1. Itineraries

We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial

\[f_\lambda : \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto \lambda x (1 - x) \]

where \(\lambda \in [1, 4) \).

Starting with the critical point \(x_0 := 1/2 \), we consider the sequence

\[P_\lambda := \{ x_0, x_1, x_2, \ldots \}, \]

where \(x_i := f_\lambda(x_{i-1}) = f_\lambda^i(x_0) \). This sequence is called the post-critical set for \(f_\lambda \).

There is a graphical way to construct this sequence, where from the point \((x_{i-1}, x_{i-1})\), we draw a vertical segment to the graph of \(f_\lambda \) ending at \((x_{i-1}, x_i)\), then a horizontal segment to the diagonal line \(y = x \) ending at \((x_i, x_i)\), and so on, as depicted below.

![Figure 1. Post-critical set \(P_\lambda \) for \(\lambda = 3.6275 \)](image)

We say that \(f_\lambda \) is critically periodic if \(x_n = x_0 \) for some \(n > 0 \).

Suppose that you and I each have a critically periodic map and are talking over the phone. How can we figure out if we have the same map?

The first invariant of a critically periodic map \(f_\lambda \) is the period \(n = |P_\lambda| \). The map \(f_\lambda \) permutes the set \(P_\lambda \) cyclically: it sends \(x_i \) to \(x_{i+1} \), with indices taken modulo \(n \). More information is obtained from the ordering that \(P_\lambda \) inherits as a
subset of the real line. We thus relabel the elements of the post-critical set by the order-preserving map \(h : \{1, 2, ..., n\} \rightarrow P_\lambda \). Because \(f_\lambda \) is strictly increasing before \(x_0 \) and then strictly decreasing, the induced permutation \(\sigma := h^{-1} \circ f_\lambda \circ h \) on \(\{1, 2, ..., n\} \) is unimodal, meaning that there is a unique \(i \) such that
\[
\sigma(1) < ... < \sigma(i - 1) < \sigma(i) > \sigma(i + 1) > ... > \sigma(n).
\]
Of course, \(\sigma \) is cyclic as well.

![Graph of the permutation \(\sigma = (1 4 3 5 2 6) \) induced by \(f_{3.6275} \)](image)

It turns out that every such permutation \(\sigma \) arises from a unique \(\lambda \).

Theorem 1.1 (Milnor-Thurston-Sullivan). Let \(n \geq 1 \) and let \(\sigma \in S_n \) be a unimodal cyclic permutation. Then there exists a unique \(\lambda \in [1, 4) \) such that \(f_\lambda \) is critically periodic and induces the permutation \(\sigma \).

Below, we describe some of the ideas involved in the proof of this theorem.

2. **Uniqueness**

2.1. **Grötzsch’s question.** Let \(0 < a \leq b \) and let \(g : R_a \rightarrow R_b \) be a diffeomorphism between the rectangles \(R_a = [0, a] \times [0, 1] \) and \(R_b = [0, b] \times [0, 1] \) which takes the left, right, top and bottom sides of \(R_a \) to the corresponding sides of \(R_b \).

![Diagram of rectangles and function g](image)

Theorem 2.1. If \(g \) is conformal, then \(a = b \).

Proof. One can extend \(g \) to a conformal map from the plane to itself via repeated Schwarz reflections. Therefore, \(g \) is a euclidean similarity. Since we require that it fixes the vertices \((0,0)\) and \((0,1)\), \(g \) is the identity. \(\square \)
If $a < b$, then Grötzsch’s question asks which admissible maps $g : R_a \to R_b$ are the closest to being conformal. This requires the notion of dilatation, a measurement of the failure of a map to be conformal.

For an orientation-preserving diffeomorphism $g : U \to V$ between open subsets of the plane, the derivative $D_z g : \mathbb{R}^2 \to \mathbb{R}^2$ at any point $z \in U$ is a linear map. It thus sends the unit circle onto an ellipse, say with major axis of length M and minor axis of length m. The dilatation of g at z is defined as the eccentricity of this ellipse, that is,

$$\text{Dil}_z(g) := M/m.$$

If in complex coordinates the derivative is given by $D_z g(w) = Aw + B\overline{w}$, then we have alternatively

$$\text{Dil}_z(g) = \frac{|A| + |B|}{|A| - |B|}.$$

The dilatation of g is defined as

$$\text{Dil}(g) := \sup_{z \in U} \text{Dil}_z(g).$$

Grötzsch’s question then becomes: What is $\inf_g \text{Dil}(g)$ over the set of admissible maps $g : R_a \to R_b$? When is it realized?

Theorem 2.2 (Grötzsch). *We have*

$$\text{Dil}(g) \geq \frac{b}{a}$$

with equality only for the stretching map

$$(x, y) \overset{g}{\mapsto} (bx/a, y).$$

2.2. Teichmüller’s question.

Let X, Y be finite subsets of the Riemann sphere $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ with the same cardinality and let $h : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be an orientation-preserving homeomorphism with $h(X) = Y$.

Call a homeomorphism $g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ admissible if $g|_X = h|_X$, g is homotopic to h rel X, and g is a diffeomorphism off of a finite set. Teichmüller’s question is: What is the infimum of $\text{Dil}(g)$ over admissible maps g and when is it realized?

Theorem 2.3 (Teichmüller). *There exists a unique admissible map $g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, called the Teichmüller map, having minimal dilatation. Let $K := \text{Dil}(g)$. If $K = 1$, then g is a Möbius transformation. If $K > 1$, then for every point $p \in \hat{\mathbb{C}}$ at which g is non-singular, there is a conformal chart φ about p and a conformal chart ψ about $g(p)$ such that*

$$\psi \circ g \circ \varphi^{-1}(x, y) = (Kx, y).$$
Note how similar the answers to Teichmüller’s question and Grötzsch’s question are. One can indeed think of a Teichmüller map as several Grötzsch’s stretch maps glued together.

The charts mentioned in the above theorem are unique up to translation and rotation by angle π. This implies that one can form a foliation on the complement in $\hat{\mathbb{C}}$ of the singular set of g, the leaves of which are the curves along which g is stretching maximally, by pulling-back horizontal lines under φ-charts. The singularities of this foliation are pronged singularities, which locally look like some number of rectangles glued around a point along horizontal edges. 1-pronged singularities can only occur on the set X.

2.3. Idea for uniqueness. Here is how one can apply Teichmüller’s theorem to proving the uniqueness part of the Milnor-Thurston-Sullivan theorem. Suppose that f_λ and f_η are critically periodic and induce the same permutation σ.

Let $h : \mathbb{R} \to \mathbb{R}$ be an increasing homeomorphism such that $h(P_\lambda) = P_\eta$. We can take h to be piecewise linear for example. Then extend h to \mathbb{R}^2 by setting $h(x, y) = (h(x), y)$. Let $X := P_\lambda \cup \{\infty\}$ and let $Y := P_\eta \cup \{\infty\}$.

Let $g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the map such that $g|_X = h|_X$ and g is homotopic to h rel X with minimal dilatation. Since the map $z \mapsto g(\overline{z})$ is also admissible and has the same dilatation as g, it is equal to g by Teichmüller’s uniqueness theorem. In particular, $g(\mathbb{R}) = \mathbb{R}$.

Note that g conjugates the actions of f_λ and f_η on their respective critical sets, since the two maps induce the same permutation σ by hypothesis. It follows that we can lift g to a homeomorphism $\tilde{g} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ such that the diagram

\[
\begin{array}{ccc}
(C, P_\lambda) & \xrightarrow{\tilde{g}} & (C, P_\eta) \\
\downarrow f_\lambda & & \downarrow f_\eta \\
(C, P_\lambda) & \xrightarrow{g} & (C, P_\eta)
\end{array}
\]

commutes.

If g has dilatation greater than 1, then it has a finite positive number of singularities. A combinatorial argument shows that the stretching foliation for \tilde{g} must have more singularities counting multiplicities than the stretching foliation for g. This is because f_λ has degree two, so a typical singularity has two preimages, although a 1-prong singularity at the critical value of f_λ would unfold to a regular point.
Since \(f_\lambda \) and \(f_\eta \) are locally conformal on \(\mathbb{C} \setminus P_\lambda \) and \(\mathbb{C} \setminus P_\eta \) respectively, the dilatation of \(\tilde{g} \) is the same as the dilatation of \(g \). Moreover, \(\tilde{g} \) is admissible for the same problem as \(g \), since it maps \((\mathbb{C}, \mathbb{R}, P_\lambda)\) to \((\mathbb{C}, \mathbb{R}, P_\eta)\) and is increasing on \(\mathbb{R} \). By Teichmüller’s uniqueness theorem we must have \(\tilde{g} = g \), a contradiction.

Therefore, \(g \) has dilatation 1 and is thus conformal, hence a euclidean similarity.

3. Existence

Given a unimodal cyclic permutation \(\sigma \in S_n \), we have to find a set of \(n \) points \(X_\sigma \subset \mathbb{R} \) and a quadratic polynomial \(f \) inducing the permutation \(\sigma \) on \(X_\sigma \). It is then a simple matter to conjugate \(f \) by an affine map to a polynomial of the form \(f_\lambda(x) = \lambda x(1-x) \).

To do this, we start with any set \(X_0 \subset \mathbb{R} \) of cardinality \(n \) and apply the following procedure.

Given the set \(X_{i-1} \), let \(h : \{1, 2, \ldots, n\} \rightarrow X_{i-1} \) be the order-preserving bijection, \(m := \max(X_{i-1}) = h(n) \) and \(\tau := h \circ \sigma \circ h^{-1} \) the permutation induced by \(\sigma \) on \(X_{i-1} \). For \(x \in X_{i-1} \), let

\[
g(x) := \pm \sqrt{m - x},
\]

with positive sign if \(\tau^{-1}(x) \geq \tau^{-1}(m) \) and negative sign otherwise. Then define \(X_i := g(X_{i-1}) \) and repeat.

By construction, the polynomial \(f(y) = m - y^2 \) maps the \(j \)-th element of \(X_i \) to the \(\sigma(j) \)-th element of \(X_{i-1} \). As we iterate this process, the sets \(X_i \) will converge, up to translation and rescaling, to a set \(X_\sigma \) solving the initial problem.

![Figure 4. Pull-back map for \(\sigma = (1\ 4\ 3\ 5\ 2\ 6) \) applied to the set \(\{1, 2, 3, 4, 5, 6\} \)](image-url)
Let us make this more precise. Define
\[F_n := \{ X \subset \mathbb{R} : |X| = n \}/\sim, \]
where \(X \sim Y \) if \(Y = aX + b \) for some \(a > 0 \) and \(b \in \mathbb{R} \). The process described above yields a map
\[F_\sigma : F_n \to F_n, \]
called the pull-back map. For \([X],[Y] \in F_n\), let \(h : \mathbb{C} \to \mathbb{C} \) be an orientation-preserving homeomorphism such that the restriction \(h : X \to Y \) is order-preserving. The Teichmüller distance between \([X],[Y]\) defined as
\[d([X],[Y]) := \log \inf \{ \text{Dil}(g) \mid g \text{ is admissible with respect to } h \}. \]

Theorem 3.1. There exists an \([X_\sigma] \in F_n\) such that
\[F_\sigma([X_\sigma]) = [X_\sigma] \]
and
\[F_\sigma^k([X]) \to [X_\sigma] \]
as \(k \to \infty \) for all \([X] \in F_n\). Moreover,
\[d(F_\sigma([X]), F_\sigma([Y])) < d([X],[Y]) \]
for all \([X],[Y] \in F_n\) with \([X] \neq [Y]\). In particular, the fixed-point \([X_\sigma]\) is unique.

We discuss briefly how the contraction property (2) can be used to prove (1). If \(F_\sigma \) was a uniform contraction, then the existence of a fixed-point would follow from the fact that the Teichmüller metric is complete. In order to prove (2), we show that \(F_\sigma \) is smooth and its derivative has norm less than 1 on every compact subset of \(F_n \) with respect to the Teichmüller metric. It matters then to understand the behavior of \(F_\sigma \) near infinity. Note that a sequence \([X_k]\) in \(F_n \) goes to infinity (i.e. escapes every compact set) if the points of \(X_k \) are clumping together. If for some \([X] \in F_n\) the sequence \(F_\sigma^k([X]) \) was going to infinity, this would mean that a certain clumping phenomenon is invariant under the dynamics, but we will see that this is impossible.
Figure 5. Second iteration of the pull-back map