
COUNTING CONNECTIONS IN A LOCALLY
SYMMETRIC SPACE

JEREMY KAHN AND ALEX WRIGHT

This is a preliminary draft provided for the purpose of verifying the
reference in [KW18].

1. Introduction

1.1. An eigenspace factorization of a group. Let G be a semisim-
ple Lie group of non-compact type, and let A be a nonzero semisimple
element of the Lie algebra g such that adA has all real eigenvalues.

Define h− to be the subspace of g spanned by eigenvectors of adA

with negative eigenvalue. Similarly let h+ be spanned by eigenvectors
with positive eigenvalue, and h0 = ker(adA). Thus g is the direct sum
of h−, h+, and h0. By the Jacobi identity, h−, h+, and h0 are Lie
sub-algebras (and h− and h+ are nilpotent); let H−, H+ and H0 be the
corresponding Lie groups. Moreover, we observe that h0+ ≡ h0 ⊕ h+
is a Lie sub-algebra, and that the corresponding Lie subgroup H0+ is
equal to {h0h+ | h0 ∈ H0, h+ ∈ H+}. Likewise for h0− and H0−.

We should also assume that H0− is closed...when can we assume
this?

Lemma 1.1. The multiplication map H−×H0×H+ → G is an injective
local diffeomorphism with dense image.

Proof. Note h+ is nilpotent, so exp: h+ → H+ is surjective.
We can then show the injectivity as follows. Let H−0+ = H0− ∩

H+; we will show that H−0+ = {1}. Suppose that x ∈ H−0+. Then
Cexp(tA)x ∈ H−0+, and letting x = exp(X) (where X ∈ h+), we have
Cexp(tA)x = exp(et adAX), and et adAX → 0 as t → −∞. Let X ′ =
et adAX for t large and negative. Then X ′ is small, exp(X ′) ∈ H0−, and
H0− is closed, so X ′ ∈ h0−. Moreover, since X ∈ h+, we have X

′ ∈ h+.
Then we must have X ′ = 0, and x = 1.
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We haven’t shown that the image is dense, but it appears that we
never use this statement. □

We denote the image of the multiplication map by H−H0H+. Let
KA = tr adA |h+ .

1.2. The assumption of exponential mixing. Continuing the no-
tation of the previous subsection, let Γ be a lattice in G. We assume
that there are constants C ≡ C(Γ), k ≡ k(G), q ≡ q(Γ) such that for
all functions f, g ∈ Ck(Γ\G), and t ∈ R,

(1)

∣∣∣∣∫
Γ\G

1

∫
Γ\G

(f ∗ δexp(tA))g −
∫
Γ\G

f

∫
Γ\G

g

∣∣∣∣ < Ce−q|t| ∥f∥Ck ∥g∥Ck .

Here all the integrals are taken with respect to ηG.

1.3. Summing connections over a lattice. Continuing the notation
from the previous two subsections, define

Z : H0− ×H+ → G, (h0−, h+) 7→ h0−h
−1
+

and

Zt : H0− ×H+ → G, (h0−, h+) 7→ h0− exp(tA)h−1
+ .

We observe that Z maps ηLH0−×H+
to ηG restricted to H0−H+, and Zt

maps ηLH0−×H+
to etKA times the same restriction of ηG.

Define, for f a function on H0− ×H+ and r, s ∈ G,

Σt(f, r, s) =
∑
γ∈Γ

((Zt)∗f)(r
−1γs).

The meaning of Σt can be understood through the following exam-
ple. Choose A− ⊂ H−, A0 ⊂ H0 and A+ ⊂ H+. Let f(h−h0, h+) =
χA−(h−)χA0(h0)χA+(h+). Then Σt(f, r, s) counts the number of ways
to start in rA−, apply (right-multiply by) exp(tA), apply something in
A0, and end in γsA+ for some γ ∈ Γ.

We can normalize ηG so that Γ has covolume 1, and we can then
normalize ηLH0−×H+

accordingly. If we were to replace Γ with randomly
chosen points in G with density 1, then the expected value of Σt(f, r, s)
would be ∫

G

(Zt)∗f = etKA

∫
H0−×H+

f.

We claim that this is approximately correct for an actual lattice Γ, a
large t, and a reasonable f .

For any f : G→ R and δ > 0, let

Mδ(f)(p) = sup
Bδ(p)

f, and mδ(f)(p) = inf
Bδ(p)

f.



COUNTING CONNECTIONS 3

For h ∈ G, let ϵh = min
(
1
2
infγ∈Γ\{1} d(h, γh), 1

)
. The following is the

main result of this paper.

Theorem 1.2. We can find a ≡ a(G,A) such that for all lattices
Γ < G, t > 0, and g, h ∈ G with ϵg, ϵh > δ (where δ = C(Γ)e−aqt), and
f : H0− ×H+ → R measurable, bounded, and compactly supported, we
have

(1− δ)

∫
H0−×H+

mδ(f) ≤ e−tKAΣt(f, g, h) ≤ (1 + δ)

∫
H0−×H+

Mδ(f).

(In the case where Γ is a uniform lattice, we can ignore the require-
ments on ϵg and ϵg, which will hold automatically).

Corollary 1.3. With a, g, h, t, δ as above. Suppose S ⊂ H0− ×H+ is
measurable and bounded. Then

(1− δ)N−δ(S) < e−tKA#(Zt(S) ∩ gΓh) < (1 + δ)Nδ(S).

2. Preliminaries and reduction to a special case

The following Proposition will be proven in Section 3. In this section,
we use it to prove Theorem 1.2. We also include some preliminary
discussion that will be used throughout the paper.

Proposition 2.1. Let δ and Γ be as in Theorem 1.2. For all t > 0
there is ψt : H0−×H+ → [0,∞) with

∫
ψt = 1 and with support in a δ-

neighborhood of the identity such that for all g, h ∈ G with ϵg, ϵh > δ1/d,∣∣∣∣e−tKAΣt(ψ
t, g, h)−

∫
ψt

∣∣∣∣ ≤ δ.

2.1. Haar measures and convolution. Let Q be any Lie group. Re-
call that the convolution α ∗ β of two measures α, β on Q is defined to
be the pushforward of the product measure α × β on Q × Q via the
multiplication map Q×Q → Q. We observe that convolution is asso-
ciative. We will always treat convolution as having lower precedence
than pointwise multiplication (by a function) so fα ∗β means (fα) ∗β
rather than f · (α ∗ β) (for a function f and measures α and β).

We will use δg to denote the point mass at g. We observe that
δg ∗ δh = δgh. Moreover, for any measure α on Q, we have δg ∗ α =
(Lg)∗α, where Lg : Q → Q denotes left multiplication by g. For any
function f : Q → R we let δg ∗ f be a shorthand for (Lg)∗f , which of
course is defined by (Lg)∗f(h) = f(g−1h). Likewise for f ∗ δg.
Now let q denote the Lie algebra for Q. For any volume form on

q, we have a unique left Haar measure and right Haar measure on Q.
We say that Q is unimodular when the two Haar measures are equal
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and we recall that this holds, in particular, when Q is semi-simple (or
reductive) or nilpotent. We will denote left Haar measure on Q (for
some volume form which will be specified when it is important) by ηLQ,

and right Haar measure by ηRQ. In the case where Q is unimodular we
denote the bi-invariant Haar measure by ηQ. In all cases, when f : Q→
R is continuous with compact support, we let

∫
Q
f be a shorthand for∫

Q
f dηLQ. We observe that∫

ϕ =

∫
ϕ dηLQ = (1 +O(δ))

∫
exp∗ ϕ

and ∫
ϕ dηRQ = (1 +O(δ))

∫
exp∗ ϕ

when suppϕ ⊂ Bδ(1) and δ sufficiently small.
We define ∆Q : Q→ R+ by

∆Q =
|dηLQ|
|dηRQ|

(where we normalize ηLQ and ηRQ such that ∆Q(1) = 1). Then

ηLQ = ∆Q(g)η
L
Q ∗ δg

and
δg ∗ ηRQ = ∆Q(g)η

R
Q.

We then have ∆Q(gh) = ∆Q(g)∆Q(h), and we call ∆Q the modular
homomorphism. We observe that ∆Q(exp(X)) = 1 +O(X) when X is
small.

When α is a finite measure on Q and f : Q → R is continuous
with compact support (or more generally all left translates of f are
α-integrable) we define α ∗ f by

α ∗ f =

∫ (
δg ∗ f

)
dα(g) =

∫ (
(Lg)∗f

)
dα(g)

or

(α ∗ f)(h) =
∫
f(g−1h)dα(g);

we can also write
(α ∗ f)ηLQ = α ∗ (fηLQ).

We can likewise define f ∗ β (for a finite measure β) so that fηRQ ∗ β =

(f ∗ β)ηRQ and observe that α ∗ (β ∗ f) = (α ∗ β) ∗ f and (f ∗ α) ∗ β =
f ∗ (α ∗ β), and (α ∗ f) ∗ β = α ∗ (f ∗ β).

Let f, ϕ : Q → [0,∞) be nonnegative continuous functions of com-
pact support. When Q is unimodular, we have fηQ ∗ ϕ = f ∗ ϕηQ.
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In the sequel, it will be useful to compare fηLQ ∗ ϕ with f ∗ ϕηLQ in
the case of a general Q. For ϕ a function of compact support, we let
∆(ϕ) = infg∈suppϕ ∆Q(g

−1) and ∆(ϕ) = supg∈suppϕ ∆Q(g
−1). Then we

have

Lemma 2.2. For f, ϕ : Q→ R nonnegative of compact support,

(2) ∆(ϕ)f ∗ ϕηLQ ≤ fηLQ ∗ ϕ ≤ ∆(ϕ)f ∗ ϕηLQ.

Proof. We first observe that

fηLQ ∗ δg = ∆Q(g
−1)(f ∗ δg)ηLQ.

We then have (fηLQ ∗ ϕ)ηLQ = fηLQ ∗ ϕηLQ, and

fηLQ ∗ ϕηLQ =

∫
∆Q(g

−1)(f ∗ δg)ηLQ d(ϕηLQ)

≤ ∆(ϕ)

∫
(f ∗ δg)ηLQ d(ϕηLQ)

= ∆(ϕ)(f ∗ ϕηLQ)ηLQ.

We have thus shown the second inequality of (2) (after multiplying by
ηLQ). The first inequality follows in the same manner. □

In certain cases we can multiply or convolve functions (depending
on your point of view) in such a way that the product associates with
certain convolutions. In particular, suppose that R and S are Lie sub-
groups of Q, and r ⊕ s = q as vector spaces. Then the multiplication
map R × S → Q is a diffeomorphism near (1,1), and a local diffeo-
morphism on all of R× S; let us suppose that it is injective. Then for
f : R → R and g : S → R continuous functions of compact support,
we can define f ⊛ g : Q → R by (f ⊛ g)(rs) = f(r)g(s). Then if α is
a compactly supported measure on R and β is a compactly supported
measure on S, we have α∗(f⊛g) = (α∗f)⊛g and (f⊛g)∗β = f⊛(g∗β).
Moreover, if a ∈ Q normalizes R and S, then we have

(f ⊛ g) ∗ δa = δa ∗ (C∗
af ⊛ C∗

ag).

In the case where Q is unimodular, we can define f⊛g in terms of the
convolution of measures. We observe that (LrRs)∗(η

L
R∗ηRS ) = (ηLR∗ηRS ).

Since the action of R × S on RS = {rs | r ∈ R, s ∈ S} is transitive,
the measure ηLR ∗ ηRS must be a scalar multiple of ηQ; we assume that

ηLR ∗ ηRS = ηQ. Then we have (fηLR) ∗ (gηRS ) = (f ⊛ g)ηQ.
On the other hand, given f : R → R and g : S → R, we let (f ×

g) : R× S → R be defined by (f × g)(r, s) = f(r)g(s).
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2.2. Proof of Theorem 1.2. The following Lemma will be used to
prove Theorem 1.2 using Lemma 2.1.

Lemma 2.3. For any measure α on H0− ×H+,

(3) Σt(α ∗ ψ, r, s) =
∫

Σt(ψ, rh0−, sh+)α(h0−, h+).

Proof. It is enough to show (3) in the case where α is a point mass
δ(h0−,h+), and in this case the identity is straightforward to verify. □

As a corollary to this Lemma, we observe, letting |α| denote the total
mass of α, and assuming suppψ ∈ Bδ(1),

|α| inf
g∈Bδ(r)
h∈Bδ(s)

Σt(ψ, g, h) ≤ Σt(α ∗ ψ, r, s) ≤ |α| sup
g∈Bδ(r)
h∈Bδ(s)

Σt(ψ, g, h).

We then observe that

f ≤Mδf ∗ ψηLH0−×H+

≤ ∆(ψ)(Mδf)η
L
H0−×H+

∗ ψ (by Lemma 2.2)

and hence, by Lemma 2.3,

(4) Σt(f, r, s) ≤ ∆(ψ)

(∫
Mδ(f)η

L
H0−×H+

)
sup

g∈Bδ(r)
h∈Bδ(s)

Σt(ψ, g, h)

and likewise

(5) Σt(f, r, s) ≥ ∆(ψ)

(∫
mδ(f)η

L
H0−×H+

)
inf

g∈Bδ(r)
h∈Bδ(s)

Σt(ψ, g, h).

Now we can prove Theorem 1.2.

Proof of Theorem 1.2 given Proposition 2.1. We observe that

e−tKAΣt(f, g, h) ≤ e−tKA∆(ψt)

(∫
Mδ(f)

)
sup

g∈Bδ(r)
h∈Bδ(s)

Σt(ψ
t, g, h)

≤ (1 +O(δ))

(∫
Mδ(f)

)(∫
ψt + δ

)
= (1 +O(δ))

(∫
Mδ(f)

)
,

and we likewise use mδ(f) to get the lower bound for e−tKAΣt(f, g, h).
□
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3. The counting estimate for the test functions

3.1. An a priori counting estimate. We begin in our setting of a
Lie group G with a chosen A ∈ g that in turn defines H−, H0, H+ < G,
and a lattice Γ < G. We will begin with the following volume estimate:

Lemma 3.1. When B is a sufficiently small ball around 1, we have

ηG(B exp(tA)B) ≤ CetKA .

Proof. We recall that in our case that G and H+ are unimodular. We
let B0−, B+ be the unit balls around the identity in H0− and H+. We
observe that

B exp(tA)B ⊂ B0− exp(tA)B+,

and

ηH+
(exp(tA)B+ exp(−tA)) = etKAηH+

(B+).

Then we have

ηG(B exp(tA)B) ≤ ηG(B0− exp(tA)B+)

= ηG(B0− exp(tA)B+ exp(−tA))
= ηLH0−(B0−)ηH+

(exp(tA)B+ exp(−tA))
= etKAηLH0−(B0−)ηH+

(B+)

= CetKA . □

Let ϵG be half the radius of the ball B in Lemma 3.1. For h ∈ G, let
ϵh = min

(
1
2
infγ∈Γ\{1} d(h, γh), ϵG

)
, and let Bh be the ball of radius ϵh

(around the identity), and let vh = ηG(Bh). We observe that vh ≍ ϵdh.
From the volume estimate of Lemma 3.1 we can prove the following
counting estimate:

Lemma 3.2. Take B ≡ BϵG(1). For all g, h ∈ G, we have

#(gΓh ∩B exp(tA)B) ≤ C(Γ)eKAt/vh.

Proof. We have that

#(gΓh ∩B exp(tA)B) < ηG(Nϵh(B exp(tA)B))/vh.

We observe that

Nϵh(B exp(tA)B) ⊂ B exp(tA)B̂

where B̂ ≡ B2ϵG(1). Moreover, by Lemma 3.1,

ηG(B̂ exp(tA)B̂) ≤ CetKA . □
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3.2. Estimates with linearly complementary subgroups. In this
subsection, we consider a more general situation whereG is an arbitrary
Lie group, A and B are Lie subgroups of G with Lie algebras a and b,
where A ∩B = {1} and g = a⊕ b as vector spaces.

We assume that a and b are equipped with inner products; this
determines an inner product on g, and left invariant metrics and left
Haar measures on A, B and G.

Lemma 3.3. Suppose a0, a1 ∈ A, b0, b1 ∈ B are all sufficiently close
to the identity and that a0b0 = b1a1. Let D = max(| log b0|, | log a1|).
Then

| log a0| ≤ 2D and | log b1| ≤ 2D.

Proof. We have

log a0 + log b0 +O(| log a0|| log b0|) = log b1 + log a1 +O(| log b1|| log a1|)

and hence

log a0 + log b0 +O(| log a0|D) = log b1 + log a1 +O(| log b1|D)

and therefore, because g = a⊕ b,

log a1 = log a0 +O(ED)(6)

log b1 = log b0 +O(ED)(7)

where E = | log a0|+| log b1|. The Lemma follows because E is assumed
to be small.

□

Lemma 3.4. Suppose that a0, a1 ∈ A, b0, b1 ∈ B, and a0 and b1 are
close to the identity and a0b0 = b1a1. Then b0 and a1 are also close to
the identity.

Proof. We can write

b0 = a−1
0 b1a1 = b′1a

′
0a1

for some b′1 ∈ B, a′0 ∈ A close to the identity. But then a′0a1 = b′−1
1 b0 ∈

A ∩B = {1}. □

Lemma 3.5. Suppose we have â, ǎ ∈ A, and b̂, b̌ ∈ B, with ǎ, b̌ suffi-
ciently close to the identity. Suppose further we have

âb̌ = νb̂ǎ

for some ν ∈ G. Then we can write ν = νaνb, with νa ∈ A, νb ∈ B.



COUNTING CONNECTIONS 9

Proof. We can find a ∈ A, b ∈ B (close to the identity) such that

ab = b̂â−1. Then
ν = âb̌ǎ−1b̂−1 = (âa)(bb̂−1).

□

Lemma 3.6. Let ψ̂A, ψ̌A be functions on A, and ψ̂B, ψ̌B be functions
on B, and let D be sufficiently small. Assume

(1) supp ψ̌A, supp ψ̌B are supported in the D neighbourhood of the
identity, and

(2) ψ̌A and ψ̌B are nonnegative on their domains, and
(3)

∫
ψ̌A =

∫
ψ̌B = 1.

Let EA = ∥ψ̂A∥C1 (computed on the ball of radius 2D around the
identity), and define EB analogously. Then∣∣∣∣∫

G

(
ψ̂A ⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)
− ψ̂A(1)ψ̂B(1)

∣∣∣∣ ≤ CA,BDEAEB.

Proof. By Lemmas 3.3 and 3.4, the integrand is supported on the prod-
uct (in either order) of the balls of radius 2D (around 1) in A and B.
Hence∣∣∣∣∫

G

(
ψ̂A ⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)
−
∫
G

(
(ψ̂A(1)1A)⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)∣∣∣∣
≤

∫
G

(
(2DEA1A)⊛ ψ̌B

)
·
(∣∣∣ψ̂B

∣∣∣⊛ ψ̌A

)
≤

∫
G

(
(2DEA1A)⊛ ψ̌B

)
·
(
EB1B ⊛ ψ̌A

)
≤ 2DEAEB S,

where S =
∫
G
(1A ⊛ ψ̌B)(1B ⊛ ψ̌A). Similarly∣∣∣∣∫

G

(
(ψ̂A(1)1A)⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)
−
∫
G

(
(ψ̂A(1)1A)⊛ ψ̌B

)
·
(
(ψ̂B(1)1B)⊛ ψ̌A

)∣∣∣∣
≤ 2DEAEB S.

Hence by the triangle inequality we get∣∣∣∣∫
G

(
ψ̂A ⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)
− ψ̂A(1)ψ̂B(1)S

∣∣∣∣
≤ 2D(EAEB + EBEA)S.

It remains to estimate S. Let B be the ball of radius 2D around the
identity in A×B. We define the map B → G as follows.Given (a, b) ∈
B, we solve ab′ = ba′ for a′ ∈ A, b′ ∈ B (by solving b′a′−1 = a−1b), and
then let ρ(a, b) = ab′.
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Then

S =

∫
A×B

ψ̌A × ψ̌B dρ
∗(ηLG).

Moreover,

Jac ρ ≡ |dρ∗(ηLG)|
|d(ηLA × ηLB)|

satisfies Jac ρ(a, b) = 1 +O(| log a|+ | log b|). Therefore∫
A×B

ψ̌A × ψ̌B dρ
∗ηLG =

∫
A×B

ψ̌A × ψ̌B(1 +O(D)) d(ηLA × ηLB)

= 1 +O(D).

(In fact we can get 1+O(D2), but we will not need this.) We conclude
that ∣∣∣∣∫

G

(
ψ̂A ⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)
− ψ̂A(1)ψ̂B(1)S

∣∣∣∣ < CA,BDEAEB

when D is sufficiently small. □

Corollary 3.7. Suppose that the conditions of Lemma 3.6 hold, except
for assumption 3: the normalization of ψ̂A and ψ̂B. Let IA =

∫
G
ψ̂A,

and IB =
∫
G
ψ̂B. Then∣∣∣∣∫

G

(
ψ̂A ⊛ ψ̌B

)
·
(
ψ̂B ⊛ ψ̌A

)
− IAIBψ̂A(1)ψ̂B(1)

∣∣∣∣ ≤ CA,BIAIBDEAEB.

Moveover, letting I ′A =
∫
exp∗ ψ̂A and I ′B =

∫
exp∗ ψ̂B, the exact same

statement holds with IA and IB replaced with I ′A and I ′B.

Proof. The Corollary is clear for IA and IB; let us prove it for I ′A and
I ′B. We have I ′A = (1+O(D))IA and I ′B = (1+O(D))IB and therefore∣∣∣IAIBψ̂A(1)ψ̂B(1)− I ′AI

′
Bψ̂A(1)ψ̂B(1)

∣∣∣ ≤ CI ′AI
′
BDψA(1)ψ̂B(1)

≤ CI ′AI
′
BDEAEB,

which is exactly what we require. □

3.3. Defining the bump functions. Let us fix a smooth function
g : [0,∞) → [0,∞) such that all the derivatives of g at 0 are zero,
∥g∥∞ = 1, and supp g ⊂ [0, 1). Let us then define Ξd on Rd, for
d ∈ Z+, by Ξd(x) = Cdg(|x|), where Cd is such that

∫
Ξd = 1. For

t ≥ 0, let us then define Ξt
d by

Ξt
d(x) = edtΞd(e

tx).

So Ξt
d has integral 1, is supported in the ball of radius e−t around

0, has sup norm at most Cde
dt, and ∥Ξt

d∥Ck ≤ Cde
(d+k)t. Because
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Ξt
d is rotationally symmetric, it is well-defined on any vector space of

dimension d that has an inner product.
Let H be a Lie group equipped with a left-invariant metric, and let

h be its Lie algebra. We can define Ξt
h on h to be Ξt

d, and we then let
ξtH on H be defined by

(8) ξtH(exp(X)) = Ξt
h(X);

this will certainly make sense when t is sufficiently large.
Returning now to the setting of Section 1, we let m = max(16(d +

max(k, 1)), λ−1
1 ), where d is the dimension of G, k is as in equation (1),

and λ1 is the least positive eigenvalue for adA [or the negative of the
least negative one?]. We then let b = 1/m and a = 1/m2. Letting q be
the rate of mixing, we write

Ψt
+ = Ξaqt

h+
Ψt

0 = Ξaqt
h0

Ψt
− = Ξaqt

h−
Ψ̃t

0 = Ξ4bqt
h0

and we let Ψt
0− = Ψt

0 ×Ψt
−, and Ψ̃t

0− = Ψ̃t
0 ×Ψt

−.
We then define ψt

+ and its relatives by the direct analogue of Equa-
tion (8).

We further define

ψ̌t
+ = C∗

exp(tA/2)ψ
t
+ ψ̌t

0− = C∗
exp(−tA/2)ψ̃

t
0−

ψ̂t
+ = C∗

exp(−tA/2)ψ
t
+ ψ̂t

0− = C∗
exp(tA/2)ψ

t
0−.

Similarly we have Ψ̌+ = C∗
exp(t adA /2)Ψ+ etc. We let ψt = ψt

0− ⊛ ψt
+.

We apply Corollary 3.7 to the setting of the ψ’s.

Lemma 3.8. With a, b taken as above, and C depending only on H0,
etc., we have∣∣∣∣eKAt

∫
G

(
δµ0− ∗ ψ̂t

0− ⊛ ψ̌t
+

)
·
(
δµ+ ∗ ψ̂t

+ ⊛ ψ̌t
0−

)
− ψ̂t

0−(µ
−1
0−)ψ̂

t
+(µ

−1
+ )

∣∣∣∣ < Ce−2bqt.

Proof. We have (δµ0− ∗ ψ̂t
0−)(1) = ψ̂t

0(µ
−1
0−) and

∥δµ0− ∗ ψ̂t
0−∥C1 = ∥ψ̂t

0−∥C1 ≤ ∥ψt
0−∥C1 ≤ Ce(d+1)aqt ≤ Cebqt.

Likewise we have δµ+ ∗ ψ̂t
+ = ψ̂t

−(µ
−1
+ ) and

∥δµ+ ∗ ψ̂t
+∥C1

= ∥ψ̂t
+∥C1

≤ ∥ψt
+∥C1

≤ Ce(d+1)aqt ≤ Cebqt.

Moreover, the radius (around the identity) of the support of ψt
+ is at

most e−aqt << 1, and radius of support of ψ̌t
+ is therefore at most

e−λ1t ≤ e−4bqt. The radius of support of ψ̌t
0− is at most e−4bqt. Putting

this all together and applying Corollary 3.7, we obtain the Lemma. □
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3.4. Proving what must be proved. We can now prove the follow-
ing proposition, which immediately implies Proposition 2.1.

Proposition 3.9. There exists C (depending only on Γ) such that for
all g, h ∈ G such that ϵg, ϵh > e−aqt/d, we have∣∣e−tKAΣt(ψ

t, g, h)− 1
∣∣ ≤ Ce−aqt.

Proof. The idea is to relate the sum in Σt(ψ
t, g, h) to a mixing integral.

We consider the functions δg ∗ ψt
0− ⊛ ψt

+ and δh ∗ ψt
+ ⊛ ψ̃t

0− on G; they
are supported in balls around g and h respectively, with radii O(e−aqt)
and O(e−bqt). Our condition on ϵg and ϵh implies that the supports
of these functions inject into Γ\G, and hence we can think of them as
functions on Γ\G.
We then have, on the one hand, by exponential mixing in G,

∣∣∣∣∫
Γ\G

(δg ∗ ψt
0− ⊛ ψt

+) · (δh ∗ ψt
+ ⊛ ψ̃t

0− ∗ δexp(−tA))−
∫
Γ\G

ψt
0− ⊛ ψt

+

∫
Γ\G

ψt
+ ⊛ ψ̃t

0−

∣∣∣∣
(9)

< Ce−qt ∥ψt
0− ⊛ ψt

+∥Ck ∥ψt
+ ⊛ ψ̃t

0−∥Ck

< Ce−qte(d+k)aqte(d+k)bqt < Ce−qt/2.

Moreover,∫
Γ\G

ψt
0−⊛ψ

t
+ =

∫
G

ψt
0−⊛ψ

t
+ = (1+O(e−bqt))

∫
g

exp∗(ψt
0−⊛ψ

t
+) = 1+O(e−bqt)

and likewise
∫
Γ\G ψ

t
+ ⊛ ψ̃t

0− = 1 +O(e−aqt), so∣∣∣∣∫
Γ\G

ψt
0− ⊛ ψt

+

∫
Γ\G

ψt
+ ⊛ ψ̃t

0− − 1

∣∣∣∣ < Ce−aqt.

On the other hand the first integral in (9) is equal to∑
γ∈Γ

∫
G

(δg ∗ ψt
0− ⊛ ψt

+) · (δγ ∗ δh ∗ ψt
+ ⊛ ψ̃t

0− ∗ δexp(−tA)).

We can rewrite each term in the sum as

(10)

∫
G

(ψt
0− ⊛ ψt

+) · (δg−1γh ∗ ψt
+ ⊛ ψ̃t

0− ∗ δexp(−tA)))

or ∫
G

(ψt
0− ⊛ ψt

+ ∗ δexp(tA/2)) · (δg−1γh ∗ ψt
+ ⊛ ψ̃t

0− ∗ δexp(−tA/2)).
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We then have, letting η = g−1γh and ν = exp(−tA/2)η exp(−tA/2),∫
G

(
ψt
0− ⊛ ψt

+ ∗ δexp(tA/2)

)
·
(
δg−1γh ∗ ψt

+ ⊛ ψ̃t
0− ∗ δexp(−tA/2)

)
=

∫
G

(
δexp(tA/2) ∗ ψ̂t

0− ⊛ ψ̌t
+

)
·
(
δη ∗ δexp(−tA/2) ∗ ψ̂t

+ ⊛ ψ̌t
0−

)
=

∫
G

(
ψ̂t
0− ⊛ ψ̌t

+

)
·
(
δν ∗ ψ̂t

+ ⊛ ψ̌t
0−

)
.

It follows from Lemma 3.5 that if the above integrand is ever nonzero,
we can write ν = ν0−ν+ for ν0− ∈ H0−, ν+ ∈ H+. Then the above
integral equals∫

G

(
δν−1

0−
∗ ψ̂t

0− ⊛ ψ̌t
+

)
·
(
δν+ ∗ ψ̂t

+ ⊛ ψ̌t
0−

)
.

By Lemma 3.8,

(11) eKAt

∫
G

(
δν−1

0−
∗ ψ̂t

0− ⊛ ψ̌t
+

)
·
(
δν+ ∗ ψ̂t

+ ⊛ ψ̌t
0−

)
is approximately equal to

(12) ψ̂t
0−(ν0−)ψ̂

t
+(ν

−1
+ )

which equals

ψt
0−(Cexp(tA/2)ν0−)ψ

t
+(Cexp(−tA/2)ν

−1
+ )

which in turn equals

(13) (Zt)∗(ψ
t
0− × ψt

+)(η) = (Zt)∗(ψ
t
0− × ψt

+)(g
−1γh).

In fact, by Lemma 3.8, (11) and (12) differ by at most Ce−2bqt.
If (13) is nonzero (for a given γ ∈ Γ), then the integrand in (11) is

not identically zero, and likewise for the integrand of (10). By Lemma

3.2, because ψt
0− ⊛ ψt

+ and ψt
+ ⊛ ψ̃t

0− are both supported on the unit
ball around the identity, the number of γ for which the integrand of
(10) is nonzero is at most CeKAt/vh.

Therefore the sum of integrals (10) is approximately

e−KAtΣt(ψ
t
0− × ψt

+, g, h),

and the difference is at most Ce−2bqt/vh ≤ Ce−bqt. □
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4. Applications

4.1. Haar measure as a volume form. As before, we let ηLG denote
the left Haar measure on G. We let dηLG denote the associated volume
form, so that ∫

fdηLG

can be interpreted as the integral of f with respect to the Haar mea-
sure, or with respect to the volume form, with identical results. Then
dηLG(1) is a top-dimensional multilinear form on T1G; it determines the
normalization of ηLG and dηLG.

4.2. The Heteromodular homomorphism. We recall that [h0, h+] =
h+, and therefore [H0, H+] = H+. For any h0 ∈ H0, we have (Ch0)∗ηH+

=
χ(h0)ηH+

. We call χ the heteromodular homomorphism. We claim

that (Ch0)∗ηH−
= χ(h0)

−1ηH−
for any h0 ∈ H0. Moreover, χ : H0 → R+

is a homomorphism; we letH00 be its kernel. ThenH0 = exp(tA)×H00,
because exp(tA) commutes with H00.

Moreover, the pullback of ηH0−
to H− × H0 by the multiplication

map is χ(h0)(ηH−
×ηH0

). Likewise the pullback of ηG to H−×H0×H+

is χ(h0)(ηH−
× ηH0

× ηH+
).

4.3. Pullbacks of Haar Measure. Suppose E− and E+ are Lie sub-
groups of G such that

πh± : e± → h±

is an isomorphism. We define volume forms dηE±
on e± by

dηE± = (πh± |e±)∗dηH± .

We also let E0 = H0, and keep its volume form. Now we also have
maps

ΣH :
⊕

hi → g

and
ΣE :

⊕
ei → g,

just given by
ΣH(h−, h0, h+) = h− + h0 + h+,

and likewise for E. Moreover, ΣH is invertible, and Σ∗
HηG =

∧
i ηHi

on⊕
hi. We want to compare Σ∗

EηG and
∧

i ηEi
.

To this end, we let τi : hi → ei be (πhi |ei)−1; Ti : hi →
⊕

hi be
Σ−1

H ◦ ΣE ◦ τi, and T : hi → hi be
⊕

Ti. Then

(14)
Σ∗

EηG∧
i ηEi

=
T ∗∧

i ηHi∧
i ηHi

= detT
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Letting T i
j = πhi ◦ Tj, we have that T i

i is the identity for each i, and
thus

T =

 1 0 T−
+

T 0
− 1 T 0

+

T+
− 0 1


and hence

(15) detT = det

(
1 T−

+

T+
− 1

)
= det(1− T+

− T
−
+ ).

We let m : E− × E0 × E+ → G be the multiplication map (so
m(a−, a0, a+) = a−a0a+).

Lemma 4.1. We have

m∗dηG(a−, a0, a+) = q(a0)dη
L
E− ∧ dηH0

∧ dηRE+

where

q(a0) = q(a0;E−, E+) = χ(a0) det(1h+ − T−
+ ◦Ad−1

a0
|h+ ◦ T+

− ◦Ada0 |h−).

Proof. We first observe that m∗dηG must have the form given in the
first line (for some q), because it is invariant under left multiplication in
E− and right multiplication in E+. Then we observe that, for u ∈ H0,

Lu ◦m = m ◦
(
(a−, a0, a+) 7→ (Cua−, ua0, a+)

)
(where on the left hand side m is m : E−×H0×E+ → G, and the right
hand side m is m : CuE−×H0×E+ → G). Since ηG is invariant under
pullback by Lu, we obtain

q(h0;E−, E+) =
1

χ(u)
q(uh0;CuE−, E+),

and letting u = h−1
0 ,

(16) q(h0;E−, E+) = χ(h0)q(1;Ch−1
0
E−, E+).

When we replace e− with Adu e−, we replace T
+
− with Adu ◦T+

− ◦Ad−1
u .

The Lemma then follows from (14), (15), and (16). □

4.4. A more general setting. Suppose now that that E− and E+

are subgroups such that

πh± : e± → h0

is surjective and

kerπh±|e± ⊂ h0.

We let E0± = E± ∩H0, and we let E be the quotient of E− ×E0 ×E+

by (e−e0−, e0, e0+e+) ∼ (e−, e
−1
0−e0e

−1
0+, e+).
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We let ê± be a complement of e0± in e±, and we let ηê± = (πh± |̂e±)∗ηh± .
Then ηê− ∧ ηH0

∧ ηê+ effectively defines a volume form on T0E, and this

form is independent of our choice of complements ê±. What is more,
we can define T as before with ê± in the place of e±, and the T∓

± will
be independent of the choice of ê±, and we will again have

Σ∗
EηG = det(1− T+

− T
−
+ )ηE.

So far we have just defined ηE at the identity. We now suppose that
ηLE−

is invariant under right multiplication by E0−, and η
R
E+

is invariant
under left multiplication by E0+. (This of course happens if both E−
and E+ are unimodal). Then ηLE−

× ηE0
× ηRE+

is invariant by the
given action of E0− × E0+, and we hence obtain a measure ηE (using
our normalization on e) that is left-invariant by E−, right-invariant
by E+, and bi-invariant by E0 = H0. We can then apply the same
reasoning as in Lemma 4.1 to obtain (where m : E → G is the quotient
of m : E− × E0 × E+ → G):

Lemma 4.2. We have

m∗dηG(a−, a0, a+) = q(a0)dηE.

where m : E → G is the quotient of the multiplication map and

q(a0) = q(a0;E−, E+) = χ(a0) det(1h+ − T−
+ ◦Ad−1

a0
|h+ ◦ T+

− ◦Ada0 |h−).

4.5. Control of distance and measure for ζt and ζ. We define
ζt : G×H0×G→ G by ζt(e−, h0, e+) = e−h0 exp(tA)e+. Given a− ∈ G
we can write a− = b−−b

−
0 b

−
+, and likewise for a+ ∈ G. Then we have a

map ζ : G×H0 ×G→ G defined by ζ(a−, a0, a+) = b−−b
−
0 a0b

+
0 b

+
+.

Lemma 4.3. For all compact K ⊂ G × H0 × G, there exists C such
that for all a ∈ K,

d(Z−1(ζ(a)), Z−1
t (ζt(a))) < Ce−λ1t.

Proof. Given a = (a−, a0, a+) ∈ G×H0×G, we can write a− = b−−b
−
0 b

−
+

and likewise for a+. We can find unique b̌− ∈ H− and b̌+ ∈ H+ such
that

C−1
exp(tA/2)(b

−
+)Ca0exp(tA/2)(b

+
−) = b̌−b̌+.
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We then obtain

a− exp(tA)a0a+ = b−−b
−
0 b

−
+exp(tA)a0b

+
−b

+
0 b

+
+

= b−−exp(tA/2)b
−
0 C

−1
exp(tA/2)(b

−
+)Ca0exp(tA/2)(b

+
−)a0b

+
0 exp(tA/2)b

+
+

= b−−exp(tA/2)b
−
0 b̌−b̌+a0b

+
0 exp(tA/2)b

+
+

= b−−
ˇ̌b−exp(tA/2)b

−
0 a0b

+
0 exp(tA/2)

ˇ̌b+b
+
+

= b−−
ˇ̌b−b

−
0 a0b

+
0 exp(tA)

ˇ̌b+b
+
+

= b−−b
−
0 a0b

+
0

ˇ̌̌
b−exp(tA)

ˇ̌b+b
+
+.

Hence

Z−1
t (ζt(a)) = (b−−b

−
0 a0b

+
0

ˇ̌̌
b−, (b

+
+)

−1ˇ̌b−1
+ )

while
Z−1(ζ(a)) = (b−−b

−
0 a0b

+
0 , (b

+
+)

−1).

We observe that
ˇ̌̌
b− and ˇ̌b+ lie in a O(e−λ1t) neighborhood of 1. The

Lemma follows. □

We observe that in the setting of Section 4.4, ζ and ζt descend to E,
and we can restate Lemma 4.1 as

Lemma 4.4. For all compact K ⊂ E, there exists C such that for all
a ∈ K,

d(Z−1(ζ(a)), Z−1
t (ζt(a))) < Ce−λ1t.

Now (in the less general setting), let’s restrict ζ and ζt to E−×H0×
E+.

Lemma 4.5. We have, on any compact K ⊂ E− ×H0 × E+,

(17)

∣∣∣∣∣ e−tKAζ∗t ηG
χ(h0)ηLE−

× ηH0
× ηRE+

− 1

∣∣∣∣∣ < CKe
−2λ1t.

Proof. We let M = max(∥T−∥ , ∥T+∥). Then for all h0 for which
∥Adh0∥ , ∥Ad−1

h0
∥ < M ′, we have

q(h0 exp(tA), E−, E+) = etKAχ(h0) det(1h+−T+◦Ad−1
h0 exp(tA) |h+◦T−◦Adh0 exp(tA) |h−).

Now, for any linear transformation T : V → V with ∥T∥ < 1,

|1− det(1− T )| < 2(dimV ) ∥T∥ .
Therefore, for t sufficiently large given M and M ′, we have∣∣∣1− det(1h+ − T+ ◦ Ad−1

h0 exp(tA) |h+ ◦ T− ◦ Adh0 exp(tA) |h−)
∣∣∣ < 2(dimH+)M

2M ′2e−2λ1t

when the right hand side is less than 1. □
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We have the following remarkable corollary, which may or may not
have a simpler proof:

Corollary 4.6.

(18) ζ∗dηG = χ(h0)η
L
E− × ηH0

× ηRE+

Proof. Let dηE± = ζ∗dηG = (ζ ◦ Z−1)∗dηLH0−×H+
, and let dηEt

±
=

e−KAtζ∗t dηG = (ζt ◦ Z−1
t )∗dηLH0−×H+

. We let ηE± be the measure from
integrating against dηE± , and likewise for ηEt

±
. By Lemmas 4.3 and

4.5, for any A ⊂ E− ×H0 × E+, and letting t→ ∞,

ηE±(A) ≤ ηEt
±
(Ne−2λ1t(A))

→ (χ(h0)η
L
E− × ηH0

× ηRE+
)(A).

We likewise obtain

ηE±(A) ≥ ηEt
±
(N−e−2λ1t(A)

→ (χ(h0)η
L
E− × ηH0

× ηRE+
)(IntA).

As ηE± is a smooth measure, the Corollary follows. □

In the more general setting, we can similarly prove

Lemma 4.7.
ζ∗dηG(a−, a0, a+) = q(a0)dηE.

4.6. The application theorem. Suppose E− and E+ are as in Sec-
tion 4.3. We let ηE±

= χ(h0)η
L
E−

× ηH0
× ηRE+

.

Theorem 4.8. Let K ⊂ E− ×H0 × E+ be compact, and take S ⊂ K.
For t ≥ t0(E−, E+), let

St = {a− exp(tA)a0a+ | (a−, a0, a+) ∈ S},
Then, letting δ = CK,Γe

−aqt, for q = q(Γ), a = a(E−, E+), and assum-
ing ϵ(g), ϵ(h) > δ,

(19) (1− δ)ηE±(N−δ(S)) < e−tKA#(St ∩ gΓh) < (1 + δ)ηE±(Nδ(S)),

where we take inner and outer neighborhoods in E− ×H0 × E+.

Proof. We let St = ζt(S). By Theorem 1.2, we have
(20)
(1−δ)ηH0−×H+

(N−δ(Z
−1
t (St))) < e−tKA#(St∩gΓh) < (1+δ)ηH0−×H+

(Nδ(Z
−1
t (St))).

By Lemma 4.3, we have

Z−1
t (St) ⊂ Nδ(Z

−1(ζ(S)),

and hence

(21) Nδ(Z
−1
t (St)) ⊂ N2δ(Z

−1(ζ(S))).
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Taking ζ−1 ◦ Z to be CK/2-Lipschitz on K, we have

(22) (ζ−1 ◦ Z)(N2δ((Z
−1 ◦ ζ)(S))) ⊂ NCKδ(S);

combining (21) and (22), we obtain

(23) Nδ(Z
−1
t (St)) ⊂ (Z−1 ◦ ζ)(NCKδ(S)).

We likewise obtain

(24) N−δ(Z
−1
t (St)) ⊃ (Z−1 ◦ ζ)(N−CKδ(S)).

Finally, by (17),

(25) ηH0−×H+
((Z−1 ◦ ζ)(NCKδ(S))) = ηE±(NCKδ(S)).

Combining (20), (23), (24), and (25), we obtain the Theorem. □

We likewise have the following in our more general setting, where we
compute the neighborhoods with respect to a given Riemannian metric
ρ on E:

Theorem 4.9. Let K ⊂ E be compact, and take S ⊂ K. Let t ≥ t0(E),
and let

St = {a− exp(tA)a0a+ | [(a−, a0, a+)] ∈ S}.
Then, letting δ = CK,Γ,ρe

−aqt,

(1− δ)ηE±(N−δ(S)) < e−tKA#(St ∩ gΓh) < (1 + δ)ηE±(Nδ(S)).

where we take inner and outer neighborhoods in E (and multiply δ by
a constant), and the (implicit) constants depend on K.

4.7. Examples. Let us now discuss some actual examples of counting
situations.

Orthogeodesic connections in H3/Γ. Suppose that Γ < Isom(H3) is a
lattice (possibly nonuniform), and let M = Γ\H3. Suppose that α
and β are (oriented) geodesic segments in M . For each orthgeodesic
connection η between α and β, we can record the feet of η on α and β,
the length of η, and the monodromy of η (for example the angle that
α, parallel translated along η, makes with β). We can even think of
the real length of η and the monodromy of η as the complex length: it
is the complex distance along η between α and β. In this way the set
of such η is a set of points in N1(α)×N1(β)× C/2πiZ.

In this example both E− and E+ are the centralizer of the orthogonal
flow, which is just the centralizer of the geodesic flow, conjugated by a
rotation by π/2. We have

ηE± = q(a0)dη
L
E− ∧ dηH0

∧ dηRE+
,
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where q(a0) = C0e
2a0 , and C0 is a constant which we will have indirectly

calculated. But ηLE−
and ηRE+

are just the natural measures on N1(α)

and N1(β), and ηH0
is the natural measure on C/2πZ. So taking

g, h ∈ Isom(H3) to translate our base frame to ones in N1(α) and
N1(β) respectively, Theorem 4.8 becomes (where τt is the translation
by t in the last coordinate)

Theorem 4.10. Let K be a compact subset of N1(α)×N1(β)× S1 ×
[0,∞), and let E ⊂ K. The number of connections for the translated
region τL(A) satisfies

(1−δ)Vol(N−δ(E)) < 32π2e−KALC(τL(E))Vol(M) < (1+δ)Vol(Nδ(A))

where δ = CK,Γe
−qL, q = q(Γ), provided that the height of one of the α

or β projections of K is at most qL.

This theorem is sufficient for [KM12] and [KW18], but Theorems 4.8
and 4.9 have many other applications, such as counting connections
(with specific monodromy) between points. For simplicity let us assume
that Mn is hyperbolic, and let x, y ∈M . We let σx be a section of the
projection from frames at x to unit tangent vectors at x, and likewise
define σy. Then any subset of the natural quotient of F(x)×H0×F(y)
can be lifted to a subset of T 1(x) × H0 × T 1(y) via the sections σx
and σy, and the measure on the quotient becomes the measure on
T 1(x)×H0 × T 1(y) where the density at (vx, a0, vy) is e

χ(a0) times the
product measure.

Thus from Theorem 4.9 we obtain

Theorem 4.11. The number of connections for a given subset A ⊂
K ⊂ T 1(x)×H0([L,∞))× T 1(y) satisfies

(26) (1−δ)Vol(N−δ(A)) < C4.11(n)C(A)Vol(M) < (1+δ)Vol(Nδ(A))

where K is compact and δ = CK,Γe
−qL, q = q(Γ), provided that the

height x and y is at most qL.

Here C4.11(n) is 32π
2 when n = 3 and we should be able to compute

it in general.
Here we should assume that the sections σx and σy are sufficiently

smooth on the image of A in the quotient; the constant CK,Γ also
depends on the smoothness of these sections.

We can likewise count orthogeodesic connection in Hn, with n > 3,
by again taking sections of the projection from the “aligned frame
bundle” over a geodesic α to N1(α), where a frame is aligned with α
if its base point lies on α and its first vector is tangent to α.

Of course we can also make similar statements in other symmetric
spaces, both rank 1 and higher rank.
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