COUNTING CONNECTIONS IN A LOCALLY
SYMMETRIC SPACE

JEREMY KAHN AND ALEX WRIGHT

This is a preliminary draft provided for the purpose of verifying the
reference in [KW1§].

1. INTRODUCTION

1.1. An eigenspace factorization of a group. Let GG be a semisim-
ple Lie group of non-compact type, and let A be a nonzero semisimple
element of the Lie algebra g such that ad4 has all real eigenvalues.

Define h_ to be the subspace of g spanned by eigenvectors of ady4
with negative eigenvalue. Similarly let b, be spanned by eigenvectors
with positive eigenvalue, and hy = ker(ad4). Thus g is the direct sum
of h_, by, and bhy. By the Jacobi identity, h_, h,, and hy are Lie
sub-algebras (and h_ and b, are nilpotent); let H_, H, and Hj be the
corresponding Lie groups. Moreover, we observe that hoy = ho b by
is a Lie sub-algebra, and that the corresponding Lie subgroup Hy; is
equal to {hohy | ho € Ho, hy € Hy}. Likewise for ho_ and Hy_.

We should also assume that Hq_ is closed...when can we assume
this?

Lemma 1.1. The multiplication map H_x Hyx Hy — G is an injective
local diffeomorphism with dense image.

Proof. Note b is nilpotent, so exp: h, — H, is surjective.

We can then show the injectivity as follows. Let H_oy = Hy_ N
H.; we will show that H_o, = {1}. Suppose that x € H_o,. Then
Coxpeayr € H_gy, and letting x = exp(X) (where X € b, ), we have
Coxpayr = exp(e'®4X) and e'™4X — 0 as t — —oo. Let X' =
el®da X for t large and negative. Then X’ is small, exp(X’) € Hy_, and
Hy_ is closed, so X' € ho_. Moreover, since X € b, we have X' € b,.
Then we must have X' =0, and z = 1.
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We haven’t shown that the image is dense, but it appears that we
never use this statement. U

We denote the image of the multiplication map by H_HyH,. Let
KA :tradA |ﬁ+'

1.2. The assumption of exponential mixing. Continuing the no-
tation of the previous subsection, let I' be a lattice in G. We assume
that there are constants C' = C(I'), k = k(G), ¢ = ¢(I") such that for
all functions f,g € C*(I'\G), and t € R,

(1) / ! / (f * Besp(e) )9 — / f / 9‘<Ceqt|“fuongHck-
ne Jna nG JI\G

Here all the integrals are taken with respect to 7.

1.3. Summing connections over a lattice. Continuing the notation
from the previous two subsections, define

Z:Hy_ x H. — G, (ho—, hy) ¥ ho_hi'
and
Zy Hy_ % H+ — G, (h()_, h+> — h()_ exp(tA)hjrl

We observe that Z maps nIL{()_XH+ to 1 restricted to Hy_Hy, and Z;

maps g, g, to €4 times the same restriction of 7.
Define, for f a function on Hy_ x Hy and r, s € G,

Si(fores) = SO((Z0) ) 9).

vyel

The meaning of 3; can be understood through the following exam-
ple. Choose A- C H_, Ag C Hy and A, C H,. Let f(h_ho,hy) =
Xa_(h-)xa,(ho)xa, (hy). Then 3,(f,r, s) counts the number of ways
to start in rA_, apply (right-multiply by) exp(tA), apply something in
Ag, and end in vsA, for some v € I'.

We can normalize 7, so that I' has covolume 1, and we can then
normalize nflo_x u, accordingly. If we were to replace I' with randomly
chosen points in G with density 1, then the expected value of ¥, (f, r, s)

would be
/ (Z).f = e*a / .
G [{(),XI{Jr

We claim that this is approximately correct for an actual lattice I', a
large ¢, and a reasonable f.
For any f: G — R and § > 0, let
M;s(f)(p) = sup f, and ms(f)(p) = inf f

Bs(p) Bs(p)
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For h € G, let ¢, = min (% inf e\ g1y d(h, vh), 1). The following is the
main result of this paper.

Theorem 1.2. We can find a = a(G, A) such that for all lattices
I' <G, t>0, and g,h € G with €,,¢, > (where 6 = C(I')e "), and
f: Ho x Hy — R measurable, bounded, and compactly supported, we
have

1-0) [ mi(p) e enrgm <040 [ M)
Ho— ><H+ Ho— XH+
(In the case where I is a uniform lattice, we can ignore the require-
ments on €, and €,, which will hold automatically).

Corollary 1.3. With a, g, h,t,0 as above. Suppose S C Hy_ x H, is
measurable and bounded. Then

(1-— 5)/\[_5(8) < e‘tKA#(Zt(S) Nglh) < (1+ 5)/\/5(8).
2. PRELIMINARIES AND REDUCTION TO A SPECIAL CASE

The following Proposition will be proven in Section[3] In this section,
we use it to prove Theorem [1.2l We also include some preliminary
discussion that will be used throughout the paper.

Proposition 2.1. Let 6 and T be as in Theorem [1.4. For all t > 0
there is ': Ho_ x Hy — [0,00) with [ " =1 and with support in a §-
neighborhood of the identity such that for all g, h € G with ,, ¢, > 64,

AT (4 g, h) — / | <6

2.1. Haar measures and convolution. Let () be any Lie group. Re-
call that the convolution a * 8 of two measures a, 3 on () is defined to
be the pushforward of the product measure a x § on Q) x @) via the
multiplication map ) x Q — . We observe that convolution is asso-
ciative. We will always treat convolution as having lower precedence
than pointwise multiplication (by a function) so fa* 8 means (fa) x
rather than f - (a* ) (for a function f and measures a and f3).

We will use d, to denote the point mass at g. We observe that
dg * 0p = Ogn. Moreover, for any measure o on (), we have d, * o =
(Lg)+cv, where L, : @ — @ denotes left multiplication by g. For any
function f: @) — R we let 6, * f be a shorthand for (L), f, which of
course is defined by (L), f(h) = f(g~'h). Likewise for f x4,.

Now let ¢ denote the Lie algebra for ). For any volume form on
q, we have a unique left Haar measure and right Haar measure on Q).
We say that ) is unimodular when the two Haar measures are equal
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and we recall that this holds, in particular, when @ is semi-simple (or
reductive) or nilpotent. We will denote left Haar measure on @ (for
some volume form which will be specified when it is important) by 775,
and right Haar measure by 775. In the case where @) is unimodular we
denote the bi-invariant Haar measure by 7,. In all cases, when f: Q) —
R is continuous with compact support, we let fQ f be a shorthand for

fQ f dng. We observe that

[o=[oas=1+00) [expo

[odns=+06) [

when supp ¢ C Bs(1) and § sufficiently small.
We define Ag: Q — R by

and

. ||
|dng|
(where we normalize n§ and n§ such that Ag(1) = 1). Then

G = Dolg)ng * 9
and

0y %15y = Dolg)ng.
We then have Ag(gh) = Ag(9)Ag(h), and we call Ag the modular
homomorphism. We observe that Ag(exp(X)) =1+ O(X) when X is
small.

When « is a finite measure on  and f: Q — R is continuous

with compact support (or more generally all left translates of f are
a-integrable) we define a * f by

axf= [ (6, 1)datg) = [ ((L)-H)dalo)
or
(@< 1)) = [ Flg n)dao)
we can also write
(ax fng = ax (fng).
We can likewise define f * 3 (for a finite measure () so that fng x5 =

(f * B)ng and observe that oo (8 f) = (ax 8) * f and (f xa) x 5 =
f(axB), and (ax f) B =ax(f+B).

Let f,¢: @ — [0,00) be nonnegative continuous functions of com-
pact support. When @ is unimodular, we have fng x ¢ = f * ¢nq.
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In the sequel, it will be useful to compare fné x ¢ with f gbné in
the case of a general ). For ¢ a function of compact support, we let

A(¢) = infyesuppo AQ(g_l) and Z(qﬁ) = SUDyesupp o AQ(g_l). Then we
have

Lemma 2.2. For f ¢: QQ — R nonnegative of compact support,
(2) A()f *dns < [+ & < A(9)f * dng.
Proof. We first observe that
g+ 8 = Aqlg™)(f * 0g)ng.
We then have (fn5 * ¢)ns = fng * ¢nj, and

s+ gl = / Aolg™)(f * b,)n5 d(énb)

< (9) / (f * 6,)n d(émb)

= A(9)(f * ¢ng)ng-
We have thus shown the second inequality of (after multiplying by
né) The first inequality follows in the same manner. U

In certain cases we can multiply or convolve functions (depending
on your point of view) in such a way that the product associates with
certain convolutions. In particular, suppose that R and S are Lie sub-
groups of ), and vt & s = q as vector spaces. Then the multiplication
map R x S — @ is a diffeomorphism near (1,1), and a local diffeo-
morphism on all of R x S; let us suppose that it is injective. Then for
f: R — R and g: S — R continuous functions of compact support,
we can define f ® g: Q@ — R by (f ® g)(rs) = f(r)g(s). Then if « is
a compactly supported measure on R and [ is a compactly supported
measure on S, we have ax(f®¢g) = (axf)®g and (f®g)*0 = f®(9*3).
Moreover, if a € () normalizes R and S, then we have

(f ®g)*da=dax (Cof ® Cqg).

In the case where () is unimodular, we can define f®g¢ in terms of the
convolution of measures. We observe that (L, R,).(n5xn%) = (nk*xnk).
Since the action of R x S on RS = {rs | r € R,s € S} is transitive,
the measure 7 * 7§ must be a scalar multiple of 7,; we assume that
ngz %715 = 1. Then we have (fng) * (9n§) = (f ® g)ng.

On the other hand, given f: R — R and ¢g: S — R, we let (f X
g): R xS — R be defined by (f x g)(r,s) = f(r)g(s).
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2.2. Proof of Theorem The following Lemma will be used to
prove Theorem using Lemma [2.1]

Lemma 2.3. For any measure o on Hy_ x H,,

(3) Si(a s, 5) = /zt(w,mo_, shi)a(ho, hy).

Proof. 1t is enough to show (3 in the case where a is a point mass
O(ho_,hy), and in this case the identity is straightforward to verify. [

As a corollary to this Lemma, we observe, letting || denote the total
mass of a, and assuming supp ¢ € Bj(1),

la| inf 3i(¢,9,h) < Ei(axi,r,s) <ol sup X(¢,g,h).
gEB;(r) gEBs(T)
heBs(s) heBjs(s)

We then observe that

f S M&f*¢n[gofXH+
< A()(Msf)nf,_xp, * ¢ (by Lemma
and hence, by Lemma [2.3]
W Sl < B0 ([ Moty ) s Si0000)
A

and likewise

(5) (far S zé (/m5 77H() ><H+) Elgf(r) Zt(wmga )
hers( )

Now we can prove Theorem [I.2]

Proof of Theorem[1.9 given Proposition [2.1. We observe that

eSS, (f 9, h) < ¢ AR ( [t ) sup S g, h)

g€Bs(r)
heBs(s)

()
o (f ).

and we likewise use mgs(f) to get the lower bound for e 54X, (f, g, h).
O
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3. THE COUNTING ESTIMATE FOR THE TEST FUNCTIONS

3.1. An a priori counting estimate. We begin in our setting of a
Lie group G with a chosen A € g that in turn defines H_, Hy, H, < G,
and a lattice I' < G. We will begin with the following volume estimate:

Lemma 3.1. When B is a sufficiently small ball around 1, we have
na(Bexp(tA)B) < Ce'fa,

Proof. We recall that in our case that G and H, are unimodular. We
let By_, B4 be the unit balls around the identity in Hy_ and H,. We
observe that

Bexp(tA)B C By_exp(tA)B.,
and
i (XD(tA) By exp(—t4)) = eFany, (B,).
Then we have
Na(Bexp(tA)B) < na(Bo- exp(tA)By)
= 1(Bo- exp(tA) By exp(—tA))
= N, (Bo- ), (exp(tA) By exp(—tA))
= "™, (Bo-)ng, (By)
= Ce'fa, O

Let e¢ be half the radius of the ball B in Lemma[3.1] For h € G, let

€, = min (% inf er\ (13 d(h, vh), eG), and let B;, be the ball of radius ¢,

(around the identity), and let v, = no(By). We observe that vy, < €f.

From the volume estimate of Lemma [3.1] we can prove the following
counting estimate:

Lemma 3.2. Take B = B.,(1). For all g,h € G, we have
#(gThN Bexp(tA)B) < C(Ie4 Juy,.
Proof. We have that
#(gL'h N Bexp(tA)B) < ng(Ne, (B exp(tA)B))/vp.
We observe that
N, (Bexp(tA)B) C Bexp(tA)B
where B = By, (1). Moreover, by Lemma (3.1

na(Bexp(tA)B) < Cefa. O
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3.2. Estimates with linearly complementary subgroups. In this
subsection, we consider a more general situation where G is an arbitrary
Lie group, A and B are Lie subgroups of G with Lie algebras a and b,
where AN B = {1} and g = a @ b as vector spaces.

We assume that a and b are equipped with inner products; this
determines an inner product on g, and left invariant metrics and left
Haar measures on A, B and G.

Lemma 3.3. Suppose ag,a; € A, by,by € B are all sufficiently close
to the identity and that agby = biay. Let D = max(|logbyl,|loga]).
Then

|log ap| < 2D and |logby| < 2D.
Proof. We have
log ag + log by + O(|log ag||log by|) = log by + log a1 + O(] log by || log aq])
and hence
log ag 4 log by + O(|log ag| D) = log by + log a; + O(|log b,|D)
and therefore, because g = a @ b,

(6) loga; = logag+ O(ED)
(7) loghy = logby+ O(ED)

where E' = |log ap|+|log b1|. The Lemma follows because E is assumed

to be small.
O

Lemma 3.4. Suppose that ag,a; € A, by,by € B, and ag and by are
close to the identity and agby = biay. Then by and ay are also close to
the identity.

Proof. We can write
b() = aalblal = b'1a6a1

for some b € B, a) € A close to the identity. But then aga; = b’l_lbo €
ANB={1}. O

Lemma 3.5. Suppose we have a,a € A, and I;,E € B, with a,b suffi-
ciently close to the identity. Suppose further we have

ab = vba

for some v € G. Then we can write v = v,v, with v, € A, 1, € B.
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Proof. We can find a € A,b € B (close to the identity) such that
ab = ba~t. Then A

v =aba'b™' = (aa)(bb7Y).
O
Lemma 3.6. Let &AJLA be functions on A, and g@B,&B be functions
on B, and let D be sufficiently small. Assume

(1) supp Va,supp g are supported in the D neighbourhood of the
identity, and
(2) ¥a and ¥p are nonnegative on their domains, and

(3) [ 6= [ v - 1.
Let Ex = ||Yallga (computed on the ball of radius 2D around the
identity), and define Eg analogously. Then

| (94 ) - (50 6a) = da0bn()

Proof. By Lemmas[3.3|and [3.4] the integrand is supported on the prod-
uct (in either order) of the balls of radius 2D (around 1) in A and B.

Hence
/G (12),4 ®1[)B> : (1&3 ®7LA> - /G (@A(l)lfl) @ﬂB) : <?@B @JJA)

< /G (2DEAL2) @ ) - (|Un] ® )

< CupDEsEB.

< / ((2DEal4) ® ¥5) - (Eplp ®4)
e
< 2DE,EgS,
where § = [, (14 ® ¥)(1g ®14). Similarly

’/G <(1/;A<1)1A) @® &B) . <¢B ® &A) - /G ((zﬂA(l)lA) ® q/}B> . ((@3(1)13) ® @A)
<2DE,ERS.
Hence by the triangle inequality we get

/ <%5A ® &B) : (@ZJB ® JJA) —a(L)ihp(1) 5’
e
< 9D(EsEp + EsE)S.

It remains to estimate S. Let B be the ball of radius 2D around the
identity in A x B. We define the map B — G as follows.Given (a,b) €
B, we solve ab’ = ba’ for o’ € A, b € B (by solving b'a’~! = a~'b), and
then let p(a,b) = ab'.
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Then

S= | daxpdp(ng).
AxB
Moreover,

[dp*(ng)|
(% x n5)]
satisfies Jac p(a,b) = 1+ O(|logal + |logb|). Therefore

Va x Ypdp*ns = a x ¥p(1+ O(D))d(n x np)
AxB AxB

—1+0(D).

(In fact we can get 1+ O(D?), but we will not need this.) We conclude
that

Jacp =

/ (Q/AJA ® &B) : <@ZB ® @A) - @ZA)A(l)QZ}B(l)S‘ < CapDEsER
a
when D is sufficiently small. O

Corollary 3.7. Suppose that the conditions of Lemmal3.6] hold, except
for assumption |3: the normalization of ¥4 and Yg. Let I4 = fG Va,

and Ip = fczﬁB. Then

ba®Up) - (Vs ®@ba) — Lalpga()p(1)| < CaplalgDEsEp.
JRCETARCTTY |

Moveover, letting I’y = [ exp* @/AJA and Ij; = [ exp* 7,&3, the exact same
statement holds with 14 and Ig replaced with I'y and I}.

Proof. The Corollary is clear for 14 and Ig; let us prove it for I’y and
I;. We have Iy = (1+O(D))I4 and Ij; = (14 O(D))Ip and therefore
Lalpba(L)ds(1) = Llpa(Vin(1)| < CIATEDEAL)b(1)

< CI4I;DEE3,
which is exactly what we require. 0

3.3. Defining the bump functions. Let us fix a smooth function
g: [0,00) — [0,00) such that all the derivatives of g at 0 are zero,
lgll., = 1, and suppg C [0,1). Let us then define Z; on R?, for
d € Z*, by Z4(z) = Cug(|z|), where Cy is such that [Z, = 1. For
t >0, let us then define Zf, by

=h(x) = eMZ4(e'r).

So Zf has integral 1, is supported in the ball of radius e™* around
0, has sup norm at most Cze®, and [|Z4) o < Cyel@t Because

t
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=% is rotationally symmetric, it is well-defined on any vector space of
dimension d that has an inner product.

Let H be a Lie group equipped with a left-invariant metric, and let
b be its Lie algebra. We can define Zf on b to be =}, and we then let
&t on H be defined by

(8) & (exp(X)) = Z(X);
this will certainly make sense when ¢ is sufficiently large.

Returning now to the setting of Section 1, we let m = max(16(d +
max(k, 1)), A\; '), where d is the dimension of G, k is as in equation (]),
and A; is the least positive eigenvalue for ad [or the negative of the
least negative one?]. We then let b = 1/m and a = 1/m?. Letting ¢ be
the rate of mixing, we write

t _ m—aqt t _ —aqt
V== Tl ==

t _ —aqt Tt __ —4bgt
vl == U ==

and we let Ul = Wl x W' and ¥} = ¥} x U!
We then define ¢, and its relatives by the direct analogue of Equa-

tion .
We further define

1/33 = ngp(tA/2)wi 1%7 = C:xp(ftA/Q)wéf
Py = Copiayn ¥l Vo = Corp(eas2)Po--
Similarly we have U, = Cosp(tad, /2 Y+ ete. We let Y =h_ @Y.

We apply Corollary [3.7] to the setting of the ’s.

Lemma 3.8. With a,b taken as above, and C depending only on Hy,
etc., we have

[ (B vl @ L) (B x4 @ 05 ) = P (71| < €

Proof. We have (8,,,_ %44 )(1) = 9t (15>) and
16— * bl = 16 lln < 6 llen < CeHt < Cebet,
Likewise we have ¢,,, * @ZA):L — ot (u7') and
10, PLlle, = 194 ll, < 1, < Celttheat < Cetet,

Moreover, the radius (around the identity) of the support of ¢’ is at
most e~ << 1, and radius of support of zﬁﬁr is therefore at most
e~Mt < e=*4t The radius of support of ¢/§_ is at most e=**. Putting
this all together and applying Corollary [3.7, we obtain the Lemma. O
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3.4. Proving what must be proved. We can now prove the follow-
ing proposition, which immediately implies Proposition [2.1]

Proposition 3.9. There exists C' (depending only on T") such that for
all g,h € G such that e,, ¢, > e/ we have

e Asy (v, g, h) — 1] < Ce .

Proof. The idea is to relate the sum in (¢!, g, h) to a mixing integral.
We consider the functions d, * ¢f_ ® ¥, and J, * ¢, & Yt on G; they
are supported in balls around g and h respectively, with radii O(e—*")
and O(e™""). Our condition on €, and ¢, implies that the supports
of these functions inject into I'\G, and hence we can think of them as
functions on I'\G.

We then have, on the one hand, by exponential mixing in G,

(9)
/ (69 * @D(t)— ® l/)i) : (5h * @Di & 1;6_ * 5exp(7tA)) - / wé_ &® Q/]i_ wz_ ® ZZJS_
NG NG NG

< Ce [l @ P flon 19 @ 05l en
< Oe—qte(d-i-k)aqte(d—l-k)bqt < Ce—qt/Z.

Moreover,

V- @Yy = /G%_@@bi = (1+0(e™™)) / oxp*(Yy_ @YY ) = 14+0(e"")

NG g

and likewise fF\G () %_ =1+0(e™*"), s0

A\Gwé_®wiﬁ\cwi®&é_—1

On the other hand the first integral in @[} is equal to

< Ce %t

S /G (8, 50t @ UL ) - (5 % 0y % 0 @ T * Gonp(ea).

vyel

We can rewrite each term in the sum as

(10) /G (b ® UL) - (6,1 . ® P * Gesp(in)))

or

/ (Y6 ® P * Sexp(earn)) - (Bg-1yn * P @ Yh_ * Sexp(—e4/2)):
G
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We then have, letting n = g~ 'vh and v = exp(—tA/2)nexp(—tA/2),
/G (Vo ® UL * dexpiray) - (@crwh « Pt @ U 5exp<—tA/2>>
= / (5exp(tA/2) * b ® ?ﬂi) : (577 % Doxp(_tay2) * V8. ® %_)
G
— [ (G 0it)- (5.0, 04).
G

It follows from Lemma [3.5 that if the above integrand is ever nonzero,
we can write v = yy_vy for yy_ € Hy_, vy € Hi. Then the above
integral equals

| (b et wit) - (s, =it w it ).
By Lemma 3.8
(11) efat /G (5%_3 x U ® wi) : ((M L ® wé_>
is approximately equal to
(12) (o) (vt
which equals

Vb (Coxpeay) Vo )V (Coxp(—ta/2v ")

which in turn equals
(13) (Z0)« (o x L) () = (Zo)« (o x L) (g7 vh).
In fact, by Lemma , and differ by at most Ce=2%.

It is nonzero (for a given v € I'), then the integrand in is
not identically zero, and likewise for the integrand of . By Lemma
because ¥§_ ® ¥, and ¢ ® ¢f_ are both supported on the unit
ball around the identity, the number of v for which the integrand of

(10)) is nonzero is at most Cefat /.
Therefore the sum of integrals is approximately

e (Y- x ¥, 9. h),

and the difference is at most Ce™2%% /v, < Ce™4t, O
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4. APPLICATIONS

4.1. Haar measure as a volume form. As before, we let n& denote
the left Haar measure on G. We let dn& denote the associated volume

form, so that
/ fdné

can be interpreted as the integral of f with respect to the Haar mea-
sure, or with respect to the volume form, with identical results. Then
dnk(1) is a top-dimensional multilinear form on T} G} it determines the
normalization of n& and dnk.

4.2. The Heteromodular homomorphism. We recall that [ho, h] =
b+, and therefore [Hy, H,] = H,. Forany hg € Ho, we have (Cy,)uny, =
X(ho)ng, . We call x the heteromodular homomorphism. We claim
that (Ch,)«ng_ = X(ho)"'ny_ for any hy € Hy. Moreover, x: Hy — R
is a homomorphism; we let Hy be its kernel. Then Hy = exp(tA) x Hyy,
because exp(tA) commutes with Hog.

Moreover, the pullback of 1y —to H_ x Hgy by the multiplication
map is X (ho)(1y_ X ny,)- Likewise the pullback of 5 to H_ x Hox H

is x(ho)(ng_ % NHy X nH+)-

4.3. Pullbacks of Haar Measure. Suppose £ and E, are Lie sub-
groups of G such that

Thy: €4 — f)i
is an isomorphism. We define volume forms dng, on es by
dnEi - (Wb:tlzj:)*dnHi‘
We also let By = Hjp, and keep its volume form. Now we also have

maps
Yp: @ hi — g

YEg: @2i—>97

Yu(h_,ho,hy) =h_+ho+ hy,
and likewise for . Moreover, ¥y is invertible, and ¥7n, = A, ny, on
@ bi. We want to compare Y71, and A, 7y,
To this end, we let 7;: b; — ¢ be (m,|e))™"; Ti: by — @b, be
Y oXgoT,and T: b; — b; be @ T;. Then
Sy T Ao
/\i Ng, /\z NH,

and

just given by

=detT

(14)
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Letting T} = my, o T, we have that T} is the identity for each i, and
thus

1 0 7T,
T=\|T° 1 1Y
TH 0 1
and hence
(15) det T' = det <le Tf) =det(1 —T*T}).

We let m: E_ x Ey x Ey — G be the multiplication map (so
m(a_,ap,ay) = a_apay).

Lemma 4.1. We have
m*dng(a_,ap,ay) = q(ao)dn§7 A dng, N dng+
where
q(ao) = qlao; E_, E4) = x(ag) det(Ly, — Ty o Ad," |p, o T 0 Ady, |y_).

Proof. We first observe that m*dn, must have the form given in the

first line (for some ¢), because it is invariant under left multiplication in

E_ and right multiplication in £,. Then we observe that, for u € Hy,
L,om=mo ((a_,ag,as) — (Cua, uag, a;))

(where on the left hand side m is m: E_ x Hy x E, — G, and the right
hand side m is m: C,E_ x Hy x E; — G). Since 1, is invariant under
pullback by L,, we obtain

1
ho; E_, Ey) = ——q(uhy; CuE_, E),
Q( 0y ) +) X(U)Q(u 05 +>
and letting u = hy?,
(16) q(ho; E—, Ey) = x(ho)q(1; C - E_, E).

When we replace e_ with Ad, e_, we replace T with Ad, oT" o Ad;, L
The Lemma then follows from , , and . O

4.4. A more general setting. Suppose now that that F_ and E,
are subgroups such that

Thy: €4 — bo
is surjective and
ker g [e, C Bo.

We let Eyr = EL N Hy, and we let E be the quotient of £ x Ey x E
by (e_ep_, e, eore+) ~ (e, eqteoeq s, e ).
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We let ¢4 be a complement of ¢p4 in ey, and we let Ny = (Th |gi)*’l]hi.
Then n; Ang, An;, effectively defines a volume form on Ty £, and this
form is independent of our choice of complements ¢. What is more,
we can define T' as before with ¢4 in the place of ex, and the T will
be independent of the choice of ¢4, and we will again have

Sine = det(1 — T T ).

So far we have just defined 7, at the identity. We now suppose that
nk is invariant under right multiplication by Fy_, and n§+ is invariant
under left multiplication by Ey,. (This of course happens if both E_
and E, are unimodal). Then np X 7y X ng, is invariant by the
given action of Ey_ x Fyy, and we hence obtain a measure 1, (using
our normalization on e¢) that is left-invariant by E_, right-invariant
by E,, and bi-invariant by Ey = Hy,. We can then apply the same
reasoning as in Lemmato obtain (where m: E' — G is the quotient
ofm: E_x Ey x E, — G):

Lemma 4.2. We have

mdng(a—, ap, ar) = q(ao)dng.
where m: E — G 1is the quotient of the multiplication map and
q(ao) = qlao; B—, Ey) = x(a) det(Ly, =TT 0 Adg [y, 0T 0 Adgy [5_)-
4.5. Control of distance and measure for (; and (. We define
G: GX Hyx G — G by ((e_, hg,er) = e_hgexp(tA)e,. Givena_ € G
we can write a_ = b_b, b, and likewise for a; € G. Then we have a

map (: G x Hy x G — G defined by ((a_, ag,ay) = b-by agbg bZ.

Lemma 4.3. For all compact K C G x Hy X G, there exists C' such
that for all a € K,

d(Z71(¢(a)), Z7 H (Gila))) < Cem™.

Proof. Given a = (a_,ap,a+) € G x Hy x G, we can write a_ = b_b; b
and likewise for ay. We can find unique b_ € H_ and b, € H, such
that

Conienszy (D7) Cagep(easa) (b7) = b_b..
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We then obtain
a_ exp(tA)agay = bZby biexp(tA)agh b bl
= bZexp(tA/2)by Ot 472 (05) Cagexp(eayz) (bF)aoby exp(tA/2)b1
= b_exp(tA/2)by b_byaghfexp(tA/2)bT
—b b e xp(tA/2) 0a0b+exp(tA/2)b+b+
= b-b_by agbd exp(tA)b, bt
= b:baaob;{b_exp(tA)beri.
Hence

“L(G(a)) = (b-byaobg b, () 157

~H(C(a)) = (b=bg anby, (b1) 7).
We observe that (; nd 13 lie in a O(e~?") neighborhood of 1. The
Lemma follows. O

We observe that in the setting of Section [4.4] ¢ and (; descend to F,
and we can restate Lemma [4.1] as

while

Lemma 4.4. For all compact K C E, there exists C' such that for all
a€ K,

d(Z71(¢(a)), Z7 (Gila))) < Cem™

Now (in the less general setting), let’s restrict ¢ and ; to E_ x Hy X
E,.

Lemma 4.5. We have, on any compact K C E_ x Hy x E,
e adrn,,
X(ho)ng X Ny, X N,

Proof. We let M = max(||T_|,||7%||). Then for all hy for which
[Ady, |, [[Ad,) || < M, we have

g(hoexp(tA), E_, Ey) = "4 x(ho) det(1y, =T oA, ay Iy, T 0Adny expieay [y )-
Now, for any linear transformation 7': V' — V with ||T|| < 1,
1 —det(1 —T)| <2(dim V) ||T| .
Therefore, for t sufficiently large given M and M’, we have
1 —det(1y,, — Ty o Ad; "

(17) 1| < Cre M1,

o, © T 0 Adpgexp(eay lp_ )| < 2(dim H ) M>MPe2M!

ho exp(tA)

when the right hand side is less than 1. 0
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We have the following remarkable corollary, which may or may not
have a simpler proof:
Corollary 4.6.
(18) C*dng = x(ho)ng_ X Ny, X Mg,
Proof. Let dng, = (*dng = (C o Zfl)*dnﬁ,oixHJr, and let dngy =
e Katrdn, = (G o Zt’l)*dnlL{Ofo% We let ng, be the measure from

integrating against dnp,, and likewise for 7p. By Lemmas and
for any A C E_ x Hy x E,, and letting t — oo,

Nes (A) < npr (Ne-221:(4))
= (x(ho)ng_ x npzy X 15, )(A)-
We likewise obtain
NEs (A) = 1y (N =200 (A)
= (x(ho)np_ X 1, % 1z, ) (IntA).
As ng, is a smooth measure, the Corollary follows. U
In the more general setting, we can similarly prove

Lemma 4.7.

C*dng(a-, ao, at) = qlao)dnp.
4.6. The application theorem. Suppose F_ and E, are as in Sec-
tion . We let 1, = x(ho)ng_ X Ng, X 05, -

Theorem 4.8. Let K C E_ x Hy x E, be compact, and take S C K.
Fort>ty(E_,E.), let

S = {a_exp(tA)aga, | (a_,a0,a.) € S},
Then, letting 6 = Cxre ", for ¢ =q('), a = a(E_, E}), and assum-
ing €(g),e(h) > 6,

(19) (1= 0)np, (N=5(5)) < e™44(S, N gTh) < (1 + ), (N5(9)),
where we take inner and outer neighborhoods in E_ x Hy x E.

Proof. We let Sy = (;(S). By Theorem [1.2] we have
(20)
(L=, wrr, N-s(Z;1(S1))) < e A4 (SingTh) < (140) g, e, (N5(Z771(S1))).
By Lemma [4.3| we have
Z71(Sh) € Ns(Z27H(¢(9)),
and hence

(21) N3(Z7(S1)) € Nas(Z7H(C(9))).
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Taking (! o Z to be Ck /2-Lipschitz on K, we have

(22) (o Z)(Nas((Z7 0 €)(9))) € Neyes(9);

combining and , we obtain

(23) N3(Z7H(S1)) € (Z71 0 () (Neys ().

We likewise obtain

(24) N_5(Z71(81) 2 (271 0 Q) (Nocyes(S))-

Finally, by ,

(25) o i, (Z71 0 ONeys(S))) = 1, Neys(5))-
Combining , , , and , we obtain the Theorem. O

We likewise have the following in our more general setting, where we
compute the neighborhoods with respect to a given Riemannian metric
pon E:

Theorem 4.9. Let K C E be compact, and take S C K. Lett > to(E),
and let

St = {a_exp(tA)aoay | [(a-, ao, at)] € S}.
Then, letting § = Ck e,

(1= 0)np, (N=5(5)) < e™™44(S, N gTh) < (1 + 8)ng, (N5(S)).

where we take inner and outer neighborhoods in E (and multiply 6 by
a constant), and the (implicit) constants depend on K.

4.7. Examples. Let us now discuss some actual examples of counting
situations.

Orthogeodesic connections in H?/T'. Suppose that I' < Isom(H?) is a
lattice (possibly nonuniform), and let M = T'\H?. Suppose that «
and [ are (oriented) geodesic segments in M. For each orthgeodesic
connection n between o and (3, we can record the feet of  on o and £,
the length of 1, and the monodromy of 7 (for example the angle that
«, parallel translated along 7, makes with §). We can even think of
the real length of  and the monodromy of n as the complex length: it
is the complex distance along 1 between o and . In this way the set
of such 7 is a set of points in N'(a) x N*(8) x C/2miZ.

In this example both E_ and E. are the centralizer of the orthogonal
flow, which is just the centralizer of the geodesic flow, conjugated by a
rotation by 7/2. We have

Mg, = q(ao)dng_ A dng, A dng,
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where g(ag) = Cpe?®, and C is a constant which we will have indirectly
calculated. But n% and n§+ are just the natural measures on N'(«)
and N'(B), and ny, is the natural measure on C/27Z. So taking
g,h € Isom(H?) to translate our base frame to ones in N'(a) and
N'(B) respectively, Theorem becomes (where 7; is the translation
by t in the last coordinate)

Theorem 4.10. Let K be a compact subset of N'(a) x NY(3) x St x
[0,00), and let E C K. The number of connections for the translated
region 1,(A) satisfies

(1—8)Vol(N_s(E)) < 32r2e~KaLC(r,(E))Vol(M) < (1+8)Vol(N3(A))

where § = Cre 1, q = q(T'), provided that the height of one of the a
or [ projections of K is at most qL.

This theorem is sufficient for [KM12] and [KW18], but Theorems [4.§
and have many other applications, such as counting connections
(with specific monodromy) between points. For simplicity let us assume
that M™ is hyperbolic, and let x,y € M. We let o, be a section of the
projection from frames at x to unit tangent vectors at x, and likewise
define o,. Then any subset of the natural quotient of F(z) x Hy x F(y)
can be lifted to a subset of T (x) x Hy x T'(y) via the sections o,
and o,, and the measure on the quotient becomes the measure on
Tt (x) x Hy x T*(y) where the density at (v,,ag,v,) is eX(®) times the
product measure.

Thus from Theorem [£.9 we obtain

Theorem 4.11. The number of connections for a given subset A C
K C TY(x) x Ho([L,0)) x T (y) satisfies

(26) (1—8)Vol(N_s(A)) < Gr(n)C(A)WVol(M) < (1+8)Vol(N;(A))

where K is compact and 6 = Cyxre 9%, q = q(T'), provided that the
height x and y is at most qL.

Here Cy(n) is 3272 when n = 3 and we should be able to compute
it in general.

Here we should assume that the sections o, and o, are sufficiently
smooth on the image of A in the quotient; the constant Ckr also
depends on the smoothness of these sections.

We can likewise count orthogeodesic connection in H", with n > 3,
by again taking sections of the projection from the “aligned frame
bundle” over a geodesic a to N'(«a), where a frame is aligned with «
if its base point lies on « and its first vector is tangent to a.

Of course we can also make similar statements in other symmetric
spaces, both rank 1 and higher rank.
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