COUNTING CONNECTIONS IN A LOCALLY SYMMETRIC SPACE

JEREMY KAHN AND ALEX WRIGHT

This is a preliminary draft provided for the purpose of verifying the reference in KW18].

1. Statement of result and reduction to a special case
1.1. Preliminaries. We will denote Lie groups by capital letters such as G, H, and their Lie algebras by $\mathfrak{g}, \mathfrak{h}$. We will denote elements of a Lie algebra by capital letters such as X, Y, and elements of a Lie group by g, h, etc. Suppose G is a Lie group with Lie algebra \mathfrak{g}. We let $\exp : \mathfrak{g} \rightarrow G$ be the exponential map; we have $\exp (0)=\mathbf{1}$, and \exp is a local diffeomorphism at 0 . Therefore we can define a diffeomorphism $\log : B \rightarrow \log (B) \subset \mathfrak{g}$, where B is a sufficiently small ball around $\mathbf{1}$, such that $\exp \circ \log$ is the identity on B. For $X, Y \in \mathfrak{g}$, then we let $\operatorname{ad}_{X} Y=[X, Y]$. For $g, h \in G$, we let $C_{g} h=g h g^{-1}$. We recall that

$$
C_{\exp (A)} \exp (B)=\exp \left(e^{\operatorname{ad}_{A}} B\right)
$$

1.2. Haar measures and convolution. Let Q be any Lie group. Recall that the convolution $\alpha * \beta$ of two measures α, β on Q is defined to be the pushforward of the product measure $\alpha \times \beta$ on $Q \times Q$ via the multiplication map $Q \times Q \rightarrow Q$. We observe that convolution is associative. We will always treat convolution as having lower precedence than pointwise multiplication (by a function) so $f \alpha * \beta$ means $(f \alpha) * \beta$ rather than $f \cdot(\alpha * \beta)$ (for a function f and measures α and β).

We will use δ_{g} to denote the point mass at g. We observe that $\delta_{g} * \delta_{h}=\delta_{g h}$. Moreover, for any measure α on Q, we have $\delta_{g} * \alpha=$ $\left(L_{g}\right)_{*} \alpha$, where $L_{g}: Q \rightarrow Q$ denotes left multiplication by g. For any function $f: Q \rightarrow \mathbb{R}$ we let $\delta_{g} * f$ be a shorthand for $\left(L_{g}\right)_{*} f$, which of course is defined by $\left(L_{g}\right)_{*} f(h)=f\left(g^{-1} h\right)$. Likewise for $f * \delta_{g}$.

Now let \mathfrak{q} denote the Lie algebra for Q. For any volume form on \mathfrak{q}, we have a unique left Haar measure and right Haar measure on Q.

Date: January 13, 2019.
The authors acknowledge support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: Geometric structures And Representation varieties" (the GEAR Network).

We say that Q is unimodular when the two Haar measures are equal and we recall that this holds, in particular, when Q is semi-simple (or reductive) or nilpotent. We will denote left Haar measure on Q (for some volume form which will be specified when it is important) by η_{Q}^{L}, and right Haar measure by η_{Q}^{R}. In the case where Q is unimodular we denote the bi-invariant Haar measure by η_{Q}. In all cases, when $f: Q \rightarrow$ \mathbb{R} is continuous with compact support, we let $\int_{Q} f$ be a shorthand for $\int_{Q} f d \eta_{Q}^{L}$. We observe that

$$
\int \phi=\int \phi d \eta_{Q}^{L}=(1+O(\delta)) \int \exp ^{*} \phi
$$

and

$$
\int \phi d \eta_{Q}^{R}=(1+O(\delta)) \int \exp ^{*} \phi
$$

when $\operatorname{supp} \phi \subset B_{\delta}(\mathbf{1})$ and δ sufficiently small.
For $g \in G$, we let

$$
\Delta_{Q}(g)=\frac{\left|d \eta_{Q}^{L}\right|}{\left|d \eta_{Q}^{R}\right|}
$$

(where we normalize η_{Q}^{L} and η_{Q}^{R} such that $\Delta_{Q}(\mathbf{1})=1$). Then

$$
\eta_{Q}^{L}=\Delta_{Q}(g) \eta_{Q}^{L} * \delta_{g}
$$

and

$$
\delta_{g} * \eta_{Q}^{R}=\Delta_{Q}(g) \eta_{Q}^{R}
$$

We then have $\Delta_{Q}(g h)=\Delta_{Q}(g) \Delta_{Q}(h)$, and we call Δ_{Q} the modular homomorphism. We observe that $\Delta_{Q}(\exp (X))=1+O(X)$ when X is small.

When α is a finite measure on Q and $f: Q \rightarrow \mathbb{R}$ is continuous with compact support (or more generally all left translates of f are α-integrable) we define $\alpha * f$ by

$$
\alpha * f=\int\left(\delta_{g} * f\right) d \alpha(g)=\int\left(\left(L_{g}\right)_{*} f\right) d \alpha(g)
$$

or

$$
(\alpha * f)(h)=\int f\left(g^{-1} h\right) d \alpha(g)
$$

we can also write

$$
(\alpha * f) \eta_{Q}^{L}=\alpha *\left(f \eta_{Q}^{L}\right)
$$

We can likewise define $f * \beta$ (for a finite measure β) so that $f \eta_{Q}^{R} * \beta=$ $(f * \beta) \eta_{Q}^{R}$ and observe that $\alpha *(\beta * f)=(\alpha * \beta) * f$ and $(f * \alpha) * \beta=$ $f *(\alpha * \beta)$, and $(\alpha * f) * \beta=\alpha *(f * \beta)$.

Let $f, \phi: Q \rightarrow[0, \infty)$ be nonnegative continuous functions of compact support. When Q is unimodular, we have $f \eta_{Q} * \phi=f * \phi \eta_{Q}$. In the sequel, it will be useful to compare $f \eta_{Q}^{L} * \phi$ with $f * \phi \eta_{Q}^{L}$ in the case of a general Q. For ϕ a function of compact support, we let $\underline{\Delta}(\phi)=\inf _{g \in \operatorname{supp} \phi} \Delta_{Q}\left(g^{-1}\right)$ and $\bar{\Delta}(\phi)=\sup _{g \in \operatorname{supp} \phi} \Delta_{Q}\left(g^{-1}\right)$. Then we have

Lemma 1.1. For $f, \phi: Q \rightarrow \mathbb{R}$ nonnegative of compact support,

$$
\begin{equation*}
\underline{\Delta}(\phi) f * \phi \eta_{Q}^{L} \leq f \eta_{Q}^{L} * \phi \leq \bar{\Delta}(\phi) f * \phi \eta_{Q}^{L} \tag{1}
\end{equation*}
$$

Proof. We first observe that

$$
f \eta_{Q}^{L} * \delta_{g}=\Delta_{Q}\left(g^{-1}\right)\left(f * \delta_{g}\right) \eta_{Q}^{L}
$$

We then have $\left(f \eta_{Q}^{L} * \phi\right) \eta_{Q}^{L}=f \eta_{Q}^{L} * \phi \eta_{Q}^{L}$, and

$$
\begin{aligned}
f \eta_{Q}^{L} * \phi \eta_{Q}^{L} & =\int \Delta_{Q}\left(g^{-1}\right)\left(f * \delta_{g}\right) \eta_{Q}^{L} d\left(\phi \eta_{Q}^{L}\right) \\
& \leq \bar{\Delta}(\phi) \int\left(f * \delta_{g}\right) \eta_{Q}^{L} d\left(\phi \eta_{Q}^{L}\right) \\
& =\bar{\Delta}(\phi)\left(f * \phi \eta_{Q}^{L}\right) \eta_{Q}^{L}
\end{aligned}
$$

We have thus shown the second inequality of (1) (after multiplying by $\left.\eta_{Q}^{L}\right)$. The first inequality follows in the same manner.

In certain cases we can multiply or convolve functions (depending on your point of view) in such a way that the product associates with certain convolutions. In particular, suppose that R and S are Lie subgroups of Q, and $\mathfrak{r} \oplus \mathfrak{s}=\mathfrak{q}$ as vector spaces. Then the multiplication map $R \times S \rightarrow Q$ is a diffeomorphism near $(\mathbf{1}, \mathbf{1})$, and a local diffeomorphism on all of $R \times S$; let us suppose that it is injective. Then for $f: R \rightarrow \mathbb{R}$ and $g: S \rightarrow \mathbb{R}$ continuous functions of compact support, we can define $f \circledast g: Q \rightarrow \mathbb{R}$ by $(f \circledast g)(r s)=f(r) g(s)$. Then if α is a compactly supported measure on R and β is a compactly supported measure on S, we have $\alpha *(f \circledast g)=(\alpha * f) \circledast g$ and $(f \circledast g) * \beta=f \circledast(g * \beta)$. Moreover, if $a \in Q$ normalizes R and S, then we have

$$
(f \circledast g) * \delta_{a}=\delta_{a} *\left(C_{a}^{*} f \circledast C_{a}^{*} g\right)
$$

In the case where Q is unimodular, we can define $f \circledast g$ in terms of the convolution of measures. We observe that $\left(L_{r} R_{s}\right)_{*}\left(\eta_{R}^{L} * \eta_{S}^{R}\right)=\left(\eta_{R}^{L} * \eta_{S}^{R}\right)$. Since the action of $R \times S$ on $R S=\{r s \mid r \in R, s \in S\}$ is transitive, the measure $\eta_{R}^{L} * \eta_{S}^{R}$ must be a scalar multiple of η_{Q}; we assume that $\eta_{R}^{L} * \eta_{S}^{R}=\eta_{Q}$. Then we have $\left(f \eta_{R}^{L}\right) *\left(g \eta_{S}^{R}\right)=(f \circledast g) \eta_{Q}$.

On the other hand, given $f: R \rightarrow \mathbb{R}$ and $g: S \rightarrow \mathbb{R}$, we let $(f \times$ $g): R \times S \rightarrow \mathbb{R}$ be defined by $(f \times g)(r, s)=f(r) g(s)$.
1.3. An eigenspace factorization of a group. Let G be a semisimple Lie group of non-compact type, and let A be a nonzero semisimple element of the Lie algebra \mathfrak{g} such that ad_{A} has all real eigenvalues.

Define \mathfrak{h}_{-}to be the subspace of \mathfrak{g} spanned by eigenvectors of ad_{A} with negative eigenvalue. Similarly let \mathfrak{h}_{+}be spanned by eigenvectors with positive eigenvalue, and $\mathfrak{h}_{0}=\operatorname{ker}\left(\operatorname{ad}_{A}\right)$. Thus \mathfrak{g} is the direct sum of $\mathfrak{h}_{-}, \mathfrak{h}_{+}$, and \mathfrak{h}_{0}. By the Jacobi identity, $\mathfrak{h}_{-}, \mathfrak{h}_{+}$, and \mathfrak{h}_{0} are Lie sub-algebras (and \mathfrak{h}_{-}and \mathfrak{h}_{+}are nilpotent); let H_{-}, H_{+}and H_{0} be the corresponding Lie groups. Moreover, we observe that $\mathfrak{h}_{0+} \equiv \mathfrak{h}_{0} \oplus \mathfrak{h}_{+}$ is a Lie sub-algebra, and that the corresponding Lie subgroup H_{0+} is equal to $\left\{h_{0} h_{+} \mid h_{0} \in H_{0}, h_{+} \in H_{+}\right\}$. Likewise for \mathfrak{h}_{0-} and H_{0-}.

We should also assume that H_{0-} is closed...when can we assume this?

Lemma 1.2. The multiplication map $H_{-} \times H_{0} \times H_{+} \rightarrow G$ is an injective local diffeomorphism with dense image.

Proof. We first observe that the exponential map exp: $\mathfrak{h}_{+} \rightarrow H_{+}$is surjective. To show this, we consider the adjoint action of \mathfrak{h}_{+}on \mathfrak{h}_{0+}. This representation is faithful, because $\operatorname{ad}_{X} A \neq 0$ for all $X \in \mathfrak{h}_{+}$. Moreover, every element of \mathfrak{h}_{+}acts nilpotently in this representation, so the image of \mathfrak{h}_{+}is conjugate to a Lie subalgebra of strictly upper-triangular matrices. Then we need only observe that every upper triangular matrix u with 1 's on the diagonal can be written uniquely as e^{S}, where S is strictly upper triangular (with 0's on the diagonal).

We can then show the injectivity as follows. Let $H_{-0+}=H_{0-} \cap$ H_{+}; we will show that $H_{-0+}=\{1\}$. Suppose that $x \in H_{-0+}$. Then $C_{\exp (t A)} x \in H_{-0+}$, and letting $x=\exp (X)$ (where $X \in \mathfrak{h}_{+}$), we have $C_{\exp (t A)} x=\exp \left(e^{t \mathrm{ad}_{A}} X\right)$, and $e^{t \mathrm{ad}_{A}} X \rightarrow 0$ as $t \rightarrow-\infty$. Let $X^{\prime}=$ $e^{t \operatorname{ad}_{A}} X$ for t large and negative. Then X^{\prime} is small, $\exp \left(X^{\prime}\right) \in H_{0-}$, and H_{0-} is closed, so $X^{\prime} \in \mathfrak{h}_{0-}$. Moreover, since $X \in \mathfrak{h}_{+}$, we have $X^{\prime} \in \mathfrak{h}_{+}$. Then we must have $X^{\prime}=0$, and $x=1$.

We haven't shown that the image is dense, but it appears that we never use this statement.

We denote the image of the multiplication map by $H_{-} H_{0} H_{+}$. Let $K_{A}=\left.\operatorname{trad}\right|_{\mathfrak{g}_{+}}$.
1.4. The assumption of exponential mixing. Continuing the notation of the previous subsection, let Γ be a lattice in G. We assume that there are constants $C \equiv C(\Gamma), k \equiv k(G), q \equiv q(\Gamma)$ such that for
all functions $f, g \in C^{k}(\Gamma \backslash G)$, and $t \in \mathbb{R}$,

$$
\begin{equation*}
\left|\int_{\Gamma \backslash G} 1 \int_{\Gamma \backslash G}\left(f * \delta_{\exp (t A)}\right) g-\int_{\Gamma \backslash G} f \int_{\Gamma \backslash G} g\right|<C e^{-q|t|}\|f\|_{C^{k}}\|g\|_{C^{k}} \tag{2}
\end{equation*}
$$

Here all the integrals are taken with respect to η_{G}.
1.5. Summing connections over a lattice. Continuing the notation from the previous two subsections, define

$$
Z: H_{0-} \times H_{+} \rightarrow G, \quad\left(h_{0-}, h_{+}\right) \mapsto h_{0-} h_{+}^{-1}
$$

and

$$
Z_{t}: H_{0-} \times H_{+} \rightarrow G, \quad\left(h_{0-}, h_{+}\right) \mapsto h_{0-} \exp (t A) h_{+}^{-1}
$$

We observe that Z maps $\eta_{H_{0-} \times H_{+}}^{L}$ to η_{G} restricted to $H_{0-} H_{+}$, and Z_{t} maps $\eta_{H_{0-} \times H_{+}}^{L}$ to $e^{t K_{A}}$ times the same restriction of η_{G}.

Define, for f a function on $H_{0-} \times H_{+}$and $r, s \in G$,

$$
\Sigma_{t}(f, r, s)=\sum_{\gamma \in \Gamma}\left(\left(Z_{t}\right)_{*} f\right)\left(r^{-1} \gamma s\right)
$$

The meaning of Σ_{t} can be understood through the following example. Choose $A_{-} \subset H_{-}, A_{0} \subset H_{0}$ and $A_{+} \subset H_{+}$. Let $f\left(h_{-} h_{0}, h_{+}\right)=$ $\chi_{A_{-}}\left(h_{-}\right) \chi_{A_{0}}\left(h_{0}\right) \chi_{A_{+}}\left(h_{+}\right)$. Then $\Sigma_{t}(f, r, s)$ counts the number of ways to start in $r A_{-}$, apply (right-multiply by) $\exp (t A)$, apply something in A_{0}, and end in $\gamma s A_{+}$for some $\gamma \in \Gamma$.

We can normalize η_{G} so that Γ has covolume 1, and we can then normalize $\eta_{H_{0}-\times H_{+}}^{L}$ accordingly. If we were to replace Γ with randomly chosen points in G with density 1, then the expected value of $\Sigma_{t}(f, r, s)$ would be

$$
\int_{G}\left(Z_{t}\right)_{*} f=e^{t K_{A}} \int_{H_{0-\times H_{+}}} f
$$

We claim that this is approximately correct for an actual lattice Γ, a large t, and a reasonable f.

For any $f: G \rightarrow \mathbb{R}$ and $\delta>0$, let $M_{\delta}(f)(p)=\sup _{B_{\delta}(p)} f$, and $m_{\delta}(f)(p)=\inf _{B_{\delta}(p)} f$. For $h \in G$, let $\epsilon_{h}=\min \left(\frac{1}{2} \inf _{\gamma \in \Gamma \backslash\{1\}} d(h, \gamma h), 1\right)$. The following is the main result of this paper.

Theorem 1.3. We can find $a \equiv a(G, A)$ such that for all lattices $\Gamma<G, t>0$, and $g, h \in G$ with $\epsilon_{g}, \epsilon_{h}>\delta$ (where $\delta=C(\Gamma) e^{-a q t}$), and $f: H_{0-} \times H_{+} \rightarrow \mathbb{R}$ measurable, bounded, and compactly supported, we have

$$
(1-\delta) \int_{H_{0-} \times H_{+}} m_{\delta}(f) \leq e^{-t K_{A}} \Sigma_{t}(f, g, h) \leq(1+\delta) \int_{H_{0-\times} \times H_{+}} M_{\delta}(f)
$$

(In the case where Γ is a uniform lattice, we can ignore the requirements on ϵ_{g} and ϵ_{g}, which will hold automatically).

Corollary 1.4. With a, g, h, t, δ as above. Suppose $S \subset H_{0-} \times H_{+}$is measurable and bounded. Then

$$
(1-\delta) \mathcal{N}_{-\delta}(S)<e^{-t K_{A}} \#\left(Z_{t}(S) \cap g \Gamma h\right)<(1+\delta) \mathcal{N}_{\delta}(S)
$$

The following Proposition will be proven in Section 2, we will use it now to prove Theorem 1.3.

Proposition 1.5. Let δ and Γ be as in Theorem 1.3. For all $t>0$ there is $\psi^{t}: H_{0-} \times H_{+} \rightarrow[0, \infty)$ with $\int \psi^{t}=1$ and with support in a δ neighborhood of the identity such that for all $g, h \in G$ with $\epsilon_{g}, \epsilon_{h}>\delta^{1 / d}$,

$$
\left|e^{-t K_{A}} \Sigma_{t}\left(\psi^{t}, g, h\right)-\int \psi^{t}\right| \leq \delta
$$

The following Lemma will be used to prove Theorem 1.3 using Lemma 1.5

Lemma 1.6. For any measure α on $H_{0-} \times H_{+}$,

$$
\begin{equation*}
\Sigma_{t}(\alpha * \psi, r, s)=\int \Sigma_{t}\left(\psi, r h_{0-}, s h_{+}\right) \alpha\left(h_{0-}, h_{+}\right) \tag{3}
\end{equation*}
$$

Proof. It is enough to show (3) in the case where α is a point mass $\delta_{\left(h_{0-}, h_{+}\right)}$, and in this case the identity is straightforward to verify.

As a corollary to this Lemma, we observe, letting $|\alpha|$ denote the total mass of α, and assuming $\operatorname{supp} \psi \in B_{\delta}(1)$,

$$
|\alpha| \inf _{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h) \leq \Sigma_{t}(\alpha * \psi, r, s) \leq|\alpha| \sup _{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h) .
$$

We then observe that

$$
\begin{aligned}
f & \leq M_{\delta} f * \psi \eta_{H_{0-\times}}^{L} \\
& \leq \bar{\Delta}(\psi)\left(M_{\delta} f\right) \eta_{H_{0-} \times H_{+}}^{L} * \psi \quad(\text { by Lemma 1.1 })
\end{aligned}
$$

and hence, by Lemma 1.6 ,

$$
\begin{equation*}
\Sigma_{t}(f, r, s) \leq \bar{\Delta}(\psi)\left(\int M_{\delta}(f) \eta_{H_{0-} \times H_{+}}^{L}\right) \sup _{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h) \tag{4}
\end{equation*}
$$

and likewise

$$
\begin{equation*}
\Sigma_{t}(f, r, s) \geq \underline{\Delta}(\psi)\left(\int m_{\delta}(f) \eta_{H_{0-} \times H_{+}}^{L}\right) \inf _{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h) \tag{5}
\end{equation*}
$$

Now we can prove Theorem 1.3 .

Proof of Theorem 1.3 given Proposition 1.5. We observe that

$$
\begin{aligned}
e^{-t K_{A} \Sigma_{t}(f, g, h)} & \leq e^{-t K_{A}} \bar{\Delta}\left(\psi^{t}\right)\left(\int M_{\delta}(f)\right) \sup _{\substack{g \in B_{\delta}(r) \\
h \in B_{\delta}(s)}} \Sigma_{t}\left(\psi^{t}, g, h\right) \\
& \leq(1+O(\delta))\left(\int M_{\delta}(f)\right)\left(\int \psi^{t}+\delta\right) \\
& =(1+O(\delta))\left(\int M_{\delta}(f)\right),
\end{aligned}
$$

and we likewise use $m_{\delta}(f)$ to get the lower bound for $e^{-t K_{A}} \Sigma_{t}(f, g, h)$.
1.6. Injectivity radius. We have fixed a semi-simple Lie group G, a lattice $\Gamma \subset G$, and a left-invariant metric (determined by a leftinvariant Riemannian metric) $d(\cdot, \cdot)$ on G. Recall $\epsilon_{g}=\min \left(\frac{1}{2} \inf _{\gamma \in \Gamma} d(g, \gamma g), 1\right)$. We say that $f: G \rightarrow \mathbb{R}$ is coarsely Lipshitz if there is some K such that $\left|f(g)-f\left(g^{\prime}\right)\right|<K$ when $d\left(g, g^{\prime}\right)<1$. We then have

Lemma 1.7. The function $g \mapsto \log \left(\epsilon_{g}\right)$ is coarsely Lipschitz on all of G.

Proof. It's enough to show that there exist ϵ, K such that for all $g, \gamma \in$ G,

$$
\begin{equation*}
d(g h, \gamma g h)<K d(g, \gamma g) \tag{6}
\end{equation*}
$$

when $d(h, \mathbf{1})<\epsilon$. Equation (6) is equivalent to

$$
d\left(h^{-1} g^{-1} \gamma g h, \mathbf{1}\right)<K d\left(g^{-1} \gamma g, \mathbf{1}\right)
$$

so letting $u=g^{-1} \gamma g$, we must show that

$$
\begin{equation*}
d\left(C_{h^{-1}} u, \mathbf{1}\right)<K d(u, \mathbf{1}) \tag{7}
\end{equation*}
$$

(when h is close to $\mathbf{1}$). We have

$$
d\left(C_{h^{-1}} u, \mathbf{1}\right)<d(u, \mathbf{1})+2 d(h, \mathbf{1})
$$

so it is clear that (7) holds except possibly when u is close to 1 . So we can write $u=\exp (S), h=\exp (H)$, and then we must show that

$$
d\left(\exp \left(e^{-\operatorname{ad}_{H}} S\right), \mathbf{1}\right)<K d(\exp (S), \mathbf{1})
$$

which is tantamount to showing that $e^{-\mathrm{ad}_{H}}$ is bounded in norm when H is small.

2. The counting estimate for the test functions

2.1. An a priori counting estimate. We begin in our setting of a Lie group G with a chosen $A \in \mathfrak{g}$ that in turn defines $H_{-}, H_{0}, H_{+}<G$, and a lattice $\Gamma<G$. We will begin with the following volume estimate:

Lemma 2.1. When B is a sufficiently small ball around 1, we have

$$
\eta_{G}(B \exp (t A) B) \leq C e^{t K_{A}}
$$

Proof. We recall that in our case that G and H_{+}are unimodular. We let B_{0-}, B_{+}be the unit balls around the identity in H_{0-} and H_{+}. We observe that

$$
B \exp (t A) B \subset B_{0-} \exp (t A) B_{+}
$$

and

$$
\eta_{H_{+}}\left(\exp (t A) B_{+} \exp (-t A)\right)=e^{t K_{A}} \eta_{H_{+}}\left(B_{+}\right)
$$

Then we have

$$
\begin{aligned}
\eta_{G}(B \exp (t A) B) & \leq \eta_{G}\left(B_{0-} \exp (t A) B_{+}\right) \\
& =\eta_{G}\left(B_{0-} \exp (t A) B_{+} \exp (-t A)\right) \\
& =\eta_{H_{0}-}^{L}\left(B_{0-}\right) \eta_{H_{+}}\left(\exp (t A) B_{+} \exp (-t A)\right) \\
& =e^{t K_{A}} \eta_{H_{0-}}^{L}\left(B_{0-}\right) \eta_{H_{+}}\left(B_{+}\right) \\
& =C e^{t K_{A}} .
\end{aligned}
$$

Let ϵ_{G} be half the radius of the ball B in Lemma 2.1. For $h \in G$, let $\epsilon_{h}=\min \left(\frac{1}{2} \inf _{\gamma \in \Gamma \backslash\{1\}} d(h, \gamma h), \epsilon_{G}\right)$, and let B_{h} be the ball of radius ϵ_{h} (around the identity), and let $v_{h}=\eta_{G}\left(B_{h}\right)$. We observe that $v_{h} \asymp \epsilon_{h}^{d}$. From the volume estimate of Lemma 2.1 we can prove the following counting estimate:

Lemma 2.2. Take $B \equiv B_{\epsilon_{G}}(\mathbf{1})$. For all $g, h \in G$, we have

$$
\#(g \Gamma h \cap B \exp (t A) B) \leq C(\Gamma) e^{K_{A} t} / v_{h}
$$

Proof. We have that

$$
\#(g \Gamma h \cap B \exp (t A) B)<\eta_{G}\left(N_{\epsilon_{h}}(B \exp (t A) B)\right) / v_{h} .
$$

We observe that

$$
N_{\epsilon_{h}}(B \exp (t A) B) \subset B \exp (t A) \hat{B}
$$

where $\hat{B} \equiv B_{2 \epsilon_{G}}(\mathbf{1})$. Moreover, by Lemma 2.1,

$$
\eta_{G}(\hat{B} \exp (t A) \hat{B}) \leq C e^{t K_{A}}
$$

2.2. Estimates with linearly complementary subgroups. In this subsection, we consider a more general situation where G is an arbitrary Lie group, A and B are Lie subgroups of G with Lie algebras \mathfrak{a} and \mathfrak{b}, where $A \cap B=\{\mathbf{1}\}$ and $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b}$ as vector spaces.

We assume that \mathfrak{a} and \mathfrak{b} are equipped with inner products; this determines an inner product on \mathfrak{g}, and left invariant metrics and left Haar measures on A, B and G.

Lemma 2.3. Suppose $a_{0}, a_{1} \in A, b_{0}, b_{1} \in B$ are all sufficiently close to the identity and that $a_{0} b_{0}=b_{1} a_{1}$. Let $D=\max \left(\left|\log b_{0}\right|,\left|\log a_{1}\right|\right)$. Then

$$
\left|\log a_{0}\right| \leq 2 D \text { and }\left|\log b_{1}\right| \leq 2 D
$$

Proof. We have
$\log a_{0}+\log b_{0}+O\left(\left|\log a_{0}\right|\left|\log b_{0}\right|\right)=\log b_{1}+\log a_{1}+O\left(\left|\log b_{1}\right|\left|\log a_{1}\right|\right)$ and hence

$$
\log a_{0}+\log b_{0}+O\left(\left|\log a_{0}\right| D\right)=\log b_{1}+\log a_{1}+O\left(\left|\log b_{1}\right| D\right)
$$

and therefore, because $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b}$,

$$
\begin{align*}
\log a_{1} & =\log a_{0}+O(E D) \tag{8}\\
\log b_{1} & =\log b_{0}+O(E D) \tag{9}
\end{align*}
$$

where $E=\left|\log a_{0}\right|+\left|\log b_{1}\right|$. The Lemma follows because E is assumed to be small.

Lemma 2.4. Suppose that $a_{0}, a_{1} \in A, b_{0}, b_{1} \in B$, and a_{0} and b_{1} are close to the identity and $a_{0} b_{0}=b_{1} a_{1}$. Then b_{0} and a_{1} are also close to the identity.

Proof. We can write

$$
b_{0}=a_{0}^{-1} b_{1} a_{1}=b_{1}^{\prime} a_{0}^{\prime} a_{1}
$$

for some $b_{1}^{\prime} \in B, a_{0}^{\prime} \in A$ close to the identity. But then $a_{0}^{\prime} a_{1}=b_{1}^{\prime-1} b_{0} \in$ $A \cap B=\{\mathbf{1}\}$.

Lemma 2.5. Suppose we have $\hat{a}, \check{a} \in A$, and $\hat{b}, \check{b} \in B$, with \check{a}, \check{b} sufficiently close to the identity. Suppose further we have

$$
\hat{a} \check{b}=\nu \hat{b} \check{a}
$$

for some $\nu \in G$. Then we can write $\nu=\nu_{a} \nu_{b}$, with $\nu_{a} \in A, \nu_{b} \in B$.

Proof. We can find $a \in A, b \in B$ (close to the identity) such that $a b=\hat{b} \hat{a}^{-1}$. Then

$$
\nu=\hat{a} \check{b} \check{a}^{-1} \hat{b}^{-1}=(\hat{a} a)\left(b \hat{b}^{-1}\right) .
$$

Lemma 2.6. Let $\hat{\psi}_{A}, \check{\psi}_{A}$ be functions on A, and $\hat{\psi}_{B}, \check{\psi}_{B}$ be functions on B, and let D be sufficiently small. Assume
(1) $\operatorname{supp} \check{\psi}_{A}, \operatorname{supp} \check{\psi}_{B}$ are supported in the D neighbourhood of the identity, and
(2) $\check{\psi}_{A}$ and $\check{\psi}_{B}$ are nonnegative on their domains, and
(3) $\int \check{\psi}_{A}=\int \check{\psi}_{B}=1$.

Let $E_{A}=\left\|\hat{\psi}_{A}\right\|_{C^{1}}$ (computed on the ball of radius $2 D$ around the identity), and define E_{B} analogously. Then

$$
\left|\int_{G}\left(\hat{\psi}_{A} \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)-\hat{\psi}_{A}(1) \hat{\psi}_{B}(1)\right| \leq C_{A, B} D E_{A} E_{B}
$$

Proof. By Lemmas 2.3 and 2.4, the integrand is supported on the product (in either order) of the balls of radius $2 D$ (around $\mathbf{1}$) in A and B. Hence

$$
\begin{aligned}
& \left|\int_{G}\left(\hat{\psi}_{A} \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)-\int_{G}\left(\left(\hat{\psi}_{A}(1) 1_{A}\right) \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)\right| \\
\leq & \int_{G}\left(\left(2 D E_{A} 1_{A}\right) \circledast \check{\psi}_{B}\right) \cdot\left(\left|\hat{\psi}_{B}\right| \circledast \check{\psi}_{A}\right) \\
\leq & \int_{G}\left(\left(2 D E_{A} 1_{A}\right) \circledast \check{\psi}_{B}\right) \cdot\left(E_{B} 1_{B} \circledast \check{\psi}_{A}\right) \\
\leq & 2 D E_{A} E_{B} \mathcal{S}
\end{aligned}
$$

where $\mathcal{S}=\int_{G}\left(1_{A} \circledast \check{\psi}_{B}\right)\left(1_{B} \circledast \check{\psi}_{A}\right)$. Similarly

$$
\begin{aligned}
& \left|\int_{G}\left(\left(\hat{\psi}_{A}(1) 1_{A}\right) \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)-\int_{G}\left(\left(\hat{\psi}_{A}(1) 1_{A}\right) \circledast \check{\psi}_{B}\right) \cdot\left(\left(\hat{\psi}_{B}(1) 1_{B}\right) \circledast \check{\psi}_{A}\right)\right| \\
& \quad \leq 2 D E_{A} E_{B} \mathcal{S} .
\end{aligned}
$$

Hence by the triangle inequality we get

$$
\begin{aligned}
& \left|\int_{G}\left(\hat{\psi}_{A} \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)-\hat{\psi}_{A}(1) \hat{\psi}_{B}(1) \mathcal{S}\right| \\
\leq & 2 D\left(E_{A} E_{B}+E_{B} E_{A}\right) \mathcal{S}
\end{aligned}
$$

It remains to estimate \mathcal{S}. Let \mathbf{B} be the ball of radius $2 D$ around the identity in $A \times B$. We define the map $\mathbf{B} \rightarrow G$ as follows. Given $(a, b) \in$ \mathbf{B}, we solve $a b^{\prime}=b a^{\prime}$ for $a^{\prime} \in A, b^{\prime} \in B$ (by solving $b^{\prime} a^{\prime-1}=a^{-1} b$), and then let $\rho(a, b)=a b^{\prime}$.

Then

$$
\mathcal{S}=\int_{A \times B} \check{\psi}_{A} \times \check{\psi}_{B} d \rho^{*}\left(\eta_{G}^{L}\right)
$$

Moreover,

$$
\operatorname{Jac} \rho \equiv \frac{\left|d \rho^{*}\left(\eta_{G}^{L}\right)\right|}{\left|d\left(\eta_{A}^{L} \times \eta_{B}^{L}\right)\right|}
$$

satisfies $\operatorname{Jac} \rho(a, b)=1+O(|\log a|+|\log b|)$. Therefore

$$
\begin{aligned}
\int_{A \times B} \check{\psi}_{A} \times \check{\psi}_{B} d \rho^{*} \eta_{G}^{L} & =\int_{A \times B} \check{\psi}_{A} \times \check{\psi}_{B}(1+O(D)) d\left(\eta_{A}^{L} \times \eta_{B}^{L}\right) \\
& =1+O(D) .
\end{aligned}
$$

(In fact we can get $1+O\left(D^{2}\right)$, but we will not need this.) We conclude that

$$
\left|\int_{G}\left(\hat{\psi}_{A} \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)-\hat{\psi}_{A}(1) \hat{\psi}_{B}(1) \mathcal{S}\right|<C_{A, B} D E_{A} E_{B}
$$

when D is sufficiently small.
Corollary 2.7. Suppose that the conditions of Lemma 2.6 hold, except for assumption 3: the normalization of $\hat{\psi}_{A}$ and $\hat{\psi}_{B}$. Let $I_{A}=\int_{G} \hat{\psi}_{A}$, and $I_{B}=\int_{G} \hat{\psi}_{B}$. Then

$$
\left|\int_{G}\left(\hat{\psi}_{A} \circledast \check{\psi}_{B}\right) \cdot\left(\hat{\psi}_{B} \circledast \check{\psi}_{A}\right)-I_{A} I_{B} \hat{\psi}_{A}(1) \hat{\psi}_{B}(1)\right| \leq C_{A, B} I_{A} I_{B} D E_{A} E_{B}
$$

Moveover, letting $I_{A}^{\prime}=\int \exp ^{*} \hat{\psi}_{A}$ and $I_{B}^{\prime}=\int \exp ^{*} \hat{\psi}_{B}$, the exact same statement holds with I_{A} and I_{B} replaced with I_{A}^{\prime} and I_{B}^{\prime}.
Proof. The Corollary is clear for I_{A} and I_{B}; let us prove it for I_{A}^{\prime} and I_{B}^{\prime}. We have $I_{A}^{\prime}=(1+O(D)) I_{A}$ and $I_{B}^{\prime}=(1+O(D)) I_{B}$ and therefore

$$
\begin{aligned}
\left|I_{A} I_{B} \hat{\psi}_{A}(\mathbf{1}) \hat{\psi}_{B}(\mathbf{1})-I_{A}^{\prime} I_{B}^{\prime} \hat{\psi}_{A}(\mathbf{1}) \hat{\psi}_{B}(\mathbf{1})\right| & \leq C I_{A}^{\prime} I_{B}^{\prime} D \psi_{A}(\mathbf{1}) \hat{\psi}_{B}(\mathbf{1}) \\
& \leq C I_{A}^{\prime} I_{B}^{\prime} D E_{A} E_{B}
\end{aligned}
$$

which is exactly what we require.
2.3. Defining the bump functions. Let us fix a smooth function $g:[0, \infty) \rightarrow[0, \infty)$ such that all the derivatives of g at 0 are zero, $\|g\|_{\infty}=1$, and $\operatorname{supp} g \subset[0,1)$. Let us then define Ξ_{d} on \mathbb{R}^{d}, for $d \in \mathbb{Z}^{+}$, by $\Xi_{d}(x)=C_{d} g(|x|)$, where C_{d} is such that $\int \Xi_{d}=1$. For $t \geq 0$, let us then define Ξ_{d}^{t} by

$$
\Xi_{d}^{t}(x)=e^{d t} \Xi_{d}\left(e^{t} x\right)
$$

So Ξ_{d}^{t} has integral 1, is supported in the ball of radius e^{-t} around 0 , has sup norm at most $C_{d} e^{d t}$, and $\left\|\Xi_{d}^{t}\right\|_{C^{k}} \leq C_{d} e^{(d+k) t}$. Because
Ξ_{d}^{t} is rotationally symmetric, it is well-defined on any vector space of dimension d that has an inner product.

Let H be a Lie group equipped with a left-invariant metric, and let \mathfrak{h} be its Lie algebra. We can define $\Xi_{\mathfrak{h}}^{t}$ on \mathfrak{h} to be Ξ_{d}^{t}, and we then let ξ_{H}^{t} on H be defined by

$$
\begin{equation*}
\xi_{H}^{t}(\exp (X))=\Xi_{\mathfrak{h}}^{t}(X) ; \tag{10}
\end{equation*}
$$

this will certainly make sense when t is sufficiently large.
Returning now to the setting of Section 1 , we let $m=\max (16(d+$ $\left.\max (k, 1)), \lambda_{1}^{-1}\right)$, where d is the dimension of G, k is as in equation (2), and λ_{1} is the least positive eigenvalue for ad_{A} [or the negative of the least negative one?]. We then let $b=1 / m$ and $a=1 / m^{2}$. Letting q be the rate of mixing, we write

$$
\begin{array}{ll}
\Psi_{+}^{t}=\Xi_{\mathfrak{h}}^{a q t} & \Psi_{0}^{t}=\Xi_{\mathfrak{h}_{0}}^{a q t} \\
\Psi_{-}^{t}=\Xi_{\mathfrak{h}-}^{a q t} & \tilde{\Psi}_{0}^{t}=\Xi_{\mathfrak{h}_{0}}^{4 b q t}
\end{array}
$$

and we let $\Psi_{0-}^{t}=\Psi_{0}^{t} \times \Psi_{-}^{t}$, and $\tilde{\Psi}_{0-}^{t}=\tilde{\Psi}_{0}^{t} \times \Psi_{-}^{t}$.
We then define ψ_{+}^{t} and its relatives by the direct analogue of Equation (10).

We further define

$$
\begin{aligned}
\check{\psi}_{+}^{t} & =C_{\exp (t A / 2)}^{*} \psi_{+}^{t} & \check{\psi}_{0-}^{t} & =C_{\exp (-t A / 2)}^{*} \tilde{\psi}_{0-}^{t} \\
\hat{\psi}_{+}^{t} & =C_{\exp (-t A / 2)}^{*} \psi_{+}^{t} & & \hat{\psi}_{0-}^{t}
\end{aligned}=C_{\exp (t A / 2)}^{*} \psi_{0-}^{t}
$$

Similarly we have $\check{\Psi}_{+}=C_{\exp \left(t \operatorname{tad}_{A} / 2\right)}^{*} \Psi_{+}$etc. We let $\psi^{t}=\psi_{0-}^{t} \circledast \psi_{+}^{t}$.
We apply Corollary 2.7 to the setting of the ψ 's.
Lemma 2.8. With a, b taken as above, and C depending only on H_{0}, etc., we have
$\left|e^{K_{A} t} \int_{G}\left(\delta_{\mu_{0-}} * \hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t}\right) \cdot\left(\delta_{\mu_{+}} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t}\right)-\hat{\psi}_{0-}^{t}\left(\mu_{0-}^{-1}\right) \hat{\psi}_{+}^{t}\left(\mu_{+}^{-1}\right)\right|<C e^{-2 b q t}$.
Proof. We have $\left(\delta_{\mu_{0-}} * \hat{\psi}_{0-}^{t}\right)(1)=\hat{\psi}_{0}^{t}\left(\mu_{0-}^{-1}\right)$ and

$$
\left\|\delta_{\mu_{0-}-} * \hat{\psi}_{0-}^{t}\right\|_{C^{1}}=\left\|\hat{\psi}_{0-}^{t}\right\|_{C^{1}} \leq\left\|\psi_{0-}^{t}\right\|_{C^{1}} \leq C e^{(d+1) a q t} \leq C e^{b q t}
$$

Likewise we have $\delta_{\mu_{+}} * \hat{\psi}_{+}^{t}=\hat{\psi}_{-}^{t}\left(\mu_{+}^{-1}\right)$ and

$$
\left\|\delta_{\mu_{+}} * \hat{\psi}_{+}^{t}\right\|_{C_{1}}=\left\|\hat{\psi}_{+}^{t}\right\|_{C_{1}} \leq\left\|\psi_{+}^{t}\right\|_{C_{1}} \leq C e^{(d+1) a q t} \leq C e^{b q t}
$$

Moreover, the radius (around the identity) of the support of ψ_{+}^{t} is at most $e^{-a q t} \ll 1$, and radius of support of $\check{\psi}_{+}^{t}$ is therefore at most $e^{-\lambda_{1} t} \leq e^{-4 b q t}$. The radius of support of $\check{\psi}_{0-}^{t}$ is at most $e^{-4 b q t}$. Putting this all together and applying Corollary 2.7, we obtain the Lemma.
2.4. Proving what must be proved. We can now prove the following proposition, which immediately implies Proposition 1.5.

Proposition 2.9. There exists C (depending only on Γ) such that for all $g, h \in G$ such that $\epsilon_{g}, \epsilon_{h}>e^{-a q t / d}$, we have

$$
\left|e^{-t K_{A}} \Sigma_{t}\left(\psi^{t}, g, h\right)-1\right| \leq C e^{-a q t}
$$

Proof. The idea is to relate the sum in $\Sigma_{t}\left(\psi^{t}, g, h\right)$ to a mixing integral. We consider the functions $\delta_{g} * \psi_{0-}^{t} \circledast \psi_{+}^{t}$ and $\delta_{h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}$ on G; they are supported in balls around g and h respectively, with radii $O\left(e^{-a q t}\right)$ and $O\left(e^{-b q t}\right)$. Our condition on ϵ_{g} and ϵ_{h} implies that the supports of these functions inject into $\Gamma \backslash G$, and hence we can think of them as functions on $\Gamma \backslash G$.

We then have, on the one hand, by exponential mixing in G,

$$
\begin{align*}
& \left|\int_{\Gamma \backslash G}\left(\delta_{g} * \psi_{0-}^{t} \circledast \psi_{+}^{t}\right) \cdot\left(\delta_{h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp (-t A)}\right)-\int_{\Gamma \backslash G} \psi_{0-}^{t} \circledast \psi_{+}^{t} \int_{\Gamma \backslash G} \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}\right| \tag{11}\\
& \quad<C e^{-q t}\left\|\psi_{0-}^{t} \circledast \psi_{+}^{t}\right\|_{C^{k}}\left\|\psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}\right\|_{C^{k}} \\
& \quad<C e^{-q t} e^{(d+k) a q t} e^{(d+k) b q t}<C e^{-q t / 2} .
\end{align*}
$$

Moreover,

$$
\int_{\Gamma \backslash G} \psi_{0-}^{t} \circledast \psi_{+}^{t}=\int_{G} \psi_{0-}^{t} \circledast \psi_{+}^{t}=\left(1+O\left(e^{-b q t}\right)\right) \int_{\mathfrak{g}} \exp ^{*}\left(\psi_{0-}^{t} \circledast \psi_{+}^{t}\right)=1+O\left(e^{-b q t}\right)
$$

and likewise $\int_{\Gamma \backslash G} \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}=1+O\left(e^{-a q t}\right)$, so

$$
\begin{equation*}
\left|\int_{\Gamma \backslash G} \psi_{0-}^{t} \circledast \psi_{+}^{t} \int_{\Gamma \backslash G} \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}-1\right|<C e^{-a q t} . \tag{12}
\end{equation*}
$$

On the other hand the first integral above is equal to

$$
\sum_{\gamma \in \Gamma} \int_{G}\left(\delta_{g} * \psi_{0-}^{t} \circledast \psi_{+}^{t}\right) \cdot\left(\delta_{\gamma} * \delta_{h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp (-t A)}\right)
$$

We can rewrite each term in the sum as

$$
\begin{equation*}
\left.\int_{G}\left(\psi_{0-}^{t} \circledast \psi_{+}^{t}\right) \cdot\left(\delta_{g^{-1} \gamma h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp (-t A)}\right)\right) \tag{13}
\end{equation*}
$$

or

$$
\int_{G}\left(\psi_{0-}^{t} \circledast \psi_{+}^{t} * \delta_{\exp (t A / 2)}\right) \cdot\left(\delta_{g^{-1} \gamma h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp (-t A / 2)}\right) .
$$

We then have, letting $\eta=g^{-1} \gamma h$ and $\nu=\exp (-t A / 2) \eta \exp (-t A / 2)$,

$$
\begin{aligned}
& \int_{G}\left(\psi_{0-}^{t} \circledast \psi_{+}^{t} * \delta_{\exp (t A / 2)}\right) \cdot\left(\delta_{g^{-1} \gamma h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{-\exp (t A / 2)}\right) \\
& =\int_{G}\left(\delta_{\exp (t A / 2)} * \hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t}\right) \cdot\left(\delta_{\eta} * \delta_{\exp (-t A / 2)} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t}\right) \\
& =\int_{G}\left(\hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t}\right) \cdot\left(\delta_{\nu} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t}\right) .
\end{aligned}
$$

It follows from Lemma 2.5 that if the above integrand is ever nonzero, we can write $\nu=\nu_{0-} \nu_{+}$for $\nu_{0-} \in H_{0-}, \nu_{+} \in H_{+}$. Then the above integral equals

$$
\begin{equation*}
\int_{G}\left(\delta_{\nu_{0-}^{-1}} * \hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t}\right) \cdot\left(\delta_{\nu_{+}} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t}\right) \tag{14}
\end{equation*}
$$

By Lemma 2.8,

$$
\begin{equation*}
e^{K_{A} t} \int_{G}\left(\delta_{\nu_{0-}^{-1}} * \hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t}\right) \cdot\left(\delta_{\nu_{+}} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t}\right) \tag{15}
\end{equation*}
$$

is approximately equal to

$$
\begin{equation*}
\hat{\psi}_{0-}^{t}\left(\nu_{0-}\right) \hat{\psi}_{+}^{t}\left(\nu_{+}^{-1}\right) \tag{16}
\end{equation*}
$$

which equals

$$
\psi_{0-}^{t}\left(C_{\exp (t A / 2)} \nu_{0-}\right) \psi_{+}^{t}\left(C_{\exp (-t A / 2)} \nu_{+}^{-1}\right)
$$

which in turn equals

$$
\begin{equation*}
\left(Z_{t}\right)_{*}\left(\psi_{0-}^{t} \times \psi_{+}^{t}\right)(\eta)=\left(Z_{t}\right)_{*}\left(\psi_{0-}^{t} \times \psi_{+}^{t}\right)\left(g^{-1} \gamma h\right) \tag{17}
\end{equation*}
$$

In fact, by Lemma 2.8, (15) and (16) differ by at most $C e^{-2 b q t}$.
If (17) is nonzero (for a given $\gamma \in \Gamma$), then the integrand in (15) is not identically zero, and likewise for the integrand of (13). By Lemma 2.2. because $\psi_{0-}^{t} \circledast \psi_{+}^{t}$ and $\psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}$ are both supported on the unit ball around the identity, the number of γ for which the integrand of (13) is nonzero is at most $C e^{K_{A} t} / v_{h}$.

Therefore the sum of integrals (13) is approximately

$$
e^{-K_{A} t} \Sigma_{t}\left(\psi_{0-}^{t} \times \psi_{+}^{t}, g, h\right)
$$

and the difference is at most $C e^{-2 b q t} / v_{h} \leq C e^{-b q t}$.

3. Applications

3.1. Haar measure as a volume form. As before, we let η_{G}^{L} denote the left Haar measure on G. We let $d \eta_{G}^{L}$ denote the associated volume form, so that

$$
\int f d \eta_{G}^{L}
$$

can be interpreted as the integral of f with respect to the Haar measure, or with respect to the volume form, with identical results. Then $d \eta_{G}^{L}(\mathbf{1})$ is a top-dimensional multilinear form on $T_{\mathbf{1}} G$; it determines the normalization of η_{G}^{L} and $d \eta_{G}^{L}$.
3.2. The Heteromodular homomorphism. We recall that $\left[\mathfrak{h}_{0}, \mathfrak{h}_{+}\right]=$ \mathfrak{h}_{+}, and therefore $\left[H_{0}, H_{+}\right]=H_{+}$. For any $h_{0} \in H_{0}$, we have $\left(C_{h_{0}}\right)_{*} \eta_{H_{+}}=$ $\chi\left(h_{0}\right) \eta_{H_{+}}$. We call χ the heteromodular homomorphism. We claim that $\left(C_{h_{0}}\right)_{*} \eta_{H_{-}}=\chi\left(h_{0}\right)^{-1} \eta_{H_{-}}$for any $h_{0} \in H_{0}$. Moreover, $\chi: H_{0} \rightarrow \mathbb{R}^{+}$ is a homomorphism; we let H_{00} be its kernel. Then $H_{0}=\exp (t A) \times H_{00}$, because $\exp (t A)$ commutes with H_{00}.

Moreover, the pullback of $\eta_{H_{0}}$ to $H_{-} \times H_{0}$ by the multiplication map is $\chi\left(h_{0}\right)\left(\eta_{H_{-}} \times \eta_{H_{0}}\right)$. Likewise the pullback of η_{G} to $H_{-} \times H_{0} \times H_{+}$ is $\chi\left(h_{0}\right)\left(\eta_{H_{-}} \times \eta_{H_{0}} \times \eta_{H_{+}}\right)$.
3.3. Pullbacks of Haar Measure. Suppose E_{-}and E_{+}are Lie subgroups of G such that

$$
\pi_{\mathfrak{h}_{ \pm}}: \mathfrak{e}_{ \pm} \rightarrow \mathfrak{h}_{ \pm}
$$

is an isomorphism. We define volume forms $d \eta_{E_{ \pm}}$on $\mathfrak{e}_{ \pm}$by

$$
d \eta_{E_{ \pm}}=\left(\left.\pi_{\mathfrak{h}_{ \pm}}\right|_{\mathfrak{e}_{ \pm}}\right)^{*} d \eta_{H_{ \pm}} .
$$

We also let $E_{0}=H_{0}$, and keep its volume form. Now we also have maps

$$
\Sigma_{H}: \bigoplus \mathfrak{h}_{i} \rightarrow \mathfrak{g}
$$

and

$$
\Sigma_{E}: \bigoplus \mathfrak{e}_{i} \rightarrow \mathfrak{g}
$$

just given by

$$
\Sigma_{H}\left(h_{-}, h_{0}, h_{+}\right)=h_{-}+h_{0}+h_{+}
$$

and likewise for E. Moreover, Σ_{H} is invertible, and $\Sigma_{H}^{*} \eta_{G}=\bigwedge_{i} \eta_{H_{i}}$ on $\bigoplus \mathfrak{h}_{i}$. We want to compare $\Sigma_{E}^{*} \eta_{G}$ and $\bigwedge_{i} \eta_{E_{i}}$.

To this end, we let $\tau_{i}: \mathfrak{h}_{i} \rightarrow \mathfrak{e}_{i}$ be $\left(\pi_{\mathfrak{h}_{i}} \mid \mathfrak{e}_{i}\right)^{-1} ; T_{i}: \mathfrak{h}_{i} \rightarrow \bigoplus \mathfrak{h}_{i}$ be $\Sigma_{H}^{-1} \circ \Sigma_{E} \circ \tau_{i}$, and $T: \mathfrak{h}_{i} \rightarrow \mathfrak{h}_{i}$ be $\bigoplus T_{i}$. Then

$$
\begin{equation*}
\frac{\Sigma_{E}^{*} \eta_{G}}{\bigwedge_{i} \eta_{E_{i}}}=\frac{T^{*} \bigwedge_{i} \eta_{H_{i}}}{\bigwedge_{i} \eta_{H_{i}}}=\operatorname{det} T \tag{18}
\end{equation*}
$$

Letting $T_{j}^{i}=\pi_{\mathfrak{h}_{i}} \circ T_{j}$, we have that T_{i}^{i} is the identity for each i, and thus

$$
T=\left(\begin{array}{ccc}
1 & 0 & T_{+}^{-} \\
T_{-}^{0} & 1 & T_{+}^{0} \\
T_{-}^{+} & 0 & 1
\end{array}\right)
$$

and hence

$$
\operatorname{det} T=\operatorname{det}\left(\begin{array}{cc}
1 & T_{+}^{-} \tag{19}\\
T_{-}^{+} & 1
\end{array}\right)=\operatorname{det}\left(\mathbf{1}-T_{-}^{+} T_{+}^{-}\right)
$$

We let m : $E_{-} \times E_{0} \times E_{+} \rightarrow G$ be the multiplication map (so $\left.m\left(a_{-}, a_{0}, a_{+}\right)=a_{-} a_{0} a_{+}\right)$.

Lemma 3.1. We have

$$
m^{*} d \eta_{G}\left(a_{-}, a_{0}, a_{+}\right)=q\left(a_{0}\right) d \eta_{E_{-}}^{L} \wedge d \eta_{H_{0}} \wedge d \eta_{E_{+}}^{R}
$$

where
$q\left(a_{0}\right)=q\left(a_{0} ; E_{-}, E_{+}\right)=\chi\left(a_{0}\right) \operatorname{det}\left(\mathbf{1}_{\mathfrak{h}_{+}}-\left.\left.T_{+}^{-} \circ \operatorname{Ad}_{a_{0}}^{-1}\right|_{\mathfrak{h}_{+}} \circ T_{-}^{+} \circ \operatorname{Ad}_{a_{0}}\right|_{\mathfrak{h}_{-}}\right)$.
Proof. We first observe that $m^{*} d \eta_{G}$ must have the form given in the first line (for some q), because it is invariant under left multiplication in E_{-}and right multiplication in E_{+}. Then we observe that, for $u \in H_{0}$,

$$
L_{u} \circ m=m \circ\left(\left(a_{-}, a_{0}, a_{+}\right) \mapsto\left(C_{u} a_{-}, u a_{0}, a_{+}\right)\right)
$$

(where on the left hand side m is $m: E_{-} \times H_{0} \times E_{+} \rightarrow G$, and the right hand side m is $\left.m: C_{u} E_{-} \times H_{0} \times E_{+} \rightarrow G\right)$. Since η_{G} is invariant under pullback by L_{u}, we obtain

$$
q\left(h_{0} ; E_{-}, E_{+}\right)=\frac{1}{\chi(u)} q\left(u h_{0} ; C_{u} E_{-}, E_{+}\right)
$$

and letting $u=h_{0}^{-1}$,

$$
\begin{equation*}
q\left(h_{0} ; E_{-}, E_{+}\right)=\chi\left(h_{0}\right) q\left(\mathbf{1} ; C_{h_{0}^{-1}} E_{-}, E_{+}\right) \tag{20}
\end{equation*}
$$

When we replace \mathfrak{e}_{-}with $\operatorname{Ad}_{u} \mathfrak{e}_{-}$, we replace T_{-}^{+}with $\operatorname{Ad}_{u} \circ T_{-}^{+} \circ \operatorname{Ad}_{u}^{-1}$. The Lemma then follows from (18), (19), and (20).
3.4. A more general setting. Suppose now that that E_{-}and E_{+} are subgroups such that

$$
\begin{equation*}
\left.\operatorname{ker} \pi_{\mathfrak{h}_{ \pm}}\right|_{\mathfrak{e}_{ \pm}} \subset \mathfrak{h}_{0} . \tag{21}
\end{equation*}
$$

We let $E_{0 \pm}=E_{ \pm} \cap H_{0}$, and we let E be the quotient of $E_{-} \times E_{0} \times E_{+}$ by $\left(e_{-} e_{0-}, e_{0}, e_{0+} e_{+}\right) \sim\left(e_{-}, e_{0-}^{-1} e_{0} e_{0+}^{-1}, e_{+}\right)$.

We let $\hat{\mathfrak{e}}_{ \pm}$be a complement of $\mathfrak{e}_{0 \pm}$ in $\mathfrak{e}_{ \pm}$, and we let $\eta_{\hat{\mathfrak{e}}_{ \pm}}=\left(\pi_{\mathfrak{h}_{ \pm}} \mid \hat{\mathfrak{e}}_{ \pm}\right)^{-1}$. Then $\eta_{\hat{\varepsilon}_{-}} \wedge \eta_{H_{0}} \wedge \eta_{\hat{e}_{-}}$effectively defines a volume form on $T_{0} E$, and this form is independent of our choice of complements $\hat{\mathfrak{e}}_{ \pm}$. What is more,
we can define T as before with $\hat{\mathfrak{e}}_{ \pm}$in the place of $\mathfrak{e}_{ \pm}$, and the $T_{ \pm}^{\mp}$ will be independent of the choice of $\hat{\mathfrak{e}}_{ \pm}$, and we will again have

$$
\Sigma_{E}^{*} \eta_{G}=\operatorname{det}\left(\mathbf{1}-T_{-}^{+} T_{+}^{-}\right) \eta_{E} .
$$

So far we have just defined η_{E} at the identity. We now suppose that $\eta_{E_{-}}^{L}$ is invariant under right multiplication by E_{0-}, and $\eta_{E_{+}}^{R}$ is invariant under left multiplication by E_{0+}. (This of course happens if both E_{-} and E_{+}are unimodal). Then $\eta_{E_{-}}^{L} \times \eta_{E_{0}} \times \eta_{E_{+}}^{R}$ is invariant by the given action of $E_{0-} \times E_{0+}$, and we hence obtain a measure η_{E} (using our normalization on \mathfrak{e}) that is left-invariant by E_{-}, right-invariant by E_{+}, and bi-invariant by $E_{0}=H_{0}$. We can then apply the same reasoning as in Lemma 3.1 to obtain (where $m: E \rightarrow G$ is the quotient of $\left.m: E_{-} \times E_{0} \times E_{+} \rightarrow G\right)$:

Lemma 3.2. We have

$$
m^{*} d \eta_{G}\left(a_{-}, a_{0}, a_{+}\right)=q\left(a_{0}\right) d \eta_{E}
$$

where $m: E \rightarrow G$ is the quotient of the multiplication map and
$q\left(a_{0}\right)=q\left(a_{0} ; E_{-}, E_{+}\right)=\chi\left(a_{0}\right) \operatorname{det}\left(\mathbf{1}_{\mathfrak{h}_{+}}-\left.\left.T_{+}^{-} \circ \operatorname{Ad}_{a_{0}}^{-1}\right|_{\mathfrak{h}+} \circ T_{-}^{+} \circ \operatorname{Ad}_{a_{0}}\right|_{\mathfrak{h}-}\right)$.
3.5. Control of distance and measure for ζ_{t} and ζ. We define $\zeta_{t}: G \times H_{0} \times G \rightarrow G$ by $\zeta_{t}\left(e_{-}, h_{0}, e_{+}\right)=e_{-} h_{0} \exp (t A) e_{+}$. Given $a_{-} \in G$ we can write $a_{-}=b_{-}^{-} b_{0}^{-} b_{+}^{-}$, and likewise for $a_{+} \in G$. Then we have a $\operatorname{map} \zeta: G \times H_{0} \times G \rightarrow G$ defined by $\zeta\left(a_{-}, a_{0}, a_{+}\right)=b_{-}^{-} b_{0}^{-} a_{0} b_{0}^{+} b_{+}^{+}$.

Lemma 3.3. For all compact $K \subset G \times H_{0} \times G$, there exists C such that for all $a \in K$,

$$
d\left(Z^{-1}(\zeta(a)), Z_{t}^{-1}\left(\zeta_{t}(a)\right)\right)<C e^{-\lambda_{1} t} .
$$

Proof. Given $a=\left(a_{-}, a_{0}, a_{+}\right) \in G \times H_{0} \times G$, we can write $a_{-}=b_{-}^{-} b_{0}^{-} b_{+}^{-}$ and likewise for a_{+}. We can find unique $\check{b}_{-} \in H_{-}$and $\check{b}_{+} \in H_{+}$such that

$$
C_{\exp (t A / 2)}^{-1}\left(b_{+}^{-}\right) C_{a_{0} \exp (t A / 2)}\left(b_{-}^{+}\right)=\check{b}_{-} \check{b}_{+} .
$$

We then obtain

$$
\begin{aligned}
a_{-} \exp (t A) a_{0} a_{+} & =b_{-}^{-} b_{0}^{-} b_{+}^{-} \exp (t A) a_{0} b_{-}^{+} b_{0}^{+} b_{+}^{+} \\
& =b_{-}^{-} \exp (t A / 2) b_{0}^{-} C_{\exp (t A / 2)}^{-1}\left(b_{+}^{-}\right) C_{a_{0} \exp (t A / 2)}\left(b_{-}^{+}\right) a_{0} b_{0}^{+} \exp (t A / 2) b_{+}^{+} \\
& =b_{-}^{-} \exp (t A / 2) b_{0}^{-} \check{b}_{-} \check{b}_{+} a_{0} b_{0}^{+} \exp (t A / 2) b_{+}^{+} \\
& =b_{-}^{-} \check{\breve{b}}_{-} \exp (t A / 2) b_{0}^{-} a_{0} b_{0}^{+} \exp (t A / 2) \check{\breve{b}}_{+} b_{+}^{+} \\
& =b_{-}^{-} \check{\breve{b}}_{-} b_{0}^{-} a_{0} b_{0}^{+} \exp (t A) \check{b}_{+} b_{+}^{+} \\
& =b_{-}^{-} b_{0}^{-} a_{0} b_{0}^{+} \check{\check{b}}_{-} \exp (t A) \check{\breve{b}}_{+} b_{+}^{+} .
\end{aligned}
$$

Hence

$$
Z_{t}^{-1}\left(\zeta_{t}(a)\right)=\left(b_{-}^{-} b_{0}^{-} a_{0} b_{0}^{+} \check{\breve{b}}_{-},\left(b_{+}^{+}\right)^{-1} \check{\breve{b}}_{+}^{-1}\right)
$$

while

$$
Z^{-1}(\zeta(a))=\left(b_{-}^{-} b_{0}^{-} a_{0} b_{0}^{+},\left(b_{+}^{+}\right)^{-1}\right)
$$

We observe that $\check{\check{b}}$ - and $\check{\check{b}}_{+}$lie in a $O\left(e^{-\lambda_{1} t}\right)$ neighborhood of 1 . The Lemma follows.

We observe that in the setting of Section $3.4, \zeta$ and ζ_{t} descend to E, and we can restate Lemma 3.1 as

Lemma 3.4. For all compact $K \subset E$, there exists C such that for all $a \in K$,

$$
d\left(Z^{-1}(\zeta(a)), Z_{t}^{-1}\left(\zeta_{t}(a)\right)\right)<C e^{-\lambda_{1} t}
$$

Now (in the less general setting), let's restrict ζ and ζ_{t} to $E_{-} \times H_{0} \times$ E_{+}.

Lemma 3.5. We have, on any compact $K \subset E_{-} \times H_{0} \times E_{+}$,

$$
\begin{equation*}
\left|\frac{e^{-t K_{A}} \zeta_{t}^{*} \eta_{G}}{\chi\left(h_{0}\right) \eta_{E_{-}}^{L} \times \eta_{H_{0}} \times \eta_{E_{+}}^{R}}-1\right|<C_{K} e^{-2 \lambda_{1} t} . \tag{22}
\end{equation*}
$$

Proof. We let $M=\max \left(\left\|T_{-}\right\|,\left\|T_{+}\right\|\right)$. Then for all h_{0} for which $\left\|\operatorname{Ad}_{h_{0}}\right\|,\left\|\operatorname{Ad}_{h_{0}}^{-1}\right\|<M^{\prime}$, we have
$q\left(h_{0} \exp (t A), E_{-}, E_{+}\right)=e^{t K_{A}} \chi\left(h_{0}\right) \operatorname{det}\left(\mathbf{1}_{\mathfrak{h}_{+}}-\left.\left.T_{+} \circ \operatorname{Ad}_{h_{0} \exp (t A)}^{-1}\right|_{\mathfrak{h}_{+}} \circ T_{-} \circ \operatorname{Ad}_{h_{0} \exp (t A)}\right|_{\mathfrak{h}-}\right)$.
Now, for any linear transformation $T: V \rightarrow V$ with $\|T\|<1$,

$$
|1-\operatorname{det}(\mathbf{1}-T)|<2(\operatorname{dim} V)\|T\| .
$$

Therefore, for t sufficiently large given M and M^{\prime}, we have
$\left|1-\operatorname{det}\left(\mathbf{1}_{\mathfrak{h}_{+}}-\left.\left.T_{+} \circ \operatorname{Ad}_{h_{0} \exp (t A)}^{-1}\right|_{\mathfrak{h}_{+}} \circ T_{-} \circ \operatorname{Ad}_{h_{0} \exp (t A)}\right|_{\mathfrak{h}_{-}}\right)\right|<2\left(\operatorname{dim} H_{+}\right) M^{2} M^{\prime 2} e^{-2 \lambda_{1} t}$
when the right hand side is less than 1.
We have the following remarkable corollary, which may or may not have a simpler proof:

Corollary 3.6.

$$
\begin{equation*}
\zeta^{*} d \eta_{G}=\chi\left(h_{0}\right) \eta_{E_{-}}^{L} \times \eta_{H_{0}} \times \eta_{E_{+}}^{R} \tag{23}
\end{equation*}
$$

Proof. Let $d \eta_{E_{ \pm}}=\zeta * d \eta_{G}=\left(\zeta \circ Z^{-1}\right)^{*} d \eta_{H_{0-\times} H_{+}}^{L}$, and let $d \eta_{E_{ \pm}^{t}}=$ $e^{-K_{A} t} \zeta_{t}^{*} d \eta_{G}=\left(\zeta_{t} \circ Z_{t}^{-1}\right)^{*} d \eta_{H_{0-} \times H_{+}}^{L}$. We let $\eta_{E_{ \pm}}$be the measure from
integrating against $d \eta_{E_{ \pm}}$, and likewise for $\eta_{E_{ \pm}^{t}}$. By Lemmas 3.3 and 3.5, for any $A \subset E_{-} \times H_{0} \times E_{+}$, and letting $t \rightarrow \infty$,

$$
\begin{aligned}
\eta_{E_{ \pm}}(A) & \leq \eta_{E_{ \pm}^{t}}\left(\mathcal{N}_{e^{-2 \lambda_{1} t}}(A)\right) \\
& \rightarrow\left(\chi\left(h_{0}\right) \eta_{E_{-}}^{L} \times \eta_{H_{0}} \times \eta_{E_{+}}^{R}\right)(A) .
\end{aligned}
$$

We likewise obtain

$$
\begin{aligned}
\eta_{E_{ \pm}}(A) & \geq \eta_{E_{ \pm}^{t}}\left(\mathcal{N}_{-e^{-2 \lambda_{1} t}}(A)\right. \\
& \rightarrow\left(\chi\left(h_{0}\right) \eta_{E_{-}}^{L} \times \eta_{H_{0}} \times \eta_{E_{+}}^{R}\right)(\operatorname{Int} A) .
\end{aligned}
$$

As $\eta_{E_{ \pm}}$is a smooth measure, the Corollary follows.
In the more general setting, we can similarly prove

Lemma 3.7.

$$
\zeta^{*} d \eta_{G}\left(a_{-}, a_{0}, a_{+}\right)=q\left(a_{0}\right) d \eta_{E} .
$$

3.6. The application theorem. Suppose E_{-}and E_{+}are as in Section 3.3. We let $\eta_{E_{ \pm}}=\chi\left(h_{0}\right) \eta_{E_{-}}^{L} \times \eta_{H_{0}} \times \eta_{E_{+}}^{R}$.

Theorem 3.8. Let $K \subset E_{-} \times H_{0} \times E_{+}$be compact, and take $S \subset K$. For $t \geq t_{0}\left(E_{-}, E_{+}\right)$, let

$$
S_{t}=\left\{a_{-} \exp (t A) a_{0} a_{+} \mid\left(a_{-}, a_{0}, a_{+}\right) \in S\right\}
$$

Then, letting $\delta=C_{K, \Gamma} e^{-a q t}$, for $q=q(\Gamma), a=a\left(E_{-}, E_{+}\right)$, and assuming $\epsilon(g), \epsilon(h)>\delta$,

$$
\begin{equation*}
(1-\delta) \eta_{E_{ \pm}}\left(\mathcal{N}_{-\delta}(S)\right)<e^{-t K_{A}} \#\left(S_{t} \cap g \Gamma h\right)<(1+\delta) \eta_{E_{ \pm}}\left(\mathcal{N}_{\delta}(S)\right) \tag{24}
\end{equation*}
$$

where we take inner and outer neighborhoods in $E_{-} \times H_{0} \times E_{+}$.
Proof. We let $S_{t}=\zeta_{t}(S)$. By Theorem 1.3, we have
$(1-\delta) \eta_{H_{0-\times} H_{+}}\left(\mathcal{N}_{-\delta}\left(Z_{t}^{-1}\left(S_{t}\right)\right)\right)<e^{-t K_{A}} \#\left(S_{t} \cap g \Gamma h\right)<(1+\delta) \eta_{H_{0-\times} H_{+}}\left(\mathcal{N}_{\delta}\left(Z_{t}^{-1}\left(S_{t}\right)\right)\right)$.
By Lemma 3.3, we have

$$
Z_{t}^{-1}\left(S_{t}\right) \subset \mathcal{N}_{\delta}\left(Z^{-1}(\zeta(S)),\right.
$$

and hence

$$
\begin{equation*}
\mathcal{N}_{\delta}\left(Z_{t}^{-1}\left(S_{t}\right)\right) \subset \mathcal{N}_{2 \delta}\left(Z^{-1}(\zeta(S))\right) \tag{26}
\end{equation*}
$$

Taking $\zeta^{-1} \circ Z$ to be $C_{K} / 2$-Lipschitz on K, we have

$$
\begin{equation*}
\left(\zeta^{-1} \circ Z\right)\left(\mathcal{N}_{2 \delta}\left(\left(Z^{-1} \circ \zeta\right)(S)\right)\right) \subset \mathcal{N}_{C_{K} \delta}(S) ; \tag{27}
\end{equation*}
$$

combining (26) and (27), we obtain

$$
\begin{equation*}
\mathcal{N}_{\delta}\left(Z_{t}^{-1}\left(S_{t}\right)\right) \subset\left(Z^{-1} \circ \zeta\right)\left(\mathcal{N}_{C_{K} \delta}(S)\right) . \tag{28}
\end{equation*}
$$

We likewise obtain

$$
\begin{equation*}
\mathcal{N}_{-\delta}\left(Z_{t}^{-1}\left(S_{t}\right)\right) \supset\left(Z^{-1} \circ \zeta\right)\left(\mathcal{N}_{-C_{K} \delta}(S)\right) \tag{29}
\end{equation*}
$$

Finally, by (22),

$$
\begin{equation*}
\eta_{H_{0-\times H_{+}}}\left(\left(Z^{-1} \circ \zeta\right)\left(\mathcal{N}_{C_{K} \delta}(S)\right)\right)=\eta_{E_{ \pm}}\left(\mathcal{N}_{C_{K} \delta}(S)\right) \tag{30}
\end{equation*}
$$

Combining (25), (28), (29), and (30), we obtain the Theorem.
We likewise have the following in our more general setting, where we compute the neighborhoods with respect to a given Riemannian metric ρ on E :

Theorem 3.9. Let $K \subset E$ be compact, and take $S \subset K$. Let $t \geq t_{0}(E)$, and let

$$
S_{t}=\left\{a_{-} \exp (t A) a_{0} a_{+} \mid\left[\left(a_{-}, a_{0}, a_{+}\right)\right] \in S\right\}
$$

Then, letting $\delta=C_{K, \Gamma, \rho} e^{-a q t}$,

$$
(1-\delta) \eta_{E_{ \pm}}\left(\mathcal{N}_{-\delta}(S)\right)<e^{-t K_{A}} \#\left(S_{t} \cap g \Gamma h\right)<(1+\delta) \eta_{E_{ \pm}}\left(\mathcal{N}_{\delta}(S)\right)
$$

where we take inner and outer neighborhoods in E (and multiply δ by a constant), and the (implicit) constants depend on K.
3.7. Examples. Let us now discuss some actual examples of counting situations.

Orthogeodesic connections in \mathbb{H}^{3} / Γ. Suppose that $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ is a lattice (possibly nonuniform), and let $M=\Gamma \backslash \mathbb{H}^{3}$. Suppose that α and β are (oriented) geodesic segments in M. For each orthgeodesic connection η between α and β, we can record the feet of η on α and β, the length of η, and the monodromy of η (for example the angle that α, parallel translated along η, makes with β). We can even think of the real length of η and the monodromy of η as the complex length: it is the complex distance along η between α and β. In this way the set of such η is a set of points in $N^{1}(\alpha) \times N^{1}(\beta) \times \mathbb{C} / 2 \pi i \mathbb{Z}$.

In this example both E_{-}and E_{+}are the centralizer of the orthogonal flow, which is just the centralizer of the geodesic flow, conjugated by a rotation by $\pi / 2$. We have

$$
\eta_{E_{ \pm}}=q\left(a_{0}\right) d \eta_{E_{-}}^{L} \wedge d \eta_{H_{0}} \wedge d \eta_{E_{+}}^{R}
$$

where $q\left(a_{0}\right)=C_{0} e^{2 a_{0}}$, and C_{0} is a constant that I am currently too lazy to calculate. But $\eta_{E_{-}}^{L}$ and $\eta_{E_{+}}^{R}$ are just the natural measures on $N^{1}(\alpha)$ and $N^{1}(\beta)$, and $\eta_{H_{0}}$ is the natural measure on $\mathbb{C} / 2 \pi \mathbb{Z}$. So taking $g, h \in \operatorname{Isom}\left(\mathbb{H}^{3}\right)$ to translate our base frame to ones in $N^{1}(\alpha)$ and $N^{1}(\beta)$ respectively, Theorem 3.8 becomes

Theorem 3.10. The number of connections for a given subset $A \subset$ $K \subset N^{1}(\alpha) \times N^{1}(\beta) \times S^{1} \times[L, \infty)$ satisfies

$$
(1-\delta) \operatorname{Vol}\left(\mathcal{N}_{-\delta}(A)\right)<C(A) /\left(C_{1} \operatorname{Vol}(M)\right)<(1+\delta) \operatorname{Vol}\left(\mathcal{N}_{\delta}(A)\right)
$$

where K is compact and $\delta=C_{K, \Gamma} e^{-q L}, q=q(\Gamma)$, provided that the height of one of the α or β projections of K is at most $q L$.

This theorem is sufficient for [KM12] and [KW18], but Theorems 3.8 and 3.9 have many other applications, such as counting connections (with specific monodromy) between points. For simplicity let us assume that M^{n} is hyperbolic, and let $x, y \in M$. We let σ_{x} be a section of the projection from frames at x to vectors at x, and likewise define σ_{y}. Then any subset of the natural quotient of $\mathcal{F}(x) \times H_{0} \times \mathcal{F}(y)$ can be lifted to a subset of $T^{1}(x) \times H_{0} \times T^{1}(y)$ via the sections σ_{x} and σ_{y}, and the measure on the quotient becomes the measure on $T^{1}(x) \times H_{0} \times T^{1}(y)$.

Thus from Theorem 3.9 we obtain
Theorem 3.11. The number of connections for a given subset $A \subset$ $K \subset T^{1}(x) \times H_{0}([L, \infty)) \times T^{1}(y)$ satisfies

$$
\begin{equation*}
(1-\delta) \operatorname{Vol}\left(\mathcal{N}_{-\delta}(A)\right)<C(A) /\left(C_{1} \operatorname{Vol}(M)\right)<(1+\delta) \operatorname{Vol}\left(\mathcal{N}_{\delta}(A)\right) \tag{31}
\end{equation*}
$$

where K is compact and $\delta=C_{K, \Gamma} e^{-q L}, q=q(\Gamma)$, provided that the height x and y is at most $q L$.

Here we should say a few words about the volume that appears in the upper and lower bounds of (31). It is $e^{\chi\left(a_{0}\right)}$ times the quotient of the product measure on $\left(a_{0}, a_{0}, a_{+}\right) \in E_{-} \times E_{0} \times E_{+}$, and it is often natural and convenient to take a section of the quotient map, and use this to compute the measure.

For example, in the setting of Theorem 3.11, we can take sections of the projections $\mathcal{F}(x) \rightarrow T^{1}(x)$ and $\mathcal{F}(y) \rightarrow T^{1}(y)$. These give us a section σ of the projection $E_{-} \times E_{0} \times E_{+} \rightarrow E$. Hence, given $A \subset E$, we can think of it as $A \subset T^{1}(x) \times H_{0} \times T^{1}(y)$, and $\eta_{E_{ \pm}}(A)$ will just be $e^{\chi\left(a_{0}\right)}$ times the product measure of $T^{1}(x) \times H_{0} \times T^{1}(Y)$. For a sufficiently smooth section, we can also use this latter product to compute our δ-neighborhood.

We can likewise count orthogeodesic connection in H^{n}, with $n>3$, by again taking sections of the projection from the "aligned frame bundle" over a geodesic α to $N^{1}(\alpha)$, where a frame is aligned with α if its base point lies on α and its first vector is tangent to α.

Of course we can also make similar statements in other symmetric spaces, both rank 1 and higher rank.

References

[KM12] Jeremy Kahn and Vladimir Markovic. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2), 175(3):11271190, 2012.
[KW18] Jeremy Kahn and Alex Wright. Nearly Fuchsian surface subgroups of finite covolume Kleinian groups. arXiv preprint arXiv:1809.07211, 2018.

