2.3. The conclusion of 2.2 holds if the coefficients of A satisfy the following.

sup{(δ(X))−1|aij(X)− avg(aij(X))|2 : X ∈ Bδ(Z)/2(Z)} (2.3)

is a sufficiently small, or vanishing, Carleson measure in Ω.

Proof. We prove the Corollary when the domain is flat. The general result will follow
from a change of variables, as in the argument for Theorem 2.2 below.

Let’s fix the notation in this case, dropping the subscripts on the matrix coefficients
when no confusion arises. The expression avg(a) at a point (y, s) is the average of a
over the ball Bs/2(y, s) centered at (y,s) of radius s/2. Given a matrix coefficient a(x, t)
in Rn

+, set ã(x, t) =
∫

a(u, s)φt(x − u, s − t)dsdu where φ is a smooth bump function
supported in the ball of radius 1/2 and φt(y, s) = t−nφ(y/t, s/t).

We are assuming that

(sup{|a(y, , t)− avg(a(y, t))|2 : (y, s) ∈ Bt/2(x, t)})dxdt

t
(2.4)

is a Carleson measure with small norm.
We aim to establish two facts:

t|∇ã(x, t)|2dxdt (2.5)

is a Carleson measure, with small norm, and

(sup{|a(y, , t)− ã(y, t)|2 : (y, s) ∈ Bt/2(x, t)})dxdt

t
(2.6)
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satisfies the hypothesis of Theorem 1 of [Dahlberg] (In fact it does not satisfy one
condition, namely the vanishing Carleson norm of the difference, however as was shown
in [6] Theorem 2.18 where Dahlberg’s result is reproven, the small Carleson norm
suffices.)

From 2.5 we use Theorem 2.2 to conclude solvability of the Lp Dirichlet problem
for the operators whose matrix is ãij. From 2.6 we use Dahlberg’s theorem to draw
the same conclusion for the operator with coefficients aij since this is a small Carleson
perturbation of the ãij.

That 2.5 follows from the hypotheses is a straightforward computation. Apply the
gradient to φt(y, s), and subtract a constant from the aij inside the integrand to see
that

|∇ã(x, t)| ≤ Ct−1(sup{|a(y, , t)− avg(a(y, t))| : (y, s) ∈ Bt/2(x, t)}).
The proof of 2.6 is equally straightforward: add and subtract the constant avg(a(y, t))

inside the difference.

We prove two results which show that we can add drift terms which satisfy a
vanishing Carleson condition and get solvability of the Lp Dirichlet problem. Both of
these results rely on a main lemma, which is stated and proved in the next section.
Our proof is perturbative and so we find we still need some bound on the Carleson
density. Thus for example, this theorem does not prove that drift terms can be added
to operators whose coefficients satisfy instead the averaging condition in 2.3.

Theorem 2.4. Let 1 < p < ∞. Let L = divA∇+ b.∇ be an elliptic operator for which
the Lp Dirichlet problems is solvable. Let Ω ⊂ Rn be a bounded Lipschitz domain with
small Lipschitz constant M and let δ(X) = dist(X, ∂Ω) and suppose that A = (aij)
and b = (bi) have distributional derivatives satisfying

sup{δ(X)|∇aij(X)|2 : X ∈ Bδ(Z)/2(Z)} (2.7)

is the density of a Carleson measure in Ω with norm C1. and

sup{δ(X)|bi(X)|2 : X ∈ Bδ(Z)/2(Z)} (2.8)

is the density of a Carleson measure in Ω with norm C2. Then there exists ε(p) > 0
such that if C2 < ε(p) and M < ε(p), then the Lp Dirichlet problem for the operator L
is solvable.

Corollary 2.5. The conclusion of Theorem 2.2 holds when the coefficients aij satisfy
the hypotheses, but where L = aijDiDj is a non-divergence elliptic operator.

Proof. If L = aijDiDj, then L = div(aij)∇ plus lower order terms of the form b.∇
where the bi satisfy the vanishing Carleson condition of the main Theorem.

We start with the following key lemma. Here we assume that the boundary ∂Ω is
a smooth set - n-dimension compact manifold. We will see later that all other cases
can be reduced to this one.
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Lemma 2.6. Let 1 < p < ∞ be given. Assume that Ω be a bounded domain with
smooth boundary. let Lu = divA∇u + B.∇u be an elliptic differential operator with
bounded coefficients satisfying

sup{δ(X)|∇aij(X)|2 : X ∈ Bδ(Z)/2(Z)} (2.9)

is the density of a Carleson measure on all Carleson boxes of size ≤ r0 with norm C,
and similarly for

sup{δ(X)|bi(X)|2 : X ∈ Bδ(Z)/2(Z)} (2.10)

Then, given ε > 0 there exists r1 > 0 depending only on p, ε and the geometry
of the domain Ω such that for all 0 < r ≤ min{r0, r1}, if u is a bounded nonnegative
solution to Lu = 0 in the domain Ω then

∫

Ωr/2

|u|p−2|∇u|2dist(X, ∂Ω)dX ≤ C1

∫

∂Ω

|u|pdX + ε

∫

∂Ω

Nr(u)pdσ, (2.11)

provided the Carleson norm C = C(ε, p) > 0 is sufficiently small. Here Ωr = {X ∈
Ω; dist(X, ∂Ω) < r} and Nr(u) is the standard nontangential maximal function trun-
cated at height r, that is computed only for X ∈ Ωr.

Hence, by combining Lemma 2.6 and Proposition 3.2 we will be able to show the
following:

Corollary 2.7. Let 1 < p ≤ 2. Consider any operator L of the form Lu = divA∇u on
a Lipschitz domain Ω with bounded and strongly elliptic coefficients A such that (2.9)
is a Carleson measure. Then for any solution Lu = 0 in Ω

‖N(u)‖Lp(∂Ω) ≈ ‖Sp(u)‖Lp(∂Ω) +

∣∣∣∣
∫

∂Ω

u dσ

∣∣∣∣ . (2.12)

We start by proving the Lemma 2.6.

Proof. Note that (2.11) is a statement about what happens near the boundary of Ω.
For this reason we introduce a convenient parametrization of points near ∂Ω.

We want to write any point X ∈ Ω near ∂Ω as X = (x, t) where x ∈ ∂Ω and
t > 0. The boundary ∂Ω itself then will be the set {(x, 0); x ∈ ∂Ω}. One way to
get such a parametrization is to consider the inner normal N to the boundary ∂Ω.
The assumption that ∂Ω is smooth implies smoothness of N . On Ω we have a smooth
underlying metric (most likely just Euclidean metric in Rn if Ω ⊂ Rn). We consider the
geodesic flow Ft in this metric starting at any point x ∈ ∂Ω in the direction N(x). We
assign to a point X ∈ Ω coordinates (x, t) if X = Ftx, that is starting at x ∈ ∂Ω it takes
time t for the flow to get to X. It’s an easy exercise that the map (x, t) 7→ X = Ftx is
a smooth diffeomorphism for small t ≤ t0. Using this parametrization we consider the
set Ωt0 = {(x, t); x ∈ ∂Ω and 0 < t < t0}.

Let us now deal with the issue of the metric. We want to work with the simplest
possible metric on Ω available. Since we only work on Ωt0 we take our metric tensor
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there to be a product dσ ⊗ dt where dσ is the original metric tensor on Ω restricted
to ∂Ω. The product metric dσ⊗ dt is different that the original metric on Ω, but they
are both smooth and comparable, that is the distances between points are comparable.
Now we express the operator L in this new metric.

Since ∂Ω itself is a smooth compact manifold of dimension n − 1 we can find a
finite collection of open sets U1, U2, . . . , Um of in Rn−1 and smooth diffeomorphisms
ϕi : Ui → ∂Ω such that

⋃
i ϕi(Ui) covers ∂Ω. From now on we will work on one such

open set U = Ui with corresponding map ϕ = ϕi. We can now consider the operator
L as being defined on an open subset U × (0, t0) of Rn

+, where ∂Ω corresponds to the
hyperplane {(x, 0); x ∈ U}. We achieve this by pulling back the coefficients of L from
Ωt0 to U × (0, t0) using the smooth map Φ : (x, t) 7→ (ϕ(x), t). Hence from now on, we
consider L as being given on an open set U × (0, t0) ⊂ Rn

+. At this stage we also pull
back the product metric dσ ⊗ dt from Ωt0 to U × (0, t0) and we get another product
metric dσ′ ⊗ dt on U × (0, t0).

We note that under this pullback the new coefficients of our operator are going
to satisfy the same Carleson condition as the original coefficients with Carleson norm
comparable to the original.

Let 0 < r ≤ r0 be fixed. Consider an arbitrary open set B ⊂ U ⊂ Rn−1 of diameter
diam(B) ∈ (r/2, r). Let B̃ = {x ∈ Rn−1; dist(x,B) < 2r}, i.e. B̃ is a set of diameter
≤ 3r containing B.

By Tr(B) we denote the Carleson-like region in Rn
+

Tr(B) = {(x, t); x ∈ B and 0 < t < r}.

Let φ(x, t) = φ(x) be any smooth function defined on Rn
+, independent of t variable

such that
0 ≤ φ(x, t) ≤ 1, φ > 1/2 on Tr(B), supp φ ⊂ B̃ × R.

The computation below, which results in (2.24) does not require the assumption
that u is non-negative. From (2.24) the bound ‖Sp(u)‖p ≤ C‖N(u)‖p follows. The
opposite inequality is part (c) of Proposition 3.2.

Note that dist(X, ∂Ω) for a point X = (x, t) is now exactly equal to t, so instead of
the lefthand side of (2.11) (by the ellipticity of the coefficients) we are going to estimate
the comparable expression

∫

Tr( eB)

|u|p−2 aij

ann

(∂iu)(∂ju)φt dσ′dt.

Here and below we use the summation convention and think about variable t as the
n-th variable. The important aspect is that this expression is independent of particular
choice of coordinates on ∂Ω. Hence if for some i 6= j we have that B̃ ⊂ ϕi(Ui)∩ϕj(Uj),
where ϕi and ϕj are two coordinate maps, then in both coordinates (i and j) the value
of this expression is same. This is in part due to the fact that the last n-th coordinate
(the t-variable) does not change when we make a choice of coordinates on ∂Ω. We
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begin by integrating by parts

(p− 1)

∫

Tr( eB)

|u|p−2 aij

ann

(∂iu)(∂ju)φt dσ′ dt =
1

p

∫
eBr

∂j(|u|p) aij

ann

φtνi dσ′ + (2.13)

−
∫

Tr( eB)

1

ann

|u|p−2u∂i(aij∂ju)φt dσ′ dt−
∫

Tr( eB)

|u|p−2u(∂ju)aij∂i

(
φt

ann

)
dσ′ dt.

Here we introduce the notation

B̃s = {(x, s) ∈ Rn; x ∈ B̃} for s ∈ R.

νi is the i-th component of the outer normal ν, which on the upper part of the box
Tr(B̃) is just the vector en. Hence the first term is non-vanishing only for i = n. We
work on the last term, as it is the most complicated. This one splits into three new
terms, one when the derivative hits t (only term with i = n will remain) and another
two when it hits φ and 1/ann:

−
∫

Tr( eB)

|u|p−2u(∂ju)
anj

ann

φ dσ′ dt −
∫

Tr( eB)

|u|p−2u(∂ju)
aij

ann

(∂iφ)t dσ′ dt (2.14)

+

∫

Tr( eB)

|u|p−2u(∂ju)
aij

a2
nn

(∂iann)φt dσ′ dt.

Consider now the first term of (2.14). For j = n as φ is independent of xn = t we only
get

−1

p

∫

Tr( eB)

∂n(|u|pφ) dσ′ dt =
1

p

∫
eB
|u|pφ dσ′ − 1

p

∫
eBr

|u|pφ dσ′ (2.15)

For j < n the first term of (2.14) is handled as follows. We introduce an artificial
one into it by putting ∂nt inside the integral. After integration by parts we get

− 1

p

∫

Tr( eB)

∂j(|u|p)anj

ann

φ∂nt dσ′ dt = −1

p

∫
eBr

∂j(|u|p)anj

ann

φt dσ′

+

∫

Tr( eB)

∂n(∂j(|u|p)anj

ann

φ)t dσ′dt = −1

p

∫
eBr

∂j(|u|p)anj

ann

φt dσ′ (2.16)

+

∫

Tr( eB)

∂j∂n(|u|p)anj

ann

φt dσ′dt +

∫

Tr( eB)

∂j(|u|p)∂n

(
anj

ann

)
φt dσ′dt.

The first term here gets completely cancelled out by the first term of (2.13) as they
have opposite signs. The second term can be further integrated by parts and we obtain

∫

Tr( eB)

∂j∂n(|u|p)anj

ann

φt dσ′dt = −
∫

Tr( eB)

∂n(|u|p)∂j

(
anj

ann

)
φt dσ′dt

−
∫

Tr( eB)

∂n(|u|p)anj

ann

(∂jφ)t dσ′dt (2.17)
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Notice that the third term on the righthand side of (2.16) and the first on the
righthand side of (2.17) are of same type. We handle them now. First,

∣∣∣∣
∫

Tr( eB)

∇(|u|p)∇
(

anj

ann

)
φt dσ′dt

∣∣∣∣ ≤ C

∫

Tr( eB)

|u|p−1|∇u||∇a|φt dσ′dt. (2.18)

Here ∇A stands for either ∇anj or ∇ann. Notice also the the last term of (2.14) is
also of this type, as well as, the second term of (2.13). To see this we use the fact that
Lu = −B.∇u to get that

∣∣∣∣−
∫

Tr( eB)

1

ann

|u|p−2u∂i(aij∂ju)φt dσ′
∣∣∣∣ ≤

∫

Tr( eB)

|u|p−1|∇u||B|φt dσ′dt. (2.19)

Since∇A and B satisfy the same type of Carleson condition, we treat them together.
By Cauchy-Schwarz we get that the righthand sides of (2.18) and (2.19) are less than

C

(∫

Tr( eB)

|u|p(|∇A|2 + |B|2)φt dσ′dt

)1/2 (∫

Tr( eB)

|u|p−2|∇u|2φt dσ′dt

)1/2

. (2.20)

Using the Carleson condition on the coefficients, and the fact that the Carleson constant
is less than ε we get that this can be further written as

Cε

(∫
eB
Nr(u)pdy

)1/2 (∫

Tr( eB)

|u|p−2|∇u|2φt dσ′
)1/2

. (2.21)

This is a good term, since using ab ≤ 1
2
(a2 + b2) we see that the first term is on the

righthand side of (2.11) whereas the second term due to the small constant which can
be incorporated in the lefthand side of (2.13).

We summarize our computations. For some constant C depending only on p and
the ellipticity of coefficients we have that

C

∫

Tr( eB)

|u|p−2|∇u|2φt dσ′ dt ≤ (2.22)

∫
eB
|u|pφ dσ′ −

∫
eBr

|u|pφ dσ′ +

∫
eBr

∂n(|u|p)φt dσ′ + ε

∫
eB
Nr(u)p dσ′ + error terms

=

∫
eB
|u|pφ dσ′ − 2

∫
eBr

|u|pφ dσ′ +

∫
eBr

∂n(|u|pt)φ dσ′ + ε

∫
eB
Nr(u)p dσ′ + error terms.

The third term on the righthand side is the first term of (2.13) for i = j = n. We
call “the error terms” the second term of (2.14) and the second term on the righthand
side of (2.17). Both terms are of same type and contain ∂iφ for i < n. (Recall that
∂nφ = 0).

Now we use (2.22) as follows. We write ∂Ω as a disjoint union of sets B1, B2, . . . , Bk

all of approximately same diameter r. We can also arrange that each such set has ap-
proximately same number of neighbors. For each set Bi we consider the corresponding
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set B̃i defined above of diameter approximately 3r. When we do this, we make sure

that each B̃i belongs to at least one of the charts ϕj(Uj) for some j = 1, 2, . . . , m.

Consider a partition of unity (φi) on (B̃i). As each B̃i belongs to at least one chart

φj(Uj) we get (2.22) for B̃ = ϕ−1
j (B̃i) and φ = ϕ−1

j ◦ φi.

Now we sum over all i for B̃i belonging to one chart. We claim that the “error

terms” completely disappear, as the “error terms” for neighboring B̃i look same and
each contain term ∂jφ. Since

∑
i φ

i = 1 we get that
∑

i(∂jφ
i) = 0. That means that

summing over j these terms cancel out. This cancellation does happen even if we have

two neighboring B̃i, B̃j that belong to different coordinate charts, since (2.22) as we
pointed out earlier does not depend on choice of coordinates. Having taken care of the

“error terms” we finally get from (2.22) after summing over all B̃i:

C

∫

Ωr

|u|p−2|∇u|2t(X)dX ≤
∫

∂Ω

|u|pdσ (2.23)

−2

∫

∂Ωr\∂Ω

|u|pdσ +

∫

∂Ωr\∂Ω

∂t(|u|pt(X))dσ(X) + ε

∫

∂Ω

Nr(u)pdσ.

Recall that Ωr = {X = (x, t) ∈ Ω; t < r}, hence in the second and third term we
integrate over the n − 1 dimensional set {(x, r); x ∈ ∂Ω}. Here t = t(X) is the t-th
coordinate of a point X = (x, t) ∈ Ω, which is well defined near ∂Ω and comparable to
dist(X, ∂Ω).

The second term here is not pleasant - we get rid of it by integrating both sides
of (2.23) over an interval (0, r0) and dividing by r0. This also leads to introduction of
some harmless weight terms. We get after setting r = r0:

C

∫

Ωr

|u|p−2|∇u|2(t− t2

r
)dX+

2

r

∫

Ωr

|u|pdX ≤
∫

∂Ω

|u|pdσ+

∫

∂Ωr\∂Ω

|u|p dσ+ε

∫

∂Ω

Nr(u)pdσ.

(2.24)
From this (2.11) follows provided we prove an estimate

∫

∂Ωr\∂Ω

|u|pdσ ≤ 2 + ε

r

∫

Ωr

|u|pdX (2.25)

Indeed, if for given p > 1, such an estimate holds then we only have to bound from
above ε

r

∫
Ωr
|u|p dX which can be done by ε

∫
∂Ω

Nr(u)p dσ. This introduces 2ε into
(2.11) instead of ε but that’s a detail.

We first observe that when p = ∞ this estimate does indeed hold. Indeed, (2.25)
is equivalent to

‖u‖Lp(∂Ωr\∂Ω) ≤
(

2 + ε

r

)1/p

‖u‖Lp(Ωr) (2.26)

which by limiting p → ∞ gives us ‖u‖L∞(∂Ωr\∂Ω) ≤ ‖u‖L∞(Ωr) which holds by the
maximum principle. If we establish an L1 version of this result, the rest follows by the
interpolation for all p. To get the L1 result we need to use the assumption that u ≥ 0.
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Recall what Ωr is - it essentially a collar neighborhood of the boundary ∂Ω of width
r. We will make our final choice of r in a while. As we have an ε to work with, we
make one important simplification and prove instead the inequality

∫

∂Ωr\∂Ω

u dσ ≤ 2 + ε/2

r(1− δ)

∫

Ωδr,(1−δ)r

u dX, (2.27)

where
Ωδr,(1−δ)r = {(x, t) ∈ Ω; δr < t < (1− δ)r}

and δ > 0 is very small (depending on ε). More precisely we pick δ = δ(ε) so that

2 + ε/2

r(1− 2δ)
≤ 2 + ε

r

The main reason we introduce δ is to avoid completely the two boundaries of Ωr. So,
Ωδr,(1−δ)r this is a strip of width (essentially r) but of distance δr from both boundaries.

To prove the inequality we return to our partitioning of ∂Ω and local coordinates.
Since this part was detailed above we skip the details. Let us therefore assume we are
in the situation we are on one Carleson box in Rn

+ which now we choose to look like

Tr(B̃) = {(x, t) ∈ Rn−1 × R; |x| < mr, 0 < t < r},
where B = {|x| < r} and B̃ = {|x| < mr}. Here m is some fixed (large) positive
integer, to be determined later. We now assume such overlapping boxes (even for
m = 1) are covering Ωr, that is that collection of all sets B cover ∂Ω. We will establish
a local version of the estimate (2.27) then put all the pieces together via a partition of
unity.

Assume therefore that we have a nonnegative solution u of our equation Lu = 0
in Tr(B̃). Using a partition of unity we may assume that u at the top portion B̃r of

the boundary ∂Tr(B̃) is only supported on the set Br and similarly, at the bottom

portion B̃0 the support of u is the set B0. (Recall that Bs = {(x, s); x ∈ B} and

B̃s = {(x, s); x ∈ B̃}).
The Carleson conditions in (2.9) and (2.10) imply that the coefficients aij, bi satisfy

on
Tδr,r(B̃) = {(x, t) ∈ Rn−1 × R; |x| < mr, δr < t < r}

the condition

|∇aij|, |bi| ≤
√

C

δr
,

where C is the Carleson constant for Tr(B̃). Hence, since δ > 0 was already chosen
we may choose the Carleson constant C(ε, p) > 0 in the statement of Lemma 2.6 so
small so that

√
C/(δr) ≤ K/r, where K will be specified a bit later. The inequality

we want to prove is invariant under rescaling in the variable r, hence we may re-scale
everything to a box of size r = 1. Our goal therefore is to prove that in a box Tδ,1(B̃)
where the coefficients of the operator aij are essentially constant (|∇aij| ≤ K) and bi

very small (|bi| ≤ K), we have for B̃ = {|x| < m}:

13



∫

B1

u dσ′ ≤ 2 + ε/2

1− 2δ

∫

Tδ,1−δ( eB)

u dX (2.28)

Once we have this, we rescale back, add up all boxes and get (2.27). Let us denote

by v the solution of our equation Lv = 0 in the box Tδ,1(B̃) which is equal to u on

B1 = {(x, 1); |x| < 1} and vanishing on all other parts of ∂Tδ,1(B̃). It follows that v is
a subsolution of u and if we prove that

∫

∂Tδ,1( eB)

v dσ′ =
∫

B1

v dσ′ ≤ 2 + ε/2

1− 2δ

∫

Tδ,1−δ( eB)

v dX, (2.29)

then (2.28) follows. So why is (2.29) true? Let us pretend for a second that in fact L

is a constant coefficient operator on Tδ,1−δ(B̃). Then (if also m = ∞ and dσ′ = dx)
this is a classical result for a constant coefficient operator with no drift term - on an
infinite strip in Rn the average integral of a harmonic function inside the strip is just
the boundary integral of that function. Hence in such a case (2.29) holds exactly with
a constant 2−2δ

1−2δ
. Since we have 2δ

1−2δ
to spare and we know that v is supported on the

boundary only on B1 we now find m sufficiently large for which (2.29) does hold with
constant 2−δ

1−2δ
that is ∫

B1

v dx ≤ 2− δ

1− 2δ

∫

Tδ,1−δ( eB)

v dxdt, (2.30)

Notice that the measure in (2.30) is dx not dσ′, similarly instead of the measure dX
we have the product measure dxdt. But that is not a problem. By making r1 smaller
if necessary, we can ensure that for r < r1 in the Carleson box Tr(B̃) the metric
tensors are almost constant (recall that the box is very small). This might introduce
an additional error in the inequality, hence we get

∫

B1

v dσ′ ≤ 2− δ

1− 2δ

∫

Tδ,1( eB)

v dX. (2.31)

Note that we have also replaced the set Tδ,1−δ(B̃) by a larger set Tδ,1(B̃) so the
inequality will still hold. Next we interpolate between this L1 estimate and the L∞

result. We obtain ∫

B1

vp dσ′ ≤ 2

1− 2δ

∫

Tδ,1( eB)

vp dX, (2.32)

Remember that we have (2.32) for a constant coefficient equation. Now we consider the
variable coefficient case. Assume that ṽ is a solution with the same boundary conditions
as v, but for a variable coefficient operator L̃ = divA∇+B.∇ on a box Tδ,1(B̃) on which
we have |∇aij|, |bi| ≤ K. Say v is a solution for the constant coefficient operator L with

coefficients taken from the middle of the box Tδ,1(B̃). How do v and ṽ compare? In
both cases for any 1 < p < ∞ the solvability of the Dirichlet problem is assured by layer
potential techniques - done for the variable coefficient case with Lipschitz continuous
coefficients in [11] and [12], for example. Moreover this result gives us that both v and
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ṽ belong to the Sobolev space Lp
p+1/p(Tδ,1(B̃)) and for some constant C(p) > 0 we have

an estimate

‖v‖Lp
p+1/p

(Tδ,1( eB)) + ‖ṽ‖Lp
p+1/p

(Tδ,1( eB)) ≤ C(p)‖v‖Lp(∂Tδ,1( eB)) = C(p)‖ṽ‖Lp(B1).

But this is not the end of the story. We also know that L and L̃ have coefficients that
are close in the Lipschitz norm. Hence one can show (e.g. [3]) that in such a case
the corresponding layer potential operators are also close and how close they are only
depend on K that measures |∇aij|, |bi| on Tδ,1(B̃). From this an estimate

‖v − ṽ‖Lp
p+1/p

(Tδ,1( eB)) ≤ C(p,K)‖v‖Lp(∂Tδ,1( eB)) = C(p, K)‖ṽ‖Lp(B1)

follows. Here C(p,K) > 0 depends only on p and K and C(p,K) → 0 as K → 0. This
is the final missing ingredient. Using this estimate and the fact that the Lp norm is
weaker that Lp

1/p norm we get for ṽ :

∫

B1

ṽp dσ′ =

∫

B1

vp dσ′ ≤ 2

1− 2δ

∫

Tδ,1( eB)

vp dX

≤ 2

1− 2δ

(∫

Tδ,1( eB)

ṽp dX + Cp(p,K)

∫

B1

ṽp dσ′
)

. (2.33)

So finally, we can select the last undetermined constant K. Given 1 < p < ∞ we
choose K so small so that Cp(p,K) is small enough such that (1 − 2Cp(p,K)

1−2δ
)−1 is less

than 2+ε/2
1−2δ

and hence (2.28) holds for ṽ. This concludes the proof.

Now we are ready to prove the Main theorem 2.2.

Proof. To keep matters simple let us first consider the case when ∂Ω is smooth. In this
case Lemma 2.6 applies directly. Let 1 < p < ∞ be given and let us assume a function
f in Lp(∂Ω) is given. We split f into a positive and negative part f+, f− and consider
the corresponding solutions u+, u− to the Dirichlet problem for the operator L. Or
goal is to prove the estimates

‖N(u±)‖Lp(∂Ω) ≤ C‖f±‖Lp(∂Ω),

from which the result follows as N(u) ≤ N(u+) + N(u−). We only present the proof
for u+ as the argument remains same for u−. We simplify our notation and use u = u+

and f = f+.
Proposition 3.2 implies that there exists C(p) > 0 such on each Carleson box Tr(B)

we have an estimate on comparability of truncated nontangential maximal function
and the square functions:

‖Nr(u)‖Lp(B) ≤ C‖S2r
p (u)‖Lp( eB) + C2

∣∣∣∣
∫

B

u dσ

∣∣∣∣ . (2.34)
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As in the proof of previous lemma, if we now consider a partition of ∂Ω into sets
B1, B2, . . . , Bm of approximate diameter r and the corresponding sets B̃1, B̃2, . . . , B̃m.
The geometry of domain ∂Ω implies that these set can be chosen so that there exists
an integer K independent of r such that each point X ∈ ∂Ω belongs to at most K of
sets B̃i.

Hence using (2.34) on each Bi we get an estimate for all r > 0

‖Nr(u)‖Lp(∂Ω) ≤ CK‖S2r
p (u)‖Lp(∂Ω) + C2

∫

∂Ω

|u|dσ. (2.35)

The crucial point is that the constants C and K do not depend on r. Having this we
now choose the ε > 0 to be used in Lemma 2.6. We first find a third constant M > 0
(again independent of r) such that

N4r(u) ≤ MNr(u) (2.36)

for any u ≥ 0 and any r > 0. The existence of such an M is consequence of the Harnack
inequality. Finally, we take ε > 0 such that CKMε = 1/2 and find r1 > 0 such that
(2.11) holds for all operators L with coefficients that have sufficiently small Carleson
norm on boxes of size at most r0. We now pick r > 0 such that 4r < min{r0, r1}.
Combining (2.11), (2.35) and (2.36) we get that

‖Nr(u)‖Lp(∂Ω) ≤ CK‖S2r
p (u)‖Lp(∂Ω) +

∫

∂Ω

u dσ (2.37)

≤ C1CK‖f‖Lp(∂Ω) + CKε‖N4r(u)‖Lp(∂Ω) + C2

∫

∂Ω

u dσ

≤ C1CK‖f‖Lp(∂Ω) + CKMε‖Nr(u)‖Lp(∂Ω) + C2

∫

∂Ω

u dσ.

Now we use the fact that CKMε = 1/2, hence we can hide CKMε‖Nr(u)‖Lp(∂Ω) on
the lefthand side. Also ∫

∂Ω

u dσ ≤ C3‖f‖Lp(∂Ω)

for any p ≥ 1. So finally we get that

1

2
‖Nr(u)‖Lp(∂Ω) ≤ (C1CK + C2C3)‖f‖Lp(∂Ω). (2.38)

From this the result follows as N(u) . Nr(u).
Now we deal with the more general case, when Ω has a Lipschitz boundary with

sufficiently small Lipschitz constant L. This case also includes the C1 boundary as in
such case L can be taken arbitrary small.

The crucial point is that the proofs of Lemma 2.6 and the main Theorem 2.2 in
the smooth case are based on local estimates such as (2.22) and (2.34). Hence we can
again reduce the situation to local coordinate patches where we want to establish out
estimates. This means we can reduce the matter to a situation where we have U - an

16



open set in Rn and a Lipschitz function φ with Lipschitz constant L such that in U
the set Ω looks like {(x, t) ∈ Rn; t > φ(x)}.

Now, let θt be a family of mollifiers as in [10]. As observed there, the map Φ :
(x, t) 7→ (x, (θt ∗ φ)(x) + ct) for any c > L is then a bijection between the sets Rn

+

and {(x, t) ∈ Rn; t > φ(x)}. In fact if c > ` then the map Φ is a local bijection,,
where ` = ‖∇φ‖BMO. Hence by pulling back everything (metric, coefficicients) using
Φ we are left with proving local estimates like (2.22) and (2.34) on a subset of Rn

+.
However, this is exactly what we did above. We only have to be careful about how
much the Carleson constant of the coefficients changes when we move from the set
{(x, t) ∈ Rn; t > φ(x)} to Rn

+. A computation gives us that if the original constant
was C, the new constant on Rn

+ will be C + C(`) where C(`) is an increasing function
in ` such that lim`→0+ C(`) = 0. From this the claim follows, as this implies that
C + C(`) will be small as long as both C and ` are small enough. So we get solvability
on domains with small Lipschitz constant, as well as on domains whose boundaries are
given locally by functions in V MO.

3 The Nontangential Maximal Function and a p-

Adapted Square Function

In this section we recall a lemma proven in [10].

Lemma 3.1. Let (2.9) be a Carleson measure for the operator L = divA∇ with bounded
and strongly elliptic coefficients. Let u be a solution to Lu = 0 on a bounded Lipschitz
domain Ω, normalized so that u(P ) = 0 for some P ∈ Ω. Then

‖N(u)‖Lp . ‖S2(u)‖Lp

for any 1 < p < ∞.

From the lemma we get the following:

Proposition 3.2. Let 1 < p ≤ 2 and let Hp be a space of solutions to Lu = divA∇u =
0 such that N(u) ∈ Lp(∂Ω). For any r > 0 and any x ∈ ∂Ω let

B = {y ∈ ∂Ω; dist(x, y) < r}
B̃ = {y ∈ ∂Ω; dist(x, y) < 2r}.

Let P ∈ Ω be a point in Ω whose distances to x and ∂Ω are both approximately r. Then
for u ∈ Hp and for any positive ε :

(a) ‖Nr(u)‖Lp(B) ≤ C(‖S2r
p (u)‖Lp( eB) + rn/p|u(P )|) + ε‖N2r(u)‖Lp(B).

(b) ‖Nr(u)‖Lp(B) ≤ C(‖S2r
p (u)‖Lp( eB) + rn(1/p−1)

∣∣∫
B

u dσ
∣∣) + ε‖N2r(u)‖Lp(B). Here σ is

the standard surface measure on ∂Ω.

The estimates above have a global counterpart:
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(c) ‖N(u)‖Lp(∂Ω) ≤ C(‖Sp(u)‖Lp(∂Ω) +
∣∣∫

∂Ω
u dσ

∣∣)
Moreover, in both (a) and (b) the constant C in the estimates depend only on the
size of the Carleson constant of the coefficients (2.9), p and ε, but not on x ∈ ∂Ω or
r > 0. Here Nr(u) denotes the truncated nontangential maximal function of height r,
similarly, S2r

p denotes the truncated Sp function for cones of height 2r. Additionally, ε
can be taken to be zero in the case that u is a non-negative solution.

Proof. The global inequality part(c) follows from (b): when B = ∂Ω, it is easy to
see that ‖N2r(u)‖Lp(∂Ω) ≤ C‖Nr(u)‖Lp(∂Ω). The constant C will depend only on the
Lipschitz constant if r is chosen sufficiently large. In this case, one uses the solvability
of the Lp Dirichlet problem for smooth domains (interior to Ω) for this operator. We
turn the proofs of (a) and (b).

We first establish that

‖Nr(u)‖Lp(B) ≤ C(‖S2r
2 (u)‖Lp( eB) + rn/p|u(P )|), (3.39)

‖Nr(u)‖Lp(B) ≤ C

(
‖S2r

2 (u)‖Lp( eB) + rn(1/p−1)

∣∣∣∣
∫

B

u dσ

∣∣∣∣
)

. (3.40)

Then we will give a simple argument proving that for 1 < p < 2 and any ε > 0 we
have an estimate

‖Sr
2(u)‖Lp ≤ Cε‖Sr

p(u)‖Lp + ε‖Nr(u)‖Lp . (3.41)

Combining (3.39) and (3.41), part (a) follows and, similarly, from (3.40) and (3.41),
part (b) follows. From parts (a) and (b), the Harnack inequality for non-negative
solutions shows that N2r(u) ≤ CNr(u) for a fixed C > 0 independent of r > 0. Thus,
for non-negative solutions, the ε may be taken to be zero in both (a) and (b). Finally,
part (c) is proved by

Clearly (3.39) is just a local version of Lemma 3.1, applied to a function u− u(P ).
The term rn/p next to |u(P )| is to obtain the correct scaling. When we rescale both
Nr(u) and S2r

2 (u) from sets of diameter approximately r to sets of diameter 1 we get
that both these will scale like rn/p. Hence if (3.39) works for r = 1 it works for all
r > 0 by the scaling argument.

Next we look at (3.40). This is an important step as it allows us to replace the
value of u at a point P (essentially the elliptic measure) with the (better controllable)
surface measure. We claim that to prove (3.40) it suffices to show that on the subspace
of Hp

Hp
av = {u ∈ Hp;

∫
B

u dA = 0}
we have for all u ∈ Hp

av

‖Nr(u)‖Lp(B) ≤ C‖S2r
2 (u)‖Lp( eB), (3.42)

with C depending only on the Carleson constant of the coefficients. The rest is just a
scaling argument. Hence, consider just when r = 1. For this reason from now on we
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drop the sub(super)script r. Assume that (3.42) is false. Then we can find a sequence
of solutions u1, u2, u3 . . . of equations Lkuk = 0 (for Lk = ∂i(a

k
ij∂j)) such that

‖N(uk)‖Lp(B) = 1, ‖S2(uk)‖Lp( eB) ≤ 1/k,
∫

B
uk dσ = 0. (3.43)

Here, for each operator Lk we assume that the coefficients ak
ij are uniformly elliptic

with same constant for all k and also satisfy the Carleson condition for coefficients
(2.9) with same constant. This however implies that on any compact subset of Ω, both
sequences ak

ij and ∇ak
ij are uniformly bounded for all k. Thus for a subsequence in k we

get that ak
ij → aij for some aij in any Cα, α < 1. Moreover, aij is also uniformly elliptic

and locally Lipschitz. By repeating this argument on any compact subset of Ω and
diagonalization, we may assume that the sequence (ak

ij)k∈N is such that ak
ij → aij locally

uniformly in any Cα, α < 1. Denote the operator that corresponds to coefficients aij

by L.
Let P be the point in Ω given in (3.39). By (3.39) we have that a for large k

1 = ‖N(uk)‖Lp ≈ |uk(P )|,
hence the sequence (uk) is bounded from above and below at the point P . Naturally,
the exact constant will depend on the position of the point P with respect to the
boundary. In fact, for any compact K ⊂⊂ ⋃

x∈ eB Γ(X) (cones Γ of height 2) we can
find c(K), C(K) > 0 such that for large k:

c(K) ≤ |uk(P )| ≤ C(K), for all P ∈ K.

It follows that the sequence (uk) is bounded on such set K. As all uk are also solutions
of Lkuk = 0 and Lk → L, we get that {uk

∣∣
K
} is a precompact set, hence we can find

a locally uniformly convergent subsequence. Repeating this argument on any compact
subset K and diagonalization then implies that there exists a function u solving Lu = 0
such that a subsequence (ukn) (and its derivative) converges to u (∇u respectively)
locally uniformly in

⋃
x∈ eB Γ(X). What is u? Fix a compact set K ⊂ ⋃

x∈ eB Γ(X). Then
for any Q ∈ K let us denote by SK

2 u(Q)

SK
2 u(Q) =

(∫

Γ(Q)∩K

|∇u(X)|2dist(X, ∂Ω)2−ndσ(X)

)1/2

.

The uniform convergence on K implies that

‖SK
2 u‖Lp = lim

n→∞
‖SK

2 ukn‖Lp ≤ lim
n→∞

‖S2ukn‖Lp = 0.

From this we get that |∇u| = 0 on K that is u is constant. Hence we get that u ≡ c0 6= 0
in

⋃
x∈ eB Γ(X). What can be said about N(u − ukn)? Using again part (3.39) we get

that
‖N(u− ukn)‖Lp . ‖S2(u− ukn)‖Lp + |u(P )− ukn(P )|

The first term on the righthand side has an estimate

‖S2(u− ukn)‖Lp . ‖S2(u)‖Lp + ‖S2(ukn)‖Lp → 0,
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the second term goes to zero trivially. So N(u− ukn) → 0 in Lp. But |u
∣∣
B
− ukn

∣∣
B
| ≤

N(u−ukn), hence ukn

∣∣
B
→ u

∣∣
B

= c0 in Lp(B), p > 1, therefore also in L1(B). However,
as

0 =

∫

B

ukn dA →
∫

B

u dA =

∫

B

c0 dA 6= 0

we get a contradiction. Therefore the estimate (3.42) holds and (3.40) is true.
Finally, we establish (3.41) for 1 < p < 2. W now drop the index r, as the following

does not depend on r in any way. We have (using |u|2−p ≤ |N(u)|2−p)

‖S2(u)‖p
Lp =

∫

∂Ω

(∫

Γ(x)

|∇u(y)|2|u(y)|p−2|u(y)|2−pdist(y, ∂Ω)2−ndy

)p/2

dσ(x)

≤
∫

∂Ω

N(u)p(2−p)/2

(∫

Γ(x)

|∇u(y)|2|u(y)|p−2dist(y, ∂Ω)2−ndy

)p/2

dσ(x)

≤
∫

∂Ω

N(u)p(2−p)/2[Sp(u)]p
2/2dσ (3.44)

≤
(∫

∂Ω

N(u)pdσ

)(2−p)/2 (∫

∂Ω

Sp(u)pdσ

)p/2

= ‖N(u)‖p(2−p)/2
Lp ‖Sp(u)‖p2/2

Lp .

In the last step we used the Hölder inequality. From this our claim follows as for any
r, r′ > 1 and 1/r + 1/r′ = 1 we have that a1/rb1/r′ ≤ ra + r′b.

Concluding Remarks. Several questions remain open, and research continues in
these areas. First, it should be possible to develop a Hardy space theory, in particular,
the endpoint atomic result. See [3], where results for p near 1 on C1 domains and
manifolds are treated by the method of layer potentials. Second, it remains to prove the
results for operators satisfying the averaging condition in (2.3) in the presence of drift
terms, or similarly, and for a related reason, results for nondivergence operators whose
coefficients satisfy this averaging condition. Some partial progress in this direction
follows from some perturbation results in [14] (see also [13].)
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