COUNTING CONNECTIONS IN A LOCALLY SYMMETRIC SPACE

JEREMY KAHN AND ALEX WRIGHT

This is a preliminary draft provided for the purpose of verifying the reference in [KW18].

1. Statement of result and reduction to a special case

1.1. **Preliminaries.** We will denote Lie groups by capital letters such as G, H, and their Lie algebras by \mathfrak{g} , \mathfrak{h} . We will denote elements of a Lie algebra by capital letters such as X, Y, and elements of a Lie group by g, h, etc. Suppose G is a Lie group with Lie algebra \mathfrak{g} . We let $\exp: \mathfrak{g} \to G$ be the exponential map; we have $\exp(0) = 1$, and \exp is a local diffeomorphism at 0. Therefore we can define a diffeomorphism $\log: B \to \log(B) \subset \mathfrak{g}$, where B is a sufficiently small ball around 1, such that $\exp \circ \log$ is the identity on B. For $X, Y \in \mathfrak{g}$, then we let $\operatorname{ad}_X Y = [X, Y]$. For $g, h \in G$, we let $C_g h = ghg^{-1}$. We recall that

$$C_{\exp(A)} \exp(B) = \exp(e^{\operatorname{ad}_A} B).$$

1.2. Haar measures and convolution. Let Q be any Lie group. Recall that the convolution $\alpha * \beta$ of two measures α, β on Q is defined to be the pushforward of the product measure $\alpha \times \beta$ on $Q \times Q$ via the multiplication map $Q \times Q \to Q$. We observe that convolution is associative. We will always treat convolution as having lower precedence than pointwise multiplication (by a function) so $f\alpha * \beta$ means $(f\alpha) * \beta$ rather than $f \cdot (\alpha * \beta)$ (for a function f and measures α and β).

We will use δ_g to denote the point mass at g. We observe that $\delta_g * \delta_h = \delta_{gh}$. Moreover, for any measure α on Q, we have $\delta_g * \alpha = (L_g)_* \alpha$, where $L_g : Q \to Q$ denotes left multiplication by g. For any function $f: Q \to \mathbb{R}$ we let $\delta_g * f$ be a shorthand for $(L_g)_* f$, which of course is defined by $(L_g)_* f(h) = f(g^{-1}h)$. Likewise for $f * \delta_g$.

Now let \mathfrak{q} denote the Lie algebra for Q. For any volume form on \mathfrak{q} , we have a unique left Haar measure and right Haar measure on Q.

Date: January 13, 2019.

The authors acknowledge support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: Geometric structures And Representation varieties" (the GEAR Network).

We say that Q is unimodular when the two Haar measures are equal and we recall that this holds, in particular, when Q is semi-simple (or reductive) or nilpotent. We will denote left Haar measure on Q (for some volume form which will be specified when it is important) by η_Q^L , and right Haar measure by η_Q^R . In the case where Q is unimodular we denote the bi-invariant Haar measure by η_Q . In all cases, when $f:Q\to\mathbb{R}$ is continuous with compact support, we let $\int_Q f$ be a shorthand for $\int_Q f \, d\eta_Q^L$. We observe that

$$\int \phi = \int \phi \, d\eta_Q^L = (1 + O(\delta)) \int \exp^* \phi$$

and

$$\int \phi \, d\eta_Q^R = (1 + O(\delta)) \int \exp^* \phi$$

when supp $\phi \subset B_{\delta}(\mathbf{1})$ and δ sufficiently small.

For $g \in G$, we let

$$\Delta_Q(g) = \frac{|d\eta_Q^L|}{|d\eta_Q^R|}$$

(where we normalize η_Q^L and η_Q^R such that $\Delta_Q(\mathbf{1})=1$). Then

$$\eta_Q^L = \Delta_Q(g)\eta_Q^L * \delta_g$$

and

$$\delta_g * \eta_Q^R = \Delta_Q(g)\eta_Q^R$$

We then have $\Delta_Q(gh) = \Delta_Q(g)\Delta_Q(h)$, and we call Δ_Q the modular homomorphism. We observe that $\Delta_Q(\exp(X)) = 1 + O(X)$ when X is small.

When α is a finite measure on Q and $f \colon Q \to \mathbb{R}$ is continuous with compact support (or more generally all left translates of f are α -integrable) we define $\alpha * f$ by

$$\alpha * f = \int (\delta_g * f) d\alpha(g) = \int ((L_g)_* f) d\alpha(g)$$

or

$$(\alpha * f)(h) = \int f(g^{-1}h)d\alpha(g);$$

we can also write

$$(\alpha * f)\eta_O^L = \alpha * (f\eta_O^L).$$

We can likewise define $f * \beta$ (for a finite measure β) so that $f \eta_Q^R * \beta = (f * \beta) \eta_Q^R$ and observe that $\alpha * (\beta * f) = (\alpha * \beta) * f$ and $(f * \alpha) * \beta = f * (\alpha * \beta)$, and $(\alpha * f) * \beta = \alpha * (f * \beta)$.

Let $f, \phi \colon Q \to [0, \infty)$ be nonnegative continuous functions of compact support. When Q is unimodular, we have $f\eta_Q * \phi = f * \phi \eta_Q$. In the sequel, it will be useful to compare $f\eta_Q^L * \phi$ with $f * \phi \eta_Q^L$ in the case of a general Q. For ϕ a function of compact support, we let $\underline{\Delta}(\phi) = \inf_{g \in \text{supp } \phi} \Delta_Q(g^{-1})$ and $\overline{\Delta}(\phi) = \sup_{g \in \text{supp } \phi} \Delta_Q(g^{-1})$. Then we have

Lemma 1.1. For $f, \phi: Q \to \mathbb{R}$ nonnegative of compact support,

(1)
$$\underline{\Delta}(\phi)f * \phi \eta_Q^L \le f \eta_Q^L * \phi \le \overline{\Delta}(\phi)f * \phi \eta_Q^L.$$

Proof. We first observe that

$$f\eta_Q^L * \delta_g = \Delta_Q(g^{-1})(f * \delta_g)\eta_Q^L.$$

We then have $(f\eta_Q^L * \phi)\eta_Q^L = f\eta_Q^L * \phi\eta_Q^L$, and

$$f\eta_Q^L * \phi \eta_Q^L = \int \Delta_Q(g^{-1})(f * \delta_g)\eta_Q^L d(\phi \eta_Q^L)$$
$$\leq \overline{\Delta}(\phi) \int (f * \delta_g)\eta_Q^L d(\phi \eta_Q^L)$$
$$= \overline{\Delta}(\phi)(f * \phi \eta_Q^L)\eta_Q^L.$$

We have thus shown the second inequality of (1) (after multiplying by η_Q^L). The first inequality follows in the same manner.

In certain cases we can multiply or convolve functions (depending on your point of view) in such a way that the product associates with certain convolutions. In particular, suppose that R and S are Lie subgroups of Q, and $\mathfrak{r} \oplus \mathfrak{s} = \mathfrak{q}$ as vector spaces. Then the multiplication map $R \times S \to Q$ is a diffeomorphism near $(\mathbf{1},\mathbf{1})$, and a local diffeomorphism on all of $R \times S$; let us suppose that it is injective. Then for $f \colon R \to \mathbb{R}$ and $g \colon S \to \mathbb{R}$ continuous functions of compact support, we can define $f \circledast g \colon Q \to \mathbb{R}$ by $(f \circledast g)(rs) = f(r)g(s)$. Then if α is a compactly supported measure on R and β is a compactly supported measure on S, we have $\alpha*(f \circledast g) = (\alpha*f) \circledast g$ and $(f \circledast g)*\beta = f \circledast (g*\beta)$. Moreover, if $a \in Q$ normalizes R and S, then we have

$$(f \circledast g) * \delta_a = \delta_a * (C_a^* f \circledast C_a^* g).$$

In the case where Q is unimodular, we can define $f \circledast g$ in terms of the convolution of measures. We observe that $(L_r R_s)_*(\eta_R^L * \eta_S^R) = (\eta_R^L * \eta_S^R)$. Since the action of $R \times S$ on $RS = \{rs \mid r \in R, s \in S\}$ is transitive, the measure $\eta_R^L * \eta_S^R$ must be a scalar multiple of η_Q ; we assume that $\eta_R^L * \eta_S^R = \eta_Q$. Then we have $(f\eta_R^L) * (g\eta_S^R) = (f \circledast g)\eta_Q$.

On the other hand, given $f: R \to \mathbb{R}$ and $g: S \to \mathbb{R}$, we let $(f \times g): R \times S \to \mathbb{R}$ be defined by $(f \times g)(r, s) = f(r)g(s)$.

1.3. An eigenspace factorization of a group. Let G be a semisimple Lie group of non-compact type, and let A be a nonzero semisimple element of the Lie algebra \mathfrak{g} such that ad_A has all real eigenvalues.

Define \mathfrak{h}_- to be the subspace of \mathfrak{g} spanned by eigenvectors of ad_A with negative eigenvalue. Similarly let \mathfrak{h}_+ be spanned by eigenvectors with positive eigenvalue, and $\mathfrak{h}_0 = \ker(\mathrm{ad}_A)$. Thus \mathfrak{g} is the direct sum of \mathfrak{h}_- , \mathfrak{h}_+ , and \mathfrak{h}_0 . By the Jacobi identity, \mathfrak{h}_- , \mathfrak{h}_+ , and \mathfrak{h}_0 are Lie sub-algebras (and \mathfrak{h}_- and \mathfrak{h}_+ are nilpotent); let H_- , H_+ and H_0 be the corresponding Lie groups. Moreover, we observe that $\mathfrak{h}_{0+} \equiv \mathfrak{h}_0 \oplus \mathfrak{h}_+$ is a Lie sub-algebra, and that the corresponding Lie subgroup H_{0+} is equal to $\{h_0h_+ \mid h_0 \in H_0, h_+ \in H_+\}$. Likewise for \mathfrak{h}_{0-} and H_{0-} .

We should also assume that H_{0-} is closed...when can we assume this?

Lemma 1.2. The multiplication map $H_- \times H_0 \times H_+ \to G$ is an injective local diffeomorphism with dense image.

Proof. We first observe that the exponential map $\exp: \mathfrak{h}_+ \to H_+$ is surjective. To show this, we consider the adjoint action of \mathfrak{h}_+ on \mathfrak{h}_{0+} . This representation is faithful, because $\operatorname{ad}_X A \neq 0$ for all $X \in \mathfrak{h}_+$. Moreover, every element of \mathfrak{h}_+ acts nilpotently in this representation, so the image of \mathfrak{h}_+ is conjugate to a Lie subalgebra of strictly upper-triangular matrices. Then we need only observe that every upper triangular matrix u with 1's on the diagonal can be written uniquely as e^S , where S is strictly upper triangular (with 0's on the diagonal).

We can then show the injectivity as follows. Let $H_{-0+} = H_{0-} \cap H_+$; we will show that $H_{-0+} = \{1\}$. Suppose that $x \in H_{-0+}$. Then $C_{\exp(tA)}x \in H_{-0+}$, and letting $x = \exp(X)$ (where $X \in \mathfrak{h}_+$), we have $C_{\exp(tA)}x = \exp(e^{t\operatorname{ad}_A}X)$, and $e^{t\operatorname{ad}_A}X \to 0$ as $t \to -\infty$. Let $X' = e^{t\operatorname{ad}_A}X$ for t large and negative. Then X' is small, $\exp(X') \in H_{0-}$, and H_{0-} is closed, so $X' \in \mathfrak{h}_{0-}$. Moreover, since $X \in \mathfrak{h}_+$, we have $X' \in \mathfrak{h}_+$. Then we must have X' = 0, and x = 1.

We haven't shown that the image is dense, but it appears that we never use this statement. \Box

We denote the image of the multiplication map by $H_-H_0H_+$. Let $K_A = \operatorname{tr} \operatorname{ad}_A|_{\mathfrak{g}_+}$.

1.4. The assumption of exponential mixing. Continuing the notation of the previous subsection, let Γ be a lattice in G. We assume that there are constants $C \equiv C(\Gamma)$, $k \equiv k(G)$, $q \equiv q(\Gamma)$ such that for

all functions $f, g \in C^k(\Gamma \backslash G)$, and $t \in \mathbb{R}$,

$$\left| \int_{\Gamma \setminus G} 1 \int_{\Gamma \setminus G} (f * \delta_{\exp(tA)}) g - \int_{\Gamma \setminus G} f \int_{\Gamma \setminus G} g \right| < C e^{-q|t|} \|f\|_{C^k} \|g\|_{C^k}.$$

Here all the integrals are taken with respect to η_G .

1.5. **Summing connections over a lattice.** Continuing the notation from the previous two subsections, define

$$Z: H_{0-} \times H_{+} \to G, \qquad (h_{0-}, h_{+}) \mapsto h_{0-}h_{+}^{-1}$$

and

$$Z_t: H_{0-} \times H_+ \to G, \qquad (h_{0-}, h_+) \mapsto h_{0-} \exp(tA) h_+^{-1}.$$

We observe that Z maps $\eta_{H_{0-}\times H_{+}}^{L}$ to η_{G} restricted to $H_{0-}H_{+}$, and Z_{t} maps $\eta_{H_{0-}\times H_{+}}^{L}$ to $e^{tK_{A}}$ times the same restriction of η_{G} .

Define, for f a function on $H_{0-} \times H_{+}$ and $r, s \in G$,

$$\Sigma_t(f, r, s) = \sum_{\gamma \in \Gamma} ((Z_t)_* f)(r^{-1} \gamma s).$$

The meaning of Σ_t can be understood through the following example. Choose $A_- \subset H_-$, $A_0 \subset H_0$ and $A_+ \subset H_+$. Let $f(h_-h_0, h_+) = \chi_{A_-}(h_-)\chi_{A_0}(h_0)\chi_{A_+}(h_+)$. Then $\Sigma_t(f, r, s)$ counts the number of ways to start in rA_- , apply (right-multiply by) $\exp(tA)$, apply something in A_0 , and end in γsA_+ for some $\gamma \in \Gamma$.

We can normalize η_G so that Γ has covolume 1, and we can then normalize $\eta_{H_0-\times H_+}^L$ accordingly. If we were to replace Γ with randomly chosen points in G with density 1, then the expected value of $\Sigma_t(f, r, s)$ would be

$$\int_{G} (Z_{t})_{*} f = e^{tK_{A}} \int_{H_{0-} \times H_{+}} f.$$

We claim that this is approximately correct for an actual lattice Γ , a large t, and a reasonable f.

For any $f: G \to \mathbb{R}$ and $\delta > 0$, let $M_{\delta}(f)(p) = \sup_{B_{\delta}(p)} f$, and $m_{\delta}(f)(p) = \inf_{B_{\delta}(p)} f$. For $h \in G$, let $\epsilon_h = \min\left(\frac{1}{2}\inf_{\gamma \in \Gamma \setminus \{1\}} d(h, \gamma h), 1\right)$. The following is the main result of this paper.

Theorem 1.3. We can find $a \equiv a(G, A)$ such that for all lattices $\Gamma < G$, t > 0, and $g, h \in G$ with $\epsilon_g, \epsilon_h > \delta$ (where $\delta = C(\Gamma)e^{-aqt}$), and $f: H_{0-} \times H_+ \to \mathbb{R}$ measurable, bounded, and compactly supported, we have

$$(1 - \delta) \int_{H_{0-} \times H_+} m_{\delta}(f) \le e^{-tK_A} \Sigma_t(f, g, h) \le (1 + \delta) \int_{H_{0-} \times H_+} M_{\delta}(f).$$

(In the case where Γ is a uniform lattice, we can ignore the requirements on ϵ_q and ϵ_q , which will hold automatically).

Corollary 1.4. With a, g, h, t, δ as above. Suppose $S \subset H_{0-} \times H_{+}$ is measurable and bounded. Then

$$(1 - \delta)\mathcal{N}_{-\delta}(S) < e^{-tK_A} \# (Z_t(S) \cap g\Gamma h) < (1 + \delta)\mathcal{N}_{\delta}(S).$$

The following Proposition will be proven in Section 2; we will use it now to prove Theorem 1.3.

Proposition 1.5. Let δ and Γ be as in Theorem 1.3. For all t > 0 there is $\psi^t \colon H_{0-} \times H_+ \to [0, \infty)$ with $\int \psi^t = 1$ and with support in a δ -neighborhood of the identity such that for all $g, h \in G$ with $\epsilon_g, \epsilon_h > \delta^{1/d}$,

$$\left| e^{-tK_A} \Sigma_t(\psi^t, g, h) - \int \psi^t \right| \le \delta.$$

The following Lemma will be used to prove Theorem 1.3 using Lemma 1.5.

Lemma 1.6. For any measure α on $H_{0-} \times H_{+}$,

(3)
$$\Sigma_t(\alpha * \psi, r, s) = \int \Sigma_t(\psi, rh_{0-}, sh_+) \alpha(h_{0-}, h_+).$$

Proof. It is enough to show (3) in the case where α is a point mass $\delta_{(h_0,h_+)}$, and in this case the identity is straightforward to verify. \square

As a corollary to this Lemma, we observe, letting $|\alpha|$ denote the total mass of α , and assuming supp $\psi \in B_{\delta}(1)$,

$$|\alpha| \inf_{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h) \leq \Sigma_{t}(\alpha * \psi, r, s) \leq |\alpha| \sup_{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h).$$

We then observe that

$$f \leq M_{\delta} f * \psi \eta_{H_{0-} \times H_{+}}^{L}$$

$$\leq \overline{\Delta}(\psi)(M_{\delta} f) \eta_{H_{0-} \times H_{+}}^{L} * \psi \quad \text{(by Lemma 1.1)}$$

and hence, by Lemma 1.6,

(4)
$$\Sigma_{t}(f, r, s) \leq \overline{\Delta}(\psi) \left(\int M_{\delta}(f) \eta_{H_{0-} \times H_{+}}^{L} \right) \sup_{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_{t}(\psi, g, h)$$

and likewise

(5)
$$\Sigma_t(f, r, s) \ge \underline{\Delta}(\psi) \left(\int m_{\delta}(f) \eta_{H_{0-} \times H_+}^L \right) \inf_{\substack{g \in B_{\delta}(r) \\ h \in B_{\delta}(s)}} \Sigma_t(\psi, g, h).$$

Now we can prove Theorem 1.3.

Proof of Theorem 1.3 given Proposition 1.5. We observe that

$$e^{-tK_A} \Sigma_t(f, g, h) \leq e^{-tK_A} \overline{\Delta}(\psi^t) \left(\int M_\delta(f) \right) \sup_{\substack{g \in B_\delta(r) \\ h \in B_\delta(s)}} \Sigma_t(\psi^t, g, h)$$

$$\leq (1 + O(\delta)) \left(\int M_\delta(f) \right) \left(\int \psi^t + \delta \right)$$

$$= (1 + O(\delta)) \left(\int M_\delta(f) \right),$$

and we likewise use $m_{\delta}(f)$ to get the lower bound for $e^{-tK_A}\Sigma_t(f,g,h)$.

1.6. **Injectivity radius.** We have fixed a semi-simple Lie group G, a lattice $\Gamma \subset G$, and a left-invariant metric (determined by a left-invariant Riemannian metric) $d(\cdot, \cdot)$ on G. Recall $\epsilon_g = \min(\frac{1}{2}\inf_{\gamma \in \Gamma}d(g, \gamma g), 1)$. We say that $f: G \to \mathbb{R}$ is coarsely Lipshitz if there is some K such that |f(g) - f(g')| < K when d(g, g') < 1. We then have

Lemma 1.7. The function $g \mapsto \log(\epsilon_g)$ is coarsely Lipschitz on all of G.

Proof. It's enough to show that there exist ϵ , K such that for all $g, \gamma \in G$,

(6)
$$d(gh, \gamma gh) < Kd(g, \gamma g)$$

when $d(h, 1) < \epsilon$. Equation (6) is equivalent to

$$d(h^{-1}g^{-1}\gamma gh, \mathbf{1}) < Kd(g^{-1}\gamma g, \mathbf{1}),$$

so letting $u = g^{-1}\gamma g$, we must show that

(7)
$$d(C_{h^{-1}}u, \mathbf{1}) < Kd(u, \mathbf{1})$$

(when h is close to $\mathbf{1}$). We have

$$d(C_{h^{-1}}u, \mathbf{1}) < d(u, \mathbf{1}) + 2d(h, \mathbf{1}),$$

so it is clear that (7) holds except possibly when u is close to 1. So we can write $u = \exp(S)$, $h = \exp(H)$, and then we must show that

$$d(\exp(e^{-\operatorname{ad}_H}S), \mathbf{1}) < Kd(\exp(S), \mathbf{1}),$$

which is tantamount to showing that $e^{-\operatorname{ad}_H}$ is bounded in norm when H is small.

2. The counting estimate for the test functions

2.1. An *a priori* counting estimate. We begin in our setting of a Lie group G with a chosen $A \in \mathfrak{g}$ that in turn defines $H_-, H_0, H_+ < G$, and a lattice $\Gamma < G$. We will begin with the following volume estimate:

Lemma 2.1. When B is a sufficiently small ball around 1, we have

$$\eta_G(B\exp(tA)B) \le Ce^{tK_A}$$
.

Proof. We recall that in our case that G and H_+ are unimodular. We let B_{0-}, B_+ be the unit balls around the identity in H_{0-} and H_+ . We observe that

$$B \exp(tA)B \subset B_{0-} \exp(tA)B_{+}$$

and

$$\eta_{H_+}(\exp(tA)B_+\exp(-tA)) = e^{tK_A}\eta_{H_+}(B_+).$$

Then we have

$$\eta_G(B \exp(tA)B) \leq \eta_G(B_{0-} \exp(tA)B_+)
= \eta_G(B_{0-} \exp(tA)B_+ \exp(-tA))
= \eta_{H_{0-}}^L(B_{0-})\eta_{H_+}(\exp(tA)B_+ \exp(-tA))
= e^{tK_A}\eta_{H_{0-}}^L(B_{0-})\eta_{H_+}(B_+)
= Ce^{tK_A}.$$

Let ϵ_G be half the radius of the ball B in Lemma 2.1. For $h \in G$, let $\epsilon_h = \min\left(\frac{1}{2}\inf_{\gamma \in \Gamma \setminus \{1\}} d(h, \gamma h), \epsilon_G\right)$, and let B_h be the ball of radius ϵ_h (around the identity), and let $v_h = \eta_G(B_h)$. We observe that $v_h \approx \epsilon_h^d$. From the volume estimate of Lemma 2.1 we can prove the following counting estimate:

Lemma 2.2. Take
$$B \equiv B_{\epsilon_G}(\mathbf{1})$$
. For all $g, h \in G$, we have $\#(g\Gamma h \cap B \exp(tA)B) < C(\Gamma)e^{K_A t}/v_h$.

Proof. We have that

$$\#(g\Gamma h \cap B \exp(tA)B) < \eta_G(N_{\epsilon_h}(B \exp(tA)B))/v_h.$$

We observe that

$$N_{\epsilon_b}(B\exp(tA)B) \subset B\exp(tA)\hat{B}$$

where $\hat{B} \equiv B_{2\epsilon_G}(1)$. Moreover, by Lemma 2.1,

$$\eta_G(\hat{B}\exp(tA)\hat{B}) \le Ce^{tK_A}$$
. \square

2.2. Estimates with linearly complementary subgroups. In this subsection, we consider a more general situation where G is an arbitrary Lie group, A and B are Lie subgroups of G with Lie algebras \mathfrak{a} and \mathfrak{b} , where $A \cap B = \{1\}$ and $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$ as vector spaces.

We assume that \mathfrak{a} and \mathfrak{b} are equipped with inner products; this determines an inner product on \mathfrak{g} , and left invariant metrics and left Haar measures on A, B and G.

Lemma 2.3. Suppose $a_0, a_1 \in A$, $b_0, b_1 \in B$ are all sufficiently close to the identity and that $a_0b_0 = b_1a_1$. Let $D = \max(|\log b_0|, |\log a_1|)$. Then

$$|\log a_0| \le 2D$$
 and $|\log b_1| \le 2D$

Proof. We have

 $\log a_0 + \log b_0 + O(|\log a_0| |\log b_0|) = \log b_1 + \log a_1 + O(|\log b_1| |\log a_1|)$ and hence

$$\log a_0 + \log b_0 + O(|\log a_0|D) = \log b_1 + \log a_1 + O(|\log b_1|D)$$

and therefore, because $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$,

$$\log a_1 = \log a_0 + O(ED)$$

$$\log b_1 = \log b_0 + O(ED)$$

where $E = |\log a_0| + |\log b_1|$. The Lemma follows because E is assumed to be small.

Lemma 2.4. Suppose that $a_0, a_1 \in A$, $b_0, b_1 \in B$, and a_0 and b_1 are close to the identity and $a_0b_0 = b_1a_1$. Then b_0 and a_1 are also close to the identity.

Proof. We can write

$$b_0 = a_0^{-1} b_1 a_1 = b_1' a_0' a_1$$

for some $b'_1 \in B$, $a'_0 \in A$ close to the identity. But then $a'_0 a_1 = b'_1^{-1} b_0 \in A \cap B = \{1\}.$

Lemma 2.5. Suppose we have $\hat{a}, \check{a} \in A$, and $\hat{b}, \check{b} \in B$, with \check{a}, \check{b} sufficiently close to the identity. Suppose further we have

$$\hat{a}\check{b} = \nu \hat{b}\check{a}$$

for some $\nu \in G$. Then we can write $\nu = \nu_a \nu_b$, with $\nu_a \in A$, $\nu_b \in B$.

Proof. We can find $a \in A, b \in B$ (close to the identity) such that $ab = \hat{b}\hat{a}^{-1}$. Then

$$\nu = \hat{a}\check{b}\check{a}^{-1}\hat{b}^{-1} = (\hat{a}a)(b\hat{b}^{-1}).$$

Lemma 2.6. Let $\hat{\psi}_A$, $\check{\psi}_A$ be functions on A, and $\hat{\psi}_B$, $\check{\psi}_B$ be functions on B, and let D be sufficiently small. Assume

- (1) supp $\check{\psi}_A$, supp $\check{\psi}_B$ are supported in the D neighbourhood of the identity, and
- (2) $\check{\psi}_A$ and $\check{\psi}_B$ are nonnegative on their domains, and
- (3) $\int \check{\psi}_A = \int \check{\psi}_B = 1$.

Let $E_A = \|\hat{\psi}_A\|_{C^1}$ (computed on the ball of radius 2D around the identity), and define E_B analogously. Then

$$\left| \int_{G} \left(\hat{\psi}_{A} \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) - \hat{\psi}_{A}(1) \hat{\psi}_{B}(1) \right| \leq C_{A,B} D E_{A} E_{B}.$$

Proof. By Lemmas 2.3 and 2.4, the integrand is supported on the product (in either order) of the balls of radius 2D (around 1) in A and B. Hence

$$\left| \int_{G} \left(\hat{\psi}_{A} \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) - \int_{G} \left(\left(\hat{\psi}_{A}(1) \mathbf{1}_{A} \right) \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) \right|$$

$$\leq \int_{G} \left(\left(2DE_{A}\mathbf{1}_{A} \right) \circledast \check{\psi}_{B} \right) \cdot \left(\left| \hat{\psi}_{B} \right| \circledast \check{\psi}_{A} \right)$$

$$\leq \int_{G} \left(\left(2DE_{A}\mathbf{1}_{A} \right) \circledast \check{\psi}_{B} \right) \cdot \left(E_{B}\mathbf{1}_{B} \circledast \check{\psi}_{A} \right)$$

$$< 2DE_{A}E_{B} \mathcal{S},$$

where $S = \int_C (1_A \circledast \check{\psi}_B)(1_B \circledast \check{\psi}_A)$. Similarly

$$\left| \int_{G} \left((\hat{\psi}_{A}(1)1_{A}) \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) - \int_{G} \left((\hat{\psi}_{A}(1)1_{A}) \circledast \check{\psi}_{B} \right) \cdot \left((\hat{\psi}_{B}(1)1_{B}) \circledast \check{\psi}_{A} \right) \right|$$

$$\leq 2DE_{A}E_{B} \mathcal{S}.$$

Hence by the triangle inequality we get

$$\left| \int_{G} \left(\hat{\psi}_{A} \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) - \hat{\psi}_{A}(1) \hat{\psi}_{B}(1) \mathcal{S} \right|$$

$$\leq 2D(E_{A}E_{B} + E_{B}E_{A}) \mathcal{S}.$$

It remains to estimate S. Let **B** be the ball of radius 2D around the identity in $A \times B$. We define the map $\mathbf{B} \to G$ as follows. Given $(a, b) \in \mathbf{B}$, we solve ab' = ba' for $a' \in A, b' \in B$ (by solving $b'a'^{-1} = a^{-1}b$), and then let $\rho(a, b) = ab'$.

Then

$$S = \int_{A \times B} \check{\psi}_A \times \check{\psi}_B \, d\rho^* (\eta_G^L).$$

Moreover,

$$\operatorname{Jac}\rho \equiv \frac{|d\rho^*(\eta_G^L)|}{|d(\eta_A^L\times\eta_B^L)|}$$

satisfies $\operatorname{Jac} \rho(a,b) = 1 + O(|\log a| + |\log b|)$. Therefore

$$\int_{A\times B} \check{\psi}_A \times \check{\psi}_B \, d\rho^* \eta_G^L = \int_{A\times B} \check{\psi}_A \times \check{\psi}_B (1 + O(D)) \, d(\eta_A^L \times \eta_B^L)$$
$$= 1 + O(D).$$

(In fact we can get $1 + O(D^2)$, but we will not need this.) We conclude that

$$\left| \int_{G} \left(\hat{\psi}_{A} \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) - \hat{\psi}_{A}(1) \hat{\psi}_{B}(1) \mathcal{S} \right| < C_{A,B} D E_{A} E_{B}$$

when D is sufficiently small.

Corollary 2.7. Suppose that the conditions of Lemma 2.6 hold, except for assumption 3: the normalization of $\hat{\psi}_A$ and $\hat{\psi}_B$. Let $I_A = \int_G \hat{\psi}_A$, and $I_B = \int_G \hat{\psi}_B$. Then

$$\left| \int_{G} \left(\hat{\psi}_{A} \circledast \check{\psi}_{B} \right) \cdot \left(\hat{\psi}_{B} \circledast \check{\psi}_{A} \right) - I_{A} I_{B} \hat{\psi}_{A}(1) \hat{\psi}_{B}(1) \right| \leq C_{A,B} I_{A} I_{B} D E_{A} E_{B}.$$

Moveover, letting $I'_A = \int \exp^* \hat{\psi}_A$ and $I'_B = \int \exp^* \hat{\psi}_B$, the exact same statement holds with I_A and I_B replaced with I'_A and I'_B .

Proof. The Corollary is clear for I_A and I_B ; let us prove it for I'_A and I'_B . We have $I'_A = (1 + O(D))I_A$ and $I'_B = (1 + O(D))I_B$ and therefore

$$\left| I_A I_B \hat{\psi}_A(\mathbf{1}) \hat{\psi}_B(\mathbf{1}) - I'_A I'_B \hat{\psi}_A(\mathbf{1}) \hat{\psi}_B(\mathbf{1}) \right| \le C I'_A I'_B D \psi_A(\mathbf{1}) \hat{\psi}_B(\mathbf{1})$$

$$\le C I'_A I'_B D E_A E_B,$$

which is exactly what we require.

2.3. **Defining the bump functions.** Let us fix a smooth function $g: [0, \infty) \to [0, \infty)$ such that all the derivatives of g at 0 are zero, $\|g\|_{\infty} = 1$, and supp $g \subset [0, 1)$. Let us then define Ξ_d on \mathbb{R}^d , for $d \in \mathbb{Z}^+$, by $\Xi_d(x) = C_d g(|x|)$, where C_d is such that $\int \Xi_d = 1$. For $t \geq 0$, let us then define Ξ_d^t by

$$\Xi_d^t(x) = e^{dt} \Xi_d(e^t x).$$

So Ξ_d^t has integral 1, is supported in the ball of radius e^{-t} around 0, has sup norm at most $C_d e^{dt}$, and $\|\Xi_d^t\|_{C^k} \leq C_d e^{(d+k)t}$. Because

 Ξ_d^t is rotationally symmetric, it is well-defined on any vector space of dimension d that has an inner product.

Let H be a Lie group equipped with a left-invariant metric, and let \mathfrak{h} be its Lie algebra. We can define $\Xi_{\mathfrak{h}}^t$ on \mathfrak{h} to be Ξ_d^t , and we then let ξ_H^t on H be defined by

(10)
$$\xi_H^t(\exp(X)) = \Xi_h^t(X);$$

this will certainly make sense when t is sufficiently large.

Returning now to the setting of Section 1, we let $m = \max(16(d +$ $\max(k,1), \lambda_1^{-1}$, where d is the dimension of G, k is as in equation (2), and λ_1 is the least positive eigenvalue for ad_A [or the negative of the least negative one?]. We then let b = 1/m and $a = 1/m^2$. Letting q be the rate of mixing, we write

$$egin{align} \Psi^t_+ &= \Xi^{aqt}_{\mathfrak{h}_+} & \Psi^t_0 &= \Xi^{aqt}_{\mathfrak{h}_0} \ \Psi^t_- &= \Xi^{aqt}_{\mathfrak{h}_-} & ilde{\Psi}^t_0 &= \Xi^{4bqt}_{\mathfrak{h}_0} \ \end{split}$$

and we let $\Psi^t_{0-} = \Psi^t_0 \times \Psi^t_-$, and $\tilde{\Psi}^t_{0-} = \tilde{\Psi}^t_0 \times \Psi^t_-$. We then define ψ^t_+ and its relatives by the direct analogue of Equation (10).

We further define

$$\dot{\psi}_{+}^{t} = C_{\exp(tA/2)}^{*} \psi_{+}^{t} \qquad \dot{\psi}_{0-}^{t} = C_{\exp(-tA/2)}^{*} \tilde{\psi}_{0-}^{t}
\dot{\psi}_{+}^{t} = C_{\exp(-tA/2)}^{*} \psi_{+}^{t} \qquad \dot{\psi}_{0-}^{t} = C_{\exp(tA/2)}^{*} \psi_{0-}^{t}.$$

Similarly we have $\check{\Psi}_+ = C^*_{\exp(t\operatorname{ad}_A/2)}\Psi_+$ etc. We let $\psi^t = \psi^t_{0-} \circledast \psi^t_+$. We apply Corollary 2.7 to the setting of the ψ 's.

Lemma 2.8. With a, b taken as above, and C depending only on H_0 , etc., we have

$$\left| e^{K_A t} \int_G \left(\delta_{\mu_{0-}} * \hat{\psi}_{0-}^t \circledast \check{\psi}_+^t \right) \cdot \left(\delta_{\mu_+} * \hat{\psi}_+^t \circledast \check{\psi}_{0-}^t \right) - \hat{\psi}_{0-}^t (\mu_{0-}^{-1}) \hat{\psi}_+^t (\mu_+^{-1}) \right| < C e^{-2bqt}.$$

Proof. We have $(\delta_{\mu_0-} * \hat{\psi}_{0-}^t)(1) = \hat{\psi}_0^t(\mu_{0-}^{-1})$ and

$$\|\delta_{\mu_{0-}} * \hat{\psi}_{0-}^t\|_{C^1} = \|\hat{\psi}_{0-}^t\|_{C^1} \le \|\psi_{0-}^t\|_{C^1} \le Ce^{(d+1)aqt} \le Ce^{bqt}.$$

Likewise we have $\delta_{\mu_+} * \hat{\psi}_+^t = \hat{\psi}_-^t(\mu_+^{-1})$ and

$$\|\delta_{\mu_+} * \hat{\psi}_+^t\|_{C_1} = \|\hat{\psi}_+^t\|_{C_1} \le \|\psi_+^t\|_{C_1} \le Ce^{(d+1)aqt} \le Ce^{bqt}.$$

Moreover, the radius (around the identity) of the support of ψ_{+}^{t} is at most $e^{-aqt} \ll 1$, and radius of support of $\check{\psi}_{+}^{t}$ is therefore at most $e^{-\lambda_1 t} \leq e^{-4bqt}$. The radius of support of $\check{\psi}_{0-}^t$ is at most e^{-4bqt} . Putting this all together and applying Corollary 2.7, we obtain the Lemma. \Box 2.4. **Proving what must be proved.** We can now prove the following proposition, which immediately implies Proposition 1.5.

Proposition 2.9. There exists C (depending only on Γ) such that for all $g, h \in G$ such that $\epsilon_g, \epsilon_h > e^{-aqt/d}$, we have

$$\left| e^{-tK_A} \Sigma_t(\psi^t, g, h) - 1 \right| \le C e^{-aqt}.$$

Proof. The idea is to relate the sum in $\Sigma_t(\psi^t, g, h)$ to a mixing integral. We consider the functions $\delta_g * \psi_{0-}^t \circledast \psi_{+}^t$ and $\delta_h * \psi_{+}^t \circledast \tilde{\psi}_{0-}^t$ on G; they are supported in balls around g and h respectively, with radii $O(e^{-aqt})$ and $O(e^{-bqt})$. Our condition on ϵ_g and ϵ_h implies that the supports of these functions inject into $\Gamma \backslash G$, and hence we can think of them as functions on $\Gamma \backslash G$.

We then have, on the one hand, by exponential mixing in G,

(11)
$$\left| \int_{\Gamma \backslash G} (\delta_{g} * \psi_{0-}^{t} \circledast \psi_{+}^{t}) \cdot (\delta_{h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp(-tA)}) - \int_{\Gamma \backslash G} \psi_{0-}^{t} \circledast \psi_{+}^{t} \int_{\Gamma \backslash G} \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} \right|$$

$$< Ce^{-qt} \|\psi_{0-}^{t} \circledast \psi_{+}^{t}\|_{C^{k}} \|\psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t}\|_{C^{k}}$$

$$< Ce^{-qt} e^{(d+k)aqt} e^{(d+k)bqt} < Ce^{-qt/2}.$$

Moreover,

$$\int_{\Gamma \backslash G} \psi_{0-}^t \circledast \psi_+^t = \int_G \psi_{0-}^t \circledast \psi_+^t = (1 + O(e^{-bqt})) \int_{\mathfrak{g}} \exp^*(\psi_{0-}^t \circledast \psi_+^t) = 1 + O(e^{-bqt})$$

and likewise $\int_{\Gamma \backslash G} \psi_+^t \circledast \tilde{\psi}_{0-}^t = 1 + O(e^{-aqt})$, so

(12)
$$\left| \int_{\Gamma \setminus G} \psi_{0-}^t \circledast \psi_+^t \int_{\Gamma \setminus G} \psi_+^t \circledast \tilde{\psi}_{0-}^t - 1 \right| < Ce^{-aqt}.$$

On the other hand the first integral above is equal to

$$\sum_{\gamma \in \Gamma} \int_{G} (\delta_g * \psi_{0-}^t \circledast \psi_{+}^t) \cdot (\delta_{\gamma} * \delta_h * \psi_{+}^t \circledast \tilde{\psi}_{0-}^t * \delta_{\exp(-tA)}).$$

We can rewrite each term in the sum as

(13)
$$\int_{G} (\psi_{0-}^{t} \circledast \psi_{+}^{t}) \cdot (\delta_{g^{-1}\gamma h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp(-tA)}))$$

or

$$\int_{G} (\psi_{0-}^{t} \circledast \psi_{+}^{t} * \delta_{\exp(tA/2)}) \cdot (\delta_{g^{-1}\gamma h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{\exp(-tA/2)}).$$

We then have, letting $\eta = g^{-1}\gamma h$ and $\nu = \exp(-tA/2)\eta \exp(-tA/2)$,

$$\int_{G} \left(\psi_{0-}^{t} \circledast \psi_{+}^{t} * \delta_{\exp(tA/2)} \right) \cdot \left(\delta_{g^{-1}\gamma h} * \psi_{+}^{t} \circledast \tilde{\psi}_{0-}^{t} * \delta_{-\exp(tA/2)} \right)
= \int_{G} \left(\delta_{\exp(tA/2)} * \hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t} \right) \cdot \left(\delta_{\eta} * \delta_{\exp(-tA/2)} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t} \right)
= \int_{G} \left(\hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t} \right) \cdot \left(\delta_{\nu} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t} \right).$$

It follows from Lemma 2.5 that if the above integrand is ever nonzero, we can write $\nu = \nu_{0-}\nu_{+}$ for $\nu_{0-} \in H_{0-}$, $\nu_{+} \in H_{+}$. Then the above integral equals

(14)
$$\int_{G} \left(\delta_{\nu_{0-}^{-1}} * \hat{\psi}_{0-}^{t} \circledast \check{\psi}_{+}^{t} \right) \cdot \left(\delta_{\nu_{+}} * \hat{\psi}_{+}^{t} \circledast \check{\psi}_{0-}^{t} \right).$$

By Lemma 2.8,

(15)
$$e^{K_A t} \int_G \left(\delta_{\nu_{0-}^{-1}} * \hat{\psi}_{0-}^t \circledast \check{\psi}_+^t \right) \cdot \left(\delta_{\nu_+} * \hat{\psi}_+^t \circledast \check{\psi}_{0-}^t \right)$$

is approximately equal to

(16)
$$\hat{\psi}_{0-}^t(\nu_{0-})\hat{\psi}_+^t(\nu_+^{-1})$$

which equals

$$\psi_{0-}^t(C_{\exp(tA/2)}\nu_{0-})\psi_+^t(C_{\exp(-tA/2)}\nu_+^{-1})$$

which in turn equals

(17)
$$(Z_t)_*(\psi_{0-}^t \times \psi_+^t)(\eta) = (Z_t)_*(\psi_{0-}^t \times \psi_+^t)(g^{-1}\gamma h).$$

In fact, by Lemma 2.8, (15) and (16) differ by at most Ce^{-2bqt} .

If (17) is nonzero (for a given $\gamma \in \Gamma$), then the integrand in (15) is not identically zero, and likewise for the integrand of (13). By Lemma 2.2, because $\psi_{0-}^t \circledast \psi_+^t$ and $\psi_+^t \circledast \tilde{\psi}_{0-}^t$ are both supported on the unit ball around the identity, the number of γ for which the integrand of (13) is nonzero is at most Ce^{K_At}/v_h .

Therefore the sum of integrals (13) is approximately

$$e^{-K_A t} \Sigma_t(\psi_{0-}^t \times \psi_+^t, g, h),$$

and the difference is at most $Ce^{-2bqt}/v_h \leq Ce^{-bqt}$.

3. Applications

3.1. Haar measure as a volume form. As before, we let η_G^L denote the left Haar measure on G. We let $d\eta_G^L$ denote the associated volume form, so that

$$\int f d\eta_G^L$$

can be interpreted as the integral of f with respect to the Haar measure, or with respect to the volume form, with identical results. Then $d\eta_G^L(\mathbf{1})$ is a top-dimensional multilinear form on $T_{\mathbf{1}}G$; it determines the normalization of η_G^L and $d\eta_G^L$.

3.2. The Heteromodular homomorphism. We recall that $[\mathfrak{h}_0, \mathfrak{h}_+] = \mathfrak{h}_+$, and therefore $[H_0, H_+] = H_+$. For any $h_0 \in H_0$, we have $(C_{h_0})_*\eta_{H_+} = \chi(h_0)\eta_{H_+}$. We call χ the heteromodular homomorphism. We claim that $(C_{h_0})_*\eta_{H_-} = \chi(h_0)^{-1}\eta_{H_-}$ for any $h_0 \in H_0$. Moreover, $\chi \colon H_0 \to \mathbb{R}^+$ is a homomorphism; we let H_{00} be its kernel. Then $H_0 = \exp(tA) \times H_{00}$, because $\exp(tA)$ commutes with H_{00} .

Moreover, the pullback of $\eta_{H_{0-}}$ to $H_{-} \times H_{0}$ by the multiplication map is $\chi(h_0)(\eta_{H_{-}} \times \eta_{H_0})$. Likewise the pullback of η_G to $H_{-} \times H_0 \times H_+$ is $\chi(h_0)(\eta_{H_{-}} \times \eta_{H_0} \times \eta_{H_+})$.

3.3. Pullbacks of Haar Measure. Suppose E_{-} and E_{+} are Lie subgroups of G such that

$$\pi_{\mathfrak{h}_{\pm}}\colon \mathfrak{e}_{\pm} \to \mathfrak{h}_{\pm}$$

is an isomorphism. We define volume forms $d\eta_{E_{\pm}}$ on \mathfrak{e}_{\pm} by

$$d\eta_{E_{\pm}} = (\pi_{\mathfrak{h}_{\pm}}|_{\mathfrak{e}_{\pm}})^* d\eta_{H_{\pm}}.$$

We also let $E_0 = H_0$, and keep its volume form. Now we also have maps

$$\Sigma_H \colon \bigoplus \mathfrak{h}_i \to \mathfrak{g}$$

and

$$\Sigma_E \colon \bigoplus \mathfrak{e}_i \to \mathfrak{g},$$

just given by

$$\Sigma_H(h_-, h_0, h_+) = h_- + h_0 + h_+,$$

and likewise for E. Moreover, Σ_H is invertible, and $\Sigma_H^* \eta_G = \bigwedge_i \eta_{H_i}$ on $\bigoplus \mathfrak{h}_i$. We want to compare $\Sigma_E^* \eta_G$ and $\bigwedge_i \eta_{E_i}$.

To this end, we let $\tau_i : \mathfrak{h}_i \to \mathfrak{e}_i$ be $(\pi_{\mathfrak{h}_i}|\mathfrak{e}_i)^{-1}$; $T_i : \mathfrak{h}_i \to \mathfrak{h}_i$ be $\Sigma_H^{-1} \circ \Sigma_E \circ \tau_i$, and $T : \mathfrak{h}_i \to \mathfrak{h}_i$ be $\bigoplus T_i$. Then

(18)
$$\frac{\sum_{E}^{*} \eta_{G}}{\bigwedge_{i} \eta_{E_{i}}} = \frac{T^{*} \bigwedge_{i} \eta_{H_{i}}}{\bigwedge_{i} \eta_{H_{i}}} = \det T$$

Letting $T_j^i = \pi_{\mathfrak{h}_i} \circ T_j$, we have that T_i^i is the identity for each i, and thus

$$T = \begin{pmatrix} 1 & 0 & T_{+}^{-} \\ T_{-}^{0} & 1 & T_{+}^{0} \\ T_{-}^{+} & 0 & 1 \end{pmatrix}$$

and hence

(19)
$$\det T = \det \begin{pmatrix} 1 & T_{+}^{-} \\ T_{-}^{+} & 1 \end{pmatrix} = \det (\mathbf{1} - T_{-}^{+} T_{+}^{-}).$$

We let $m: E_- \times E_0 \times E_+ \to G$ be the multiplication map (so $m(a_-, a_0, a_+) = a_- a_0 a_+$).

Lemma 3.1. We have

$$m^* d\eta_G(a_-, a_0, a_+) = q(a_0) d\eta_{E_-}^L \wedge d\eta_{H_0} \wedge d\eta_{E_+}^R$$

where

$$q(a_0) = q(a_0; E_-, E_+) = \chi(a_0) \det(\mathbf{1}_{\mathfrak{h}_+} - T_+^- \circ \operatorname{Ad}_{a_0}^{-1}|_{\mathfrak{h}_+} \circ T_-^+ \circ \operatorname{Ad}_{a_0}|_{\mathfrak{h}_-}).$$

Proof. We first observe that $m^*d\eta_G$ must have the form given in the first line (for some q), because it is invariant under left multiplication in E_- and right multiplication in E_+ . Then we observe that, for $u \in H_0$,

$$L_u \circ m = m \circ ((a_-, a_0, a_+) \mapsto (C_u a_-, u a_0, a_+))$$

(where on the left hand side m is $m: E_- \times H_0 \times E_+ \to G$, and the right hand side m is $m: C_u E_- \times H_0 \times E_+ \to G$). Since η_G is invariant under pullback by L_u , we obtain

$$q(h_0; E_-, E_+) = \frac{1}{\chi(u)} q(uh_0; C_u E_-, E_+),$$

and letting $u = h_0^{-1}$,

(20)
$$q(h_0; E_-, E_+) = \chi(h_0)q(\mathbf{1}; C_{h_0^{-1}}E_-, E_+).$$

When we replace \mathfrak{e}_{-} with $\mathrm{Ad}_{u} \,\mathfrak{e}_{-}$, we replace T_{-}^{+} with $\mathrm{Ad}_{u} \circ T_{-}^{+} \circ \mathrm{Ad}_{u}^{-1}$. The Lemma then follows from (18), (19), and (20).

3.4. A more general setting. Suppose now that that E_{-} and E_{+} are subgroups such that

(21)
$$\ker \pi_{\mathfrak{h}_{\pm}}|_{\mathfrak{e}_{\pm}} \subset \mathfrak{h}_{0}.$$

We let $E_{0\pm} = E_{\pm} \cap H_0$, and we let E be the quotient of $E_{-} \times E_{0} \times E_{+}$ by $(e_{-}e_{0-}, e_{0}, e_{0+}e_{+}) \sim (e_{-}, e_{0-}^{-1}e_{0}e_{0+}^{-1}, e_{+})$.

We let $\hat{\mathfrak{e}}_{\pm}$ be a complement of $\mathfrak{e}_{0\pm}$ in \mathfrak{e}_{\pm} , and we let $\eta_{\hat{\mathfrak{e}}_{\pm}} = (\pi_{\mathfrak{h}_{\pm}}|_{\hat{\mathfrak{e}}_{\pm}})^{-1}$. Then $\eta_{\hat{\mathfrak{e}}_{-}} \wedge \eta_{H_0} \wedge \eta_{\hat{\mathfrak{e}}_{-}}$ effectively defines a volume form on T_0E , and this form is independent of our choice of complements $\hat{\mathfrak{e}}_{\pm}$. What is more, we can define T as before with $\hat{\mathfrak{e}}_{\pm}$ in the place of \mathfrak{e}_{\pm} , and the T_{\pm}^{\mp} will be independent of the choice of $\hat{\mathfrak{e}}_{\pm}$, and we will again have

$$\Sigma_E^* \eta_G = \det(\mathbf{1} - T_-^+ T_+^-) \eta_E.$$

So far we have just defined η_E at the identity. We now suppose that $\eta_{E_-}^L$ is invariant under right multiplication by E_{0-} , and $\eta_{E_+}^R$ is invariant under left multiplication by E_{0+} . (This of course happens if both E_- and E_+ are unimodal). Then $\eta_{E_-}^L \times \eta_{E_0} \times \eta_{E_+}^R$ is invariant by the given action of $E_{0-} \times E_{0+}$, and we hence obtain a measure η_E (using our normalization on \mathfrak{e}) that is left-invariant by E_- , right-invariant by E_+ , and bi-invariant by $E_0 = H_0$. We can then apply the same reasoning as in Lemma 3.1 to obtain (where $m: E \to G$ is the quotient of $m: E_- \times E_0 \times E_+ \to G$):

Lemma 3.2. We have

$$m^*d\eta_G(a_-, a_0, a_+) = q(a_0)d\eta_E.$$

where $m: E \to G$ is the quotient of the multiplication map and $q(a_0) = q(a_0; E_-, E_+) = \chi(a_0) \det(\mathbf{1}_{\mathfrak{h}_+} - T_+^- \circ \operatorname{Ad}_{a_0}^{-1}|_{\mathfrak{h}_+} \circ T_-^+ \circ \operatorname{Ad}_{a_0}|_{\mathfrak{h}_-}).$

3.5. Control of distance and measure for ζ_t and ζ . We define $\zeta_t \colon G \times H_0 \times G \to G$ by $\zeta_t(e_-, h_0, e_+) = e_- h_0 \exp(tA) e_+$. Given $a_- \in G$ we can write $a_- = b_-^- b_0^- b_+^-$, and likewise for $a_+ \in G$. Then we have a map $\zeta \colon G \times H_0 \times G \to G$ defined by $\zeta(a_-, a_0, a_+) = b_-^- b_0^- a_0 b_0^+ b_+^+$.

Lemma 3.3. For all compact $K \subset G \times H_0 \times G$, there exists C such that for all $a \in K$,

$$d(Z^{-1}(\zeta(a)), Z_t^{-1}(\zeta_t(a))) < Ce^{-\lambda_1 t}.$$

Proof. Given $a = (a_-, a_0, a_+) \in G \times H_0 \times G$, we can write $a_- = b_-^- b_0^- b_+^-$ and likewise for a_+ . We can find unique $\check{b}_- \in H_-$ and $\check{b}_+ \in H_+$ such that

$$C_{\exp(tA/2)}^{-1}(b_{+}^{-})C_{a_0\exp(tA/2)}(b_{-}^{+}) = \check{b}_{-}\check{b}_{+}.$$

We then obtain

$$a_{-} \exp(tA) a_{0} a_{+} = b_{-}^{-} b_{0}^{-} b_{+}^{-} \exp(tA) a_{0} b_{-}^{+} b_{0}^{+} b_{+}^{+}$$

$$= b_{-}^{-} \exp(tA/2) b_{0}^{-} C_{\exp(tA/2)}^{-1} (b_{+}^{-}) C_{a_{0} \exp(tA/2)} (b_{-}^{+}) a_{0} b_{0}^{+} \exp(tA/2) b_{+}^{+}$$

$$= b_{-}^{-} \exp(tA/2) b_{0}^{-} \check{b}_{-} \check{b}_{+} a_{0} b_{0}^{+} \exp(tA/2) b_{+}^{+}$$

$$= b_{-}^{-} \check{b}_{-} \exp(tA/2) b_{0}^{-} a_{0} b_{0}^{+} \exp(tA/2) \check{b}_{+} b_{+}^{+}$$

$$= b_{-}^{-} \check{b}_{0}^{-} a_{0} b_{0}^{+} \exp(tA) \check{b}_{+} b_{+}^{+}$$

$$= b_{-}^{-} b_{0}^{-} a_{0} b_{0}^{+} \check{b}_{-} \exp(tA) \check{b}_{+} b_{+}^{+}.$$

Hence

$$Z_t^{-1}(\zeta_t(a)) = (b_-^- b_0^- a_0 b_0^+ \dot{\tilde{b}}_-, (b_+^+)^{-1} \dot{\tilde{b}}_+^{-1})$$

while

$$Z^{-1}(\zeta(a)) = (b_{-}^{-}b_{0}^{-}a_{0}b_{0}^{+}, (b_{+}^{+})^{-1}).$$

We observe that \check{b}_- and \check{b}_+ lie in a $O(e^{-\lambda_1 t})$ neighborhood of 1. The Lemma follows.

We observe that in the setting of Section 3.4, ζ and ζ_t descend to E, and we can restate Lemma 3.1 as

Lemma 3.4. For all compact $K \subset E$, there exists C such that for all $a \in K$,

$$d(Z^{-1}(\zeta(a)), Z_t^{-1}(\zeta_t(a))) < Ce^{-\lambda_1 t}.$$

Now (in the less general setting), let's restrict ζ and ζ_t to $E_- \times H_0 \times E_+$.

Lemma 3.5. We have, on any compact $K \subset E_- \times H_0 \times E_+$,

(22)
$$\left| \frac{e^{-tK_A} \zeta_t^* \eta_G}{\chi(h_0) \eta_{E_-}^L \times \eta_{H_0} \times \eta_{E_+}^R} - 1 \right| < C_K e^{-2\lambda_1 t}.$$

Proof. We let $M = \max(\|T_-\|, \|T_+\|)$. Then for all h_0 for which $\|\mathrm{Ad}_{h_0}\|, \|\mathrm{Ad}_{h_0}^{-1}\| < M'$, we have

$$q(h_0 \exp(tA), E_-, E_+) = e^{tK_A} \chi(h_0) \det(\mathbf{1}_{\mathfrak{h}_+} - T_+ \circ \operatorname{Ad}_{h_0 \exp(tA)}^{-1} \mid_{\mathfrak{h}_+} \circ T_- \circ \operatorname{Ad}_{h_0 \exp(tA)} \mid_{\mathfrak{h}_-}).$$

Now, for any linear transformation $T: V \to V$ with ||T|| < 1,

$$|1 - \det(\mathbf{1} - T)| < 2(\dim V) ||T||.$$

Therefore, for t sufficiently large given M and M', we have

$$\left|1 - \det(\mathbf{1}_{\mathfrak{h}_{+}} - T_{+} \circ \operatorname{Ad}_{h_{0} \exp(tA)}^{-1} |_{\mathfrak{h}_{+}} \circ T_{-} \circ \operatorname{Ad}_{h_{0} \exp(tA)} |_{\mathfrak{h}_{-}})\right| < 2(\dim H_{+})M^{2}M'^{2}e^{-2\lambda_{1}t}$$
when the right hand side is less than 1.

We have the following remarkable corollary, which may or may not have a simpler proof:

Corollary 3.6.

(23)
$$\zeta^* d\eta_G = \chi(h_0) \eta_{E_-}^L \times \eta_{H_0} \times \eta_{E_+}^R$$

Proof. Let $d\eta_{E_{\pm}} = \zeta * d\eta_G = (\zeta \circ Z^{-1})^* d\eta_{H_{0-} \times H_+}^L$, and let $d\eta_{E_{\pm}^t} = e^{-K_A t} \zeta_t^* d\eta_G = (\zeta_t \circ Z_t^{-1})^* d\eta_{H_{0-} \times H_+}^L$. We let $\eta_{E_{\pm}}$ be the measure from

integrating against $d\eta_{E_{\pm}}$, and likewise for $\eta_{E_{\pm}^t}$. By Lemmas 3.3 and 3.5, for any $A \subset E_- \times H_0 \times E_+$, and letting $t \to \infty$,

$$\eta_{E_{\pm}}(A) \leq \eta_{E_{\pm}^t}(\mathcal{N}_{e^{-2\lambda_1 t}}(A))$$
$$\to (\chi(h_0)\eta_{E_{-}}^L \times \eta_{H_0} \times \eta_{E_{+}}^R)(A).$$

We likewise obtain

$$\eta_{E_{\pm}}(A) \ge \eta_{E_{\pm}^t}(\mathcal{N}_{-e^{-2\lambda_1 t}}(A)$$

$$\to (\chi(h_0)\eta_{E_-}^L \times \eta_{H_0} \times \eta_{E_+}^R)(\operatorname{Int} A).$$

As $\eta_{E_{\pm}}$ is a smooth measure, the Corollary follows.

In the more general setting, we can similarly prove

Lemma 3.7.

$$\zeta^* d\eta_G(a_-, a_0, a_+) = q(a_0) d\eta_E.$$

3.6. The application theorem. Suppose E_- and E_+ are as in Section 3.3. We let $\eta_{E_+} = \chi(h_0)\eta_{E_-}^L \times \eta_{H_0} \times \eta_{E_+}^R$.

Theorem 3.8. Let $K \subset E_- \times H_0 \times E_+$ be compact, and take $S \subset K$. For $t \geq t_0(E_-, E_+)$, let

$$S_t = \{a_- \exp(tA)a_0a_+ \mid (a_-, a_0, a_+) \in S\},\$$

Then, letting $\delta = C_{K,\Gamma}e^{-aqt}$, for $q = q(\Gamma)$, $a = a(E_-, E_+)$, and assuming $\epsilon(g), \epsilon(h) > \delta$,

(24)
$$(1 - \delta)\eta_{E_{\pm}}(\mathcal{N}_{-\delta}(S)) < e^{-tK_A} \#(S_t \cap g\Gamma h) < (1 + \delta)\eta_{E_{\pm}}(\mathcal{N}_{\delta}(S)),$$

where we take inner and outer neighborhoods in $E_- \times H_0 \times E_+$.

Proof. We let $S_t = \zeta_t(S)$. By Theorem 1.3, we have (25)

$$(1-\delta)\eta_{H_{0-}\times H_{+}}(\mathcal{N}_{-\delta}(Z_{t}^{-1}(S_{t}))) < e^{-tK_{A}}\#(S_{t}\cap g\Gamma h) < (1+\delta)\eta_{H_{0-}\times H_{+}}(\mathcal{N}_{\delta}(Z_{t}^{-1}(S_{t}))).$$

By Lemma 3.3, we have

$$Z_t^{-1}(S_t) \subset \mathcal{N}_{\delta}(Z^{-1}(\zeta(S)),$$

and hence

(26)
$$\mathcal{N}_{\delta}(Z_t^{-1}(S_t)) \subset \mathcal{N}_{2\delta}(Z^{-1}(\zeta(S))).$$

Taking $\zeta^{-1} \circ Z$ to be $C_K/2$ -Lipschitz on K, we have

(27)
$$(\zeta^{-1} \circ Z)(\mathcal{N}_{2\delta}((Z^{-1} \circ \zeta)(S))) \subset \mathcal{N}_{C_K\delta}(S);$$

combining (26) and (27), we obtain

(28)
$$\mathcal{N}_{\delta}(Z_t^{-1}(S_t)) \subset (Z^{-1} \circ \zeta)(\mathcal{N}_{C_K\delta}(S)).$$

We likewise obtain

(29)
$$\mathcal{N}_{-\delta}(Z_t^{-1}(S_t)) \supset (Z^{-1} \circ \zeta)(\mathcal{N}_{-C_K\delta}(S)).$$

Finally, by (22),

(30)
$$\eta_{H_{0-}\times H_{+}}((Z^{-1}\circ\zeta)(\mathcal{N}_{C_{K}\delta}(S))) = \eta_{E_{+}}(\mathcal{N}_{C_{K}\delta}(S)).$$

Combining
$$(25)$$
, (28) , (29) , and (30) , we obtain the Theorem.

We likewise have the following in our more general setting, where we compute the neighborhoods with respect to a given Riemannian metric ρ on E:

Theorem 3.9. Let $K \subset E$ be compact, and take $S \subset K$. Let $t \geq t_0(E)$, and let

$$S_t = \{a_- \exp(tA)a_0a_+ \mid [(a_-, a_0, a_+)] \in S\}.$$

Then, letting $\delta = C_{K,\Gamma,\rho}e^{-aqt}$,

$$(1 - \delta)\eta_{E_+}(\mathcal{N}_{-\delta}(S)) < e^{-tK_A} \#(S_t \cap g\Gamma h) < (1 + \delta)\eta_{E_+}(\mathcal{N}_{\delta}(S)).$$

where we take inner and outer neighborhoods in E (and multiply δ by a constant), and the (implicit) constants depend on K.

3.7. **Examples.** Let us now discuss some actual examples of counting situations.

Orthogeodesic connections in \mathbb{H}^3/Γ . Suppose that $\Gamma < \text{Isom}(\mathbb{H}^3)$ is a lattice (possibly nonuniform), and let $M = \Gamma \backslash \mathbb{H}^3$. Suppose that α and β are (oriented) geodesic segments in M. For each orthgeodesic connection η between α and β , we can record the feet of η on α and β , the length of η , and the monodromy of η (for example the angle that α , parallel translated along η , makes with β). We can even think of the real length of η and the monodromy of η as the complex length: it is the complex distance along η between α and β . In this way the set of such η is a set of points in $N^1(\alpha) \times N^1(\beta) \times \mathbb{C}/2\pi i\mathbb{Z}$.

In this example both E_{-} and E_{+} are the centralizer of the orthogonal flow, which is just the centralizer of the geodesic flow, conjugated by a rotation by $\pi/2$. We have

$$\eta_{E_{\pm}} = q(a_0)d\eta_{E_{-}}^L \wedge d\eta_{H_0} \wedge d\eta_{E_{+}}^R,$$

where $q(a_0) = C_0 e^{2a_0}$, and C_0 is a constant that I am currently too lazy to calculate. But $\eta_{E_-}^L$ and $\eta_{E_+}^R$ are just the natural measures on $N^1(\alpha)$ and $N^1(\beta)$, and η_{H_0} is the natural measure on $\mathbb{C}/2\pi\mathbb{Z}$. So taking $g, h \in \text{Isom}(\mathbb{H}^3)$ to translate our base frame to ones in $N^1(\alpha)$ and $N^1(\beta)$ respectively, Theorem 3.8 becomes

Theorem 3.10. The number of connections for a given subset $A \subset K \subset N^1(\alpha) \times N^1(\beta) \times S^1 \times [L, \infty)$ satisfies

$$(1 - \delta)\operatorname{Vol}(\mathcal{N}_{-\delta}(A)) < C(A)/(C_1\operatorname{Vol}(M)) < (1 + \delta)\operatorname{Vol}(\mathcal{N}_{\delta}(A))$$

where K is compact and $\delta = C_{K,\Gamma}e^{-qL}$, $q = q(\Gamma)$, provided that the height of one of the α or β projections of K is at most qL.

This theorem is sufficient for [KM12] and [KW18], but Theorems 3.8 and 3.9 have many other applications, such as counting connections (with specific monodromy) between points. For simplicity let us assume that M^n is hyperbolic, and let $x, y \in M$. We let σ_x be a section of the projection from frames at x to vectors at x, and likewise define σ_y . Then any subset of the natural quotient of $\mathcal{F}(x) \times H_0 \times \mathcal{F}(y)$ can be lifted to a subset of $T^1(x) \times H_0 \times T^1(y)$ via the sections σ_x and σ_y , and the measure on the quotient becomes the measure on $T^1(x) \times H_0 \times T^1(y)$.

Thus from Theorem 3.9 we obtain

Theorem 3.11. The number of connections for a given subset $A \subset K \subset T^1(x) \times H_0([L,\infty)) \times T^1(y)$ satisfies

(31)
$$(1 - \delta)\operatorname{Vol}(\mathcal{N}_{-\delta}(A)) < C(A)/(C_1\operatorname{Vol}(M)) < (1 + \delta)\operatorname{Vol}(\mathcal{N}_{\delta}(A))$$

where K is compact and $\delta = C_{K,\Gamma}e^{-qL}$, $q = q(\Gamma)$, provided that the height x and y is at most qL.

Here we should say a few words about the volume that appears in the upper and lower bounds of (31). It is $e^{\chi(a_0)}$ times the quotient of the product measure on $(a_0, a_0, a_+) \in E_- \times E_0 \times E_+$, and it is often natural and convenient to take a section of the quotient map, and use this to compute the measure.

For example, in the setting of Theorem 3.11, we can take sections of the projections $\mathcal{F}(x) \to T^1(x)$ and $\mathcal{F}(y) \to T^1(y)$. These give us a section σ of the projection $E_- \times E_0 \times E_+ \to E$. Hence, given $A \subset E$, we can think of it as $A \subset T^1(x) \times H_0 \times T^1(y)$, and $\eta_{E_{\pm}}(A)$ will just be $e^{\chi(a_0)}$ times the product measure of $T^1(x) \times H_0 \times T^1(Y)$. For a sufficiently smooth section, we can also use this latter product to compute our δ -neighborhood.

We can likewise count orthogeodesic connection in H^n , with n > 3, by again taking sections of the projection from the "aligned frame bundle" over a geodesic α to $N^1(\alpha)$, where a frame is aligned with α if its base point lies on α and its first vector is tangent to α .

Of course we can also make similar statements in other symmetric spaces, both rank 1 and higher rank.

References

- [KM12] Jeremy Kahn and Vladimir Markovic. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. *Ann. of Math.* (2), 175(3):1127–1190, 2012.
- [KW18] Jeremy Kahn and Alex Wright. Nearly Fuchsian surface subgroups of finite covolume Kleinian groups. arXiv preprint arXiv:1809.07211, 2018.