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Abstract. We give a short proof of the well known Coifman-Meyer theorem on multi-
linear operators.

1. Introduction

The main task of the present paper is to present a new proof of the classical Coifman-
Meyer theorem on multilinear singular integrals, see [2], [3], [5], [6].

Let m ∈ L∞(IRn) be a bounded function which is smooth away from the origin and
satisfies the following Marcinkiewicz-Mihlin-Hörmander type condition

|∂αm(ξ)| .
1

|ξ||α|
, (1)

for sufficiently many multiindices α 1. For f1, ..., fn ∈ S(IR) Schwartz functions on the
real line, we define the n-linear operator Tm by the formula

Tm(f1, ..., fn)(x) =

∫

IRn
m(ξ)f̂1(ξ1)...f̂n(ξn)e2πix(ξ1+...+ξn) dξ1...dξn. (2)

The following theorem holds, see [2], [3], [5], [6].

Theorem 1.1. As defined, the multilinear operator Tm maps Lp1 × ...×Lpn → Lp as long
as 1 < pi ≤ ∞, 1 ≤ i ≤ n, 1/p1 + ... + 1/pn = 1/p and 0 < p < ∞.

When such an n + 1-tuple (p1, ..., pn, p), has the property that 0 < p < 1 and pj = ∞
for some 1 ≤ j ≤ n then, for some technical reasons (see [5], [7]), by L∞ one actually
means L∞

c the space of bounded measurable functions with compact support.
The case p ≥ 1 has been proven in [3] while the general case p > 1/n has been

independently settled in [6] and [5]. The interesting fact that p can be a number smaller
than 1 goes back to [2]. The usual argument to prove the theorem (see [2], [3], [5], [6]) uses
the celebrated T1 theorem of David and Journe [4] and relies on BMO theory, Carleson
measures and C.Fefferman’s duality theorem between the Hardy space H1 and BMO.

As the reader will see, our proof is conceptually simpler and does not use any of the
aforementioned ingredients. It is based on a careful stopping time argument involving the
Hardy-Littlewood maximal function and the Littlewood-Paley square function.

1Throughout the paper we will write A . B iff there is a universal constant C > 0 so that A ≤ CB.
1
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2. Model operators

For simplicity we treat the n = 2 case only. It is a standard fact by now (see for
instance the papers [7], [8]) that the study of our bilinear operators Tm can be reduced

to the study of finitely many discrete model operators Πj
P
, j = 0, 1, 2, 3 of the form

Πj
P
(f1, f2) =

∑

P∈P

εP
1

|IP |1/2
〈f1, φP1

〉〈f2, φP2
〉φP3

. (3)

Here P is a collection of lacunary dyadic tiles corresponding to lattice points (k, n) in Z
2

and (εP )P is an arbitrary sequence of uniformly bounded constants. More precisely, Pi

i = 1, 2, 3 are defined by Pi = IP × ωPi
where IP = [n2−k, (n + 1)2−k+1], ωPi

= [0, 2k] if
i = j and ωPi

= [2k, 2k+1] if i 6= j, while φPi
i = 1, 2, 3 are L2 normalized wave packets

corresponding to the Heisenberg boxes Pi i = 1, 2, 3. This means that the function φPi
is a

smooth L2 normalized bump function adapted to the interval IP whose Fourier transform

φ̂Pi
is supported inside the interval ωPi

for i = 1, 2, 3. We should emphasize here that the
tile P is uniquely determined by the interval IP .

To explain this reduction in a few words, let Q := I × J be a dyadic rectangle in
the plane, having the property that diam(Q) ∼ dist(Q, {0}). Let also φI , φJ be two L1

normalized smooth functions such that supp(φ̂I) ⊆ I and supp(φ̂J) ⊆ J . If we replace

the symbol m(ξ1, ξ2) by φ̂I(ξ1)φ̂J(ξ2) we observe that the right hand side of (2) becomes
(f1 ∗ φI)(x)(f2 ∗ φJ)(x). On the other hand, inequality (1) implies that one can think of
m as being essentially constant on each such Q and so the integral in (2) when smoothly
restricted to this cube, becomes roughly

εQ(f1 ∗ φI)(x)(f2 ∗ φJ)(x).

Then, one covers the plane by a collection of carefully selected such Whitney cubes and
discretize again in the x-variable. In the end, one obtains a formula in which the general
Tm is written as an average of operators of the type of the model operators above. The
details can be found in [7], [8]. Now our analysis of the operators Πj

P
will be independent

on j = 0, 1, 2, 3 and so we can assume without loss of generality that j = 1 and write
from now on, for simplicity, ΠP instead of Π1

P
(the reader will observe that for j 6= 1, the

only difference is that the roles of the Hardy Littlewood maximal function M and the
Littlewood Paley square function S, get permuted). It is therefore enough to prove the
theorem for the bilinear operator ΠP.

3. The proof

First, let us observe that it is very easy to obtain the necessary Lp estimates in the
particular case when all the indices are strictly between 1 and ∞. To see this, let f ∈ Lp,
g ∈ Lq, h ∈ Lr for 1 < p, q, r < ∞ with 1/p + 1/q + 1/r = 1. Then,

∣∣∣∣
∫

IR
ΠP(f, g)(x)h(x) dx

∣∣∣∣ .
∑

P∈P

1

|IP |1/2
|〈f, φP1

〉||〈g, φP2
〉||〈h, φP3

〉| =
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∫

IR

∑

P∈P

|〈f, φP1
〉|

|IP |1/2

|〈g, φP2
〉|

|IP |1/2

|〈h, φP3
〉|

|IP |1/2
χIP

(x) dx . (4)

∫

IR

(
sup
P∈P

|〈f, φP1
〉|

|IP |1/2
χIP

(x)

)(∑

P∈P

|〈g, φP2
〉|2

|IP |
χIP

(x)

)1/2(∑

P∈P

|〈h, φP3
〉|2

|IP |
χIP

(x)

)1/2

dx .

∫

IR
Mf(x)Sg(x)Sh(x) dx . ‖Mf‖p‖Sg‖q‖Sh‖r .

‖f‖p‖g‖q‖h‖r,

where M is the maximal function of Hardy and Littlewood and S is the discrete square
function of Littlewood and Paley, see [9] and [7]. This means that theorem 1.1 is nontrivial
only when one index is ∞, or less or equal than 1. To prove the general case we just need to
show that the bilinear operator ΠP maps L1×L1 → L1/2,∞ because then, by interpolation
and symmetry the theorem follows as in [7]. Let f, g ∈ L1 be such that ‖f‖1 = ‖g‖1 = 1.
We now recall Lemma 5.4 in [1].

Lemma 3.1. Let 0 < p < ∞ and A > 0. Then the following statements are equivalent
up to constants:

(i) ‖f‖p,∞ . A.
(ii) For every set E with 0 < |E| < ∞, there exists a subset E ′ ⊆ E with |E ′| ∼ |E| and

|〈f, χE′〉| . A|E|1/p′. Here p′ is defined by 1/p′ + 1/p = 1 (note that p′ can be a negative
number!).

Proof To see that (i) implies (ii), set

E ′ := E \ {x : |f(x)| ≥ CA|E|−1/p}.

If C is a sufficiently large constant, then (i) implies |E ′| ∼ |E| and the claim follows.
To see that (ii) implies (i), let λ > 0 be arbitrary and set E := {x : Re(f(x)) > λ}.

Then by (ii) we have

λ|E| ∼ λ|E ′| . A|E|1/p′ ,

and (i) easily follows (replacing Re by −Re, Im, −Im as necessary).

Using this Lemma 3.1 in the particular case p = 1/2 and the scale invariance, it is
enough to show that given E ⊆ IR |E| = 1, one can find a subset E ′ ⊆ E with |E ′| ∼ 1
such that

∑

P∈P

1

|IP |1/2
|〈f, ΦP1

〉||〈g, ΦP2
〉||〈h, ΦP3

〉| . 1 (5)

where h := χE′. Fix such a set E with |E| = 1. To construct the subset E ′, we first
consider

Ω0 = {x ∈ IR : M(f)(x) > C} ∪ {x ∈ IR : S(g)(x) > C} ∪ {x ∈ IR : M(g)(x) > C}.

Also, define



4 CAMIL MUSCALU, JILL PIPHER, TERENCE TAO, AND CHRISTOPH THIELE

Ω = {x ∈ IR : M(1Ω0
)(x) >

1

100
}.

Clearly, we have |Ω| < 1/2, if C is a big enough constant which we fix from now on.
Then, we define E ′ := E \ Ω = E ∩ Ωc and observe that indeed |E ′| ∼ 1. After this, we
split our sum in (5) into two parts

∑

P∈P

=
∑

IP∩Ωc 6=∅

+
∑

IP∩Ωc=∅

:= I + II.

We also assume that the set P is finite, since our estimates do not depend on its cardinality.

First, we estimate term I. Since IP ∩Ωc 6= ∅, it follows that |IP∩Ω0|
|IP |

< 1
100

or equivalently,

|IP ∩ Ωc
0| > 99

100
|IP |.

We are now going to describe three decomposition procedures, one for each function
f, g, h. Later on, we will combine them, in order to handle our sum. First, define

Ω1 = {x ∈ IR : M(f)(x) >
C

21
}

and set

T1 = {P ∈ P : |IP ∩ Ω1| >
1

100
|IP |},

then define

Ω2 = {x ∈ IR : M(f)(x) >
C

22
}

and set

T2 = {P ∈ P \ T1 : |IP ∩ Ω2| >
1

100
|IP |},

and so on. (The constant C > 0 is the one which we fixed before). Since there are finitely
many tiles, this algorithm ends after a while, producing the sets {Ωn} and {Tn} such that
P = ∪nTn. Independently, define

Ω′
1 = {x ∈ IR : S(g)(x) >

C

21
}

and set

T
′
1 = {P ∈ P : |IP ∩ Ω′

1| >
1

100
|IP |},

then define

Ω′
2 = {x ∈ IR : S(g)(x) >

C

22
}

and set

T
′
2 = {P ∈ P \ T

′
1 : |IP ∩ Ω′

2| >
1

100
|IP |},
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and so on, producing the sets {Ω′
n} and {T′

n} such that P = ∪nT
′
n. We would like to

have such a decomposition available for the function h also. To do this, we first need to
construct the analogue of the set Ω0, for it. We will therefore pick N > 0 a big enough
integer such that for every P ∈ P we have |IP ∩ Ω

′′c
−N | > 99

100
|IP | where we defined

Ω′′
−N = {x ∈ IR : S(h)(x) > C2N}.

Then, similarly to the previous algorithms, we define

Ω′′
−N+1 = {x ∈ IR : S(h)(x) >

C2N

21
}

and set

T
′′
−N+1 = {P ∈ P : |IP ∩ Ω′′

−N+1| >
1

100
|IP |},

then define

Ω′′
−N+2 = {x ∈ IR : S(h)(x) >

C2N

22
}

and set

T
′′
−N+2 = {P ∈ P \ T

′′
−N+1 : |IP ∩ Ω′′

−N+2| >
1

100
|IP |},

and so on, constructing the sets {Ω′′
n} and {T′′

n} such that P = ∪nT
′′
n. Then we write the

term I as

∑

n1,n2>0,n3>−N

∑

P∈Tn1,n2,n3

1

|IP |3/2
|〈f, ΦP1

〉||〈g, ΦP2
〉||〈h, ΦP3

〉||IP |, (6)

where Tn1,n2,n3
:= Tn1

∩T
′
n2
∩T

′′
n3

. Now, if P belongs to Tn1,n2,n3
this means in particular

that P has not been selected at the previous n1 − 1, n2 − 1 and n3 − 1 steps respectively,
which means that |IP ∩Ωn1−1| < 1

100
|IP |, |IP ∩Ω′

n2−1| < 1
100

|IP | and |IP ∩Ω′′
n3−1| < 1

100
|IP |

or equivalently, |IP ∩ Ωc
n1−1| > 99

100
|IP |, |IP ∩ Ω

′c
n2−1| > 99

100
|IP | and |IP ∩ Ω

′′c
n3−1| > 99

100
|IP |.

But this implies that

|IP ∩ Ωc
n1−1 ∩ Ω

′c
n2−1 ∩ Ω

′′c
n3−1| >

97

100
|IP |. (7)

In particular, using (7), the term in (6) is smaller than

∑

n1,n2>0,n3>−N

∑

P∈Tn1,n2,n3

1

|IP |3/2
|〈f, ΦP1

〉||〈g, ΦP2
〉||〈h, ΦP3

〉||IP ∩ Ωc
n1−1 ∩ Ω

′c
n2−1 ∩ Ω

′′c
n3−1| =

∑

n1,n2>0,n3>−N

∫

Ωc
n1−1

∩Ω
′c
n2−1

∩Ω
′′c
n3−1

∑

P∈Tn1,n2,n3

1

|IP |3/2
|〈f, ΦP1

〉||〈g, ΦP2
〉||〈h, ΦP3

〉|χIP
(x) dx

.
∑

n1,n2>0,n3>−N

∫

Ωc
n1−1

∩Ω
′c
n2−1

∩Ω
′′c
n3−1

∩ΩTn1,n2,n3

M(f)(x)S(g)(x)S(h)(x) dx
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.
∑

n1,n2>0,n3>−N

2−n12−n22−n3|ΩTn1,n2,n3
|, (8)

where

ΩTn1,n2,n3
:=

⋃

P∈Tn1,n2,n3

IP .

On the other hand we can write

|ΩTn1,n2,n3
| ≤ |ΩTn1

| ≤ |{x ∈ IR : M(χΩn1
)(x) >

1

100
}|

. |Ωn1
| = |{x ∈ IR : M(f)(x) >

C

2n1

}| . 2n1 .

Similarly, we have |ΩTn1,n2,n3
| . 2n2 and also |ΩTn1,n2,n3

| . 2n2α, for every α ≥ 1, since
|E ′| ∼ 1. In particular, it follows that

|ΩTn1,n2,n3
| . 2n1θ12n2θ22n3αθ3 (9)

for any 0 ≤ θ1, θ2, θ3 < 1, such that θ1 + θ2 + θ3 = 1. Now we split the sum in (8) into

∑

n1,n2>0,n3>0

2−n12−n22−n3 |ΩTn1,n2,n3
| +

∑

n1,n2>0,0>n3>−N

2−n12−n22−n3|ΩTn1,n2,n3
|.

(10)

To estimate the first term in (10) we use the inequality (9) in the particular case θ1 =
θ2 = 1/2, θ3 = 0, while to estimate the second term we use (9) for θj, j = 1, 2, 3 such that
θ1 < 1, θ2 < 1 and αθ3 − 1 > 0. With these choices, the geometric sums in (10) are finite.
This ends the discussion on I.

Now term II is much simpler, being just an error term. We split

P :=
⋃

d>0

Pd

where

Pd := {P ∈ P :
dist(IP , Ωc)

|IP |
∼ 2d}

and easily observe that

∑

P∈Pd;IP⊆Ω

|IP | . |Ω| ∼ 1. (11)

Then, term II is smaller than

∑

d>0

∑

P∈Pd;IP⊆Ω

|IP ||
〈f, ΦP1

〉

|IP |1/2
||
〈g, ΦP2

〉

|IP |1/2
||
〈h, ΦP3

〉

|IP |1/2
| .

∑

d>0

∑

P∈Pd;IP⊆Ω

|IP |2
d2d2−Kd . 1,

for any big number K > 0, and this ends the proof.
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