Bounds for bounded primitive renormalization and MLC

Jeremy Kahn

September 11, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basic Definitions I

1. Quadratic-like map: $f: U \rightarrow V$.

- f is proper and holomorphic of degree 2.
- $U \subset \subset V$.

We let $K_f = \bigcap_{k=0}^{\infty} f^{-k} V$. We will assume that f'(0) = 0.

- 2. $f: U \to V$ is *N*-renormalizable: We can find $U_N \subset U$, $V_N \subset V$ such that $f^N: U_N \to V_N$ is quadratic-like and $0 \in K_{f^N}$. We let K_N be K_{f^N} .
- 3. $f: U \to V$ is **primitively** *N*-renormalizable: f is *N*-renormalizable and $f^k(K_N) \cap K_N = \emptyset$ for 0 < k < N.
- 4. We say that $f_c(z) = z^2 + c$ is infinitely renormalizable of *B*-bounded primitive type if *f* is primitively $N_0|N_1|N_2|\ldots$ -renormalizable (with $N_0 = 1$), and $N_{k+1}/N_k \leq B$ for all $k \geq 0$.

Bounds for bounded-primitive type

Theorem

Suppose that $f(z) = z^2 + c$ is *B*-bounded infinitely primitively renormalizable. Then for every primitive renormalization time *N*, we can find U_N, V_N such that $f^N: U_N \to V_N$ is an *N*-renormalization of *f* and $mod(V_N, U_N) \ge \epsilon(B)$.

Bounds for bounded-primitive type

Theorem

Suppose that $f(z) = z^2 + c$ is B-bounded infinitely primitively renormalizable. Then for every primitive renormalization time N, we can find U_N, V_N such that $f^N: U_N \to V_N$ is an N-renormalization of f and $mod(V_N, U_N) \ge \epsilon(B)$.

We say that f has the *a priori* bounds.

Examples and Applications

- Suppose that f_c(z) = z² + c is infinitely renormalizable of bounded primitive type.
 - 1. The Mandelbrot set is locally connected at c.
 - 2. The quasiconformal map from M to M_{Λ} for any Mandelbrot-like family Λ is $C^{1+\alpha}$ at c, with conformal derivative.
 - 3. The rescalings of *M* around *c* converge in the Hausdorff topology to \mathbb{C} .

Examples and Applications

- Suppose that f_c(z) = z² + c is infinitely renormalizable of bounded primitive type.
 - 1. The Mandelbrot set is locally connected at c.
 - 2. The quasiconformal map from M to M_{Λ} for any Mandelbrot-like family Λ is $C^{1+\alpha}$ at c, with conformal derivative.
 - 3. The rescalings of *M* around *c* converge in the Hausdorff topology to \mathbb{C} .
- Suppose that $f_c(z)$ is infinitely renormalizable of constant primitive type. Then the rescalings of the small Mandelbrot sets M_k around c converge in the Hausdorff topology.

Examples and Applications

- Suppose that f_c(z) = z² + c is infinitely renormalizable of bounded primitive type.
 - 1. The Mandelbrot set is locally connected at c.
 - 2. The quasiconformal map from M to M_{Λ} for any Mandelbrot-like family Λ is $C^{1+\alpha}$ at c, with conformal derivative.
 - The rescalings of *M* around *c* converge in the Hausdorff topology to C.
- Suppose that $f_c(z)$ is infinitely renormalizable of constant primitive type. Then the rescalings of the small Mandelbrot sets M_k around c converge in the Hausdorff topology.
- The set of parameter values c such that f_c is infinitely renormalizable of bounded primitive type has measure 0.

Basic Definitions II

Suppose that f is primitively N-renormalizable.

- We let $\mathcal{K}_N = \bigcup_{k=0}^{N-1} f^k(\mathcal{K}_N)$ be the union of small Julia sets.
- We let γ_N be the curve in C \ K_N separating K_N from the other small Julia sets.

We let L(γ_N; C \ K_N) denote the Poincaré length of the geodesic representative of γ_N in C \ K_N.

Basic Definitions II

Suppose that f is primitively N-renormalizable.

- We let $\mathcal{K}_N = \bigcup_{k=0}^{N-1} f^k(\mathcal{K}_N)$ be the union of small Julia sets.
- We let γ_N be the curve in $\mathbb{C} \setminus \mathcal{K}_N$ separating \mathcal{K}_N from the other small Julia sets.
- We let L(γ_N; C \ K_N) denote the Poincaré length of the geodesic representative of γ_N in C \ K_N.

Suppose that f is $N_0|N_1|N_2|$...-primitively renormalizable. For n > 0, we let $K_n \equiv K_{N_n}$, $\mathcal{K}_n \equiv \mathcal{K}_{N_n}$, and $\gamma_n \equiv \gamma_{N_n}$ if there is danger of no confusion.

Basic Definitions II

Suppose that f is primitively N-renormalizable.

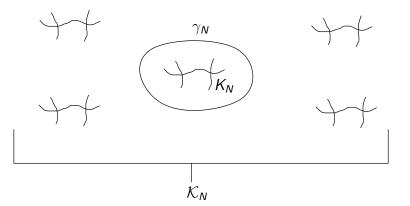
- We let $\mathcal{K}_N = \bigcup_{k=0}^{N-1} f^k(\mathcal{K}_N)$ be the union of small Julia sets.
- We let γ_N be the curve in C \ K_N separating K_N from the other small Julia sets.
- We let L(γ_N; C \ K_N) denote the Poincaré length of the geodesic representative of γ_N in C \ K_N.

Suppose that f is $N_0|N_1|N_2|$...-primitively renormalizable. For n > 0, we let $K_n \equiv K_{N_n}$, $\mathcal{K}_n \equiv \mathcal{K}_{N_n}$, and $\gamma_n \equiv \gamma_{N_n}$ if there is danger of no confusion. We will prove the following well-known theorem as part of our theory:

Theorem

Suppose that f is as above, and $L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n) \leq L_0(f)$ for $n \in \mathbb{Z}^+$. Then f has the a priori bounds.

Illustration of K_N , \mathcal{K}_N , and γ_N for N = 5



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

If it's bad now, it was worse earlier

We will prove the following:

Theorem

Suppose that f is B-bounded $N_0 |N_1| N_2| \ldots$ -primitively renormalizable. Then

 $L(\gamma_{n-12}; \mathbb{C} \setminus \mathcal{K}_{n-12}) \geq L(\gamma_{n-12}; \mathbb{C} \setminus \mathcal{K}_n) \geq 2L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n)$

whenever $L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n) \geq L_0(B)$.

This implies that $L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n) \leq L_0(B)$ for all *n*, and hence the *a priori* bounds.

Pseudo-quadratic-like maps

Pseudo-quadratic-like map $(i, f): U \rightarrow V:$

- Simply connected Riemann surfaces U and V.
- ▶ Non-degenerate compact full continua $K_U \subset U$ and $K_V \subset V$.
- A holomorphic immersion i: U → V such that i⁻¹(K_V) = K_U, and i: K_U → K_V is a bijection.
- A proper degree 2 holomorphic map $f: U \to V$ such that $f^{-1}(K_V) = K_U$.

A pseudo-quadratic-like map $(i, f): U \to V$ is quadratic-like if i is injective and $i(U) \subset V$.

Pseudo-quadratic-like maps

Pseudo-quadratic-like map $(i, f): U \rightarrow V:$

- ▶ Simply connected Riemann surfaces U and V.
- ▶ Non-degenerate compact full continua $K_U \subset U$ and $K_V \subset V$.
- A holomorphic immersion i: U → V such that i⁻¹(K_V) = K_U, and i: K_U → K_V is a bijection.
- A proper degree 2 holomorphic map $f: U \to V$ such that $f^{-1}(K_V) = K_U$.

A pseudo-quadratic-like map $(i, f): U \to V$ is quadratic-like if i is injective and $i(U) \subset V$.

Theorem

Suppose that $(i, f): U \to V$ is a pseudo-quadratic-like map. Then we can find $U' \subset U$ and $V' \subset V$ such that $(i, f): U' \to V'$ is quadratic-like. Moreover, we can make $mod(V', i(U')) \ge \epsilon(mod(V, K_V)).$

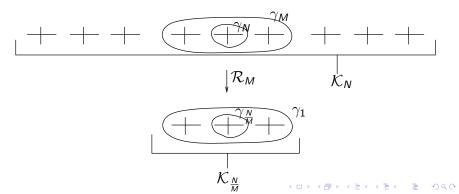
The Canonical Renormalization

Theorem

Suppose that $f_c(z) = z^2 + c$ is primitively M|N-renormalizable. Then we can find a pseudo-quadratic-like M-renormalization $(i_M, f_M): U_M \to V_M$ such that

$$L(\gamma_1; V_M \setminus \mathcal{K}_{\frac{N}{M}}) = L(\gamma_M; \mathbb{C} \setminus \mathcal{K}_N).$$

$$L(\gamma_{\frac{N}{M}}; V_M \setminus \mathcal{K}_{\frac{N}{M}}) = L(\gamma_N; \mathbb{C} \setminus \mathcal{K}_N)$$



The Main Local Theorem

Theorem

Suppose that the pseudo-quadratic-like map $(i, f): U \to V$ is N-renormalizable. Then

$$L(\gamma_1; V \setminus \mathcal{K}_N) \geq 2^{-18} \cdot N \cdot L(\gamma_N; V \setminus \mathcal{K}_N) - C(N).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Main Local Theorem

Theorem

Suppose that the pseudo-quadratic-like map $(i, f): U \rightarrow V$ is N-renormalizable. Then

$$L(\gamma_1; V \setminus \mathcal{K}_N) \geq 2^{-18} \cdot N \cdot L(\gamma_N; V \setminus \mathcal{K}_N) - C(N).$$

Theorem

Suppose that f_c is B-bounded $N_0|N_1|N_2|$...-primitively renormalizable. Then

 $L(\gamma_{n-12}; \mathbb{C} \setminus \mathcal{K}_n) \geq 2L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n)$

whenever $L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n) \ge L_0(B)$.

The Main Local Theorem

Theorem

Suppose that the pseudo-quadratic-like map $(i, f): U \rightarrow V$ is N-renormalizable. Then

$$L(\gamma_1; V \setminus \mathcal{K}_N) \geq 2^{-18} \cdot N \cdot L(\gamma_N; V \setminus \mathcal{K}_N) - C(N).$$

Theorem

Suppose that f_c is B-bounded $N_0|N_1|N_2|$...-primitively renormalizable. Then

$$L(\gamma_{n-12}; \mathbb{C} \setminus \mathcal{K}_n) \geq 2L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n)$$

whenever $L(\gamma_n; \mathbb{C} \setminus \mathcal{K}_n) \ge L_0(B)$. Let $N \equiv \frac{N_n}{N_{n-12}}$: then $N \le B^{12}$ and $2^{-18}N \ge 2^{-18}3^{12} > 2$. (Let $(i, f): U \to V$ be the canonical N_{n-12} -renormalization of f_c).

The Extremal Width "Functor"

For any path family Γ we let

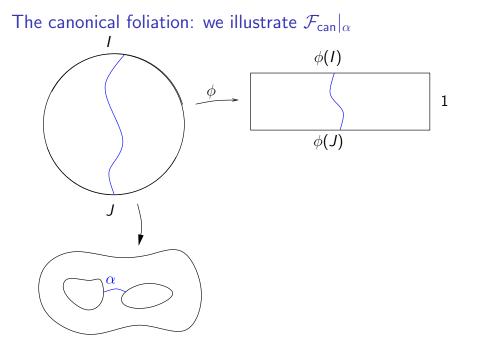
$$\mathcal{W}(\mathsf{\Gamma}) = \inf \left\{ \int
ho^2 \mid L_
ho(\gamma) \geq 1 ext{ for all } \gamma \in \mathsf{\Gamma}
ight\}$$

Let S be a compact Riemann surface with boundary. We let $\mathcal{A}(S)$ denote the space of arcs on S, and $\mathcal{WA}(S)$ denote the space of formal sums of disjoint arcs on S. Let \mathcal{F} be a partial proper foliation on S. Then we let

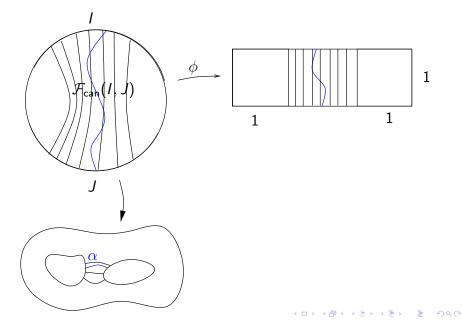
$$\mathcal{W}(\mathcal{F}) = \sum_{\alpha \in \mathcal{A}(S)} \mathcal{W}(\mathcal{F}|_{\alpha}) \alpha,$$

or

$$\mathcal{W}(\mathcal{F})(\alpha) = \mathcal{W}(\mathcal{F}|_{\alpha}).$$



The canonical foliation: we illustrate $\mathcal{F}_{\mathsf{can}}|_{\alpha}$

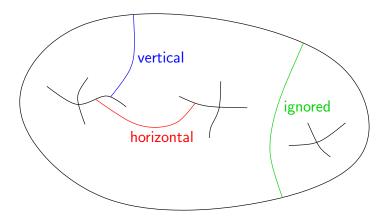


We let $W_{\mathsf{can}}(S) = \mathcal{W}(\mathcal{F}_{\mathsf{can}}(S)).$

- 1. If $f: S \to T$ is a finite cover, then $W_{can}(S) = f^* W_{can}(T)$.
- 2. If \mathcal{F} is any proper partial foliation on S, then $W_{can}(S) \ge W(\mathcal{F}) - 2$ $(W_{can}(S)(\alpha) \ge W(\mathcal{F})(\alpha) - 2).$
- 3. If γ is a peripheral closed Poincaré geodesic on S, then

$$L(\gamma; S) = \pi \langle \gamma, \mathcal{W}_{\mathsf{can}}(S) \rangle + O(1; \chi(S)).$$

Horizontal and vertical arcs



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

The $\mathcal{W}_{\mathsf{can}}$ version of the Main Local Theorem

We let $\mathcal{W}_{can}^{h}(V \setminus \mathcal{K}_{N})$ denote $\mathcal{W}_{can}(V \setminus \mathcal{K}_{N})$ restricted to the horizontal arcs of $\mathcal{W}_{can}(V \setminus \mathcal{K}_{N})$, and likewise define \mathcal{W}_{can}^{v} .

Theorem

 $\|\mathcal{W}_{\mathsf{can}}^{\nu}(V\setminus\mathcal{K}_n)\|_1\geq 2^{-16}\|\mathcal{W}_{\mathsf{can}}^{h+\nu}(V\setminus\mathcal{K}_n)\|_1-C(N).$

The $\mathcal{W}_{\mathsf{can}}$ version of the Main Local Theorem

We let $\mathcal{W}^{h}_{can}(V \setminus \mathcal{K}_{N})$ denote $\mathcal{W}_{can}(V \setminus \mathcal{K}_{N})$ restricted to the horizontal arcs of $\mathcal{W}_{can}(V \setminus \mathcal{K}_{N})$, and likewise define \mathcal{W}^{v}_{can} .

Theorem

$$\|\mathcal{W}_{\mathsf{can}}^{\mathsf{v}}(V\setminus\mathcal{K}_n)\|_1\geq 2^{-16}\|\mathcal{W}_{\mathsf{can}}^{h+\mathsf{v}}(V\setminus\mathcal{K}_n)\|_1-\mathcal{C}(N)$$

By property 3,

$$L(\gamma_1; V \setminus \mathcal{K}_n) = \pi \langle \gamma_1, V \setminus \mathcal{K}_N \rangle + O(1; N) \ge \pi \| \mathcal{W}_{can}^{\nu} \|_1 - C(N)$$

and

$$\sum_{k=0}^{N-1} L(f^{-k*}\gamma_N; V \setminus \mathcal{K}_N) = \pi \|\mathcal{W}_{\mathsf{can}}^{\nu+2h}\|_1 + O(1; N) \leq 2\pi \|\mathcal{W}_{\mathsf{can}}^{\nu+h}\|_1 + C(N).$$

Moreover $L(\gamma_1) \leq 2L(f^{-k*}(\gamma_1))$ for k = 1, ..., N - 1. So Theorem 8 implies the Main Local Theorem.

We let $V^k = f^{-k}V$ (for $f: V' \to V$ a quadratic-like map).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

We let
$$V^k = f^{-k}V$$
 (for $f: V' \to V$ a quadratic-like map).
1. $\|\mathcal{W}^h_{can}(V^{7N} \setminus \mathcal{K}_N)\|_1 \leq \frac{1}{2}\|\mathcal{W}^h_{can}(V^0 \setminus \mathcal{K}_N)\|_1 + C(N)$.

We let
$$V^k = f^{-k}V$$
 (for $f: V' \to V$ a quadratic-like map).
1. $\|\mathcal{W}_{can}^h(V^{7N} \setminus \mathcal{K}_N)\|_1 \leq \frac{1}{2}\|\mathcal{W}_{can}^h(V^0 \setminus \mathcal{K}_N)\|_1 + C(N).$
2. $\|\mathcal{W}_{can}^{2h+\nu}(V^k \setminus \mathcal{K}_n)\|_1 \geq \|\mathcal{W}_{can}^{2h+\nu}(V^0 \setminus \mathcal{K}_N)\|_1 - C(N).$

We let
$$V^k = f^{-k}V$$
 (for $f: V' \to V$ a quadratic-like map).
1. $\|\mathcal{W}_{can}^h(V^{7N} \setminus \mathcal{K}_N)\|_1 \leq \frac{1}{2}\|\mathcal{W}_{can}^h(V^0 \setminus \mathcal{K}_N)\|_1 + C(N)$.
2. $\|\mathcal{W}_{can}^{2h+\nu}(V^k \setminus \mathcal{K}_n)\|_1 \geq \|\mathcal{W}_{can}^{2h+\nu}(V^0 \setminus \mathcal{K}_N)\|_1 - C(N)$.
3. $\|\mathcal{W}_{can}^\nu(V^{rN} \setminus \mathcal{K}_n)\|_1^2 \leq 2 \cdot 2^{2r} \|\mathcal{W}_{can}^\nu(V_0 \setminus \mathcal{K}_N)\|_1 \|\mathcal{W}_{can}^{\nu+h}(V_0 \setminus \mathcal{K}_N)\|_1 + C(r, N)$.

We let
$$V^k = f^{-k}V$$
 (for $f: V' \to V$ a quadratic-like map).
1. $\|\mathcal{W}^h_{can}(V^{7N} \setminus \mathcal{K}_N)\|_1 \leq \frac{1}{2}\|\mathcal{W}^h_{can}(V^0 \setminus \mathcal{K}_N)\|_1 + C(N).$
2. $\|\mathcal{W}^{2h+v}_{can}(V^k \setminus \mathcal{K}_n)\|_1 \geq \|\mathcal{W}^{2h+v}_{can}(V^0 \setminus \mathcal{K}_N)\|_1 - C(N).$
3. $\|\mathcal{W}^v_{can}(V^{rN} \setminus \mathcal{K}_n)\|_1^2 \leq 2 \cdot 2^{2r} \|\mathcal{W}^v_{can}(V_0 \setminus \mathcal{K}_N)\|_1 \|\mathcal{W}^{v+h}_{can}(V_0 \setminus \mathcal{K}_N)\|_1 + C(r, N).$

$$1\&2 \implies \|\mathcal{W}_{\mathsf{can}}^{\mathsf{v}}(V^{\mathsf{T}\mathsf{N}} \setminus \mathcal{K}_n)\|_1 \ge \|\mathcal{W}_{\mathsf{can}}^{h+\mathsf{v}}(V^0 \setminus \mathcal{K}_N)\|_1 - \mathcal{C}(N)$$

We let
$$V^{k} = f^{-k}V$$
 (for $f: V' \to V$ a quadratic-like map).
1. $\|\mathcal{W}_{can}^{h}(V^{7N} \setminus \mathcal{K}_{N})\|_{1} \leq \frac{1}{2}\|\mathcal{W}_{can}^{h}(V^{0} \setminus \mathcal{K}_{N})\|_{1} + C(N).$
2. $\|\mathcal{W}_{can}^{2h+\nu}(V^{k} \setminus \mathcal{K}_{n})\|_{1} \geq \|\mathcal{W}_{can}^{2h+\nu}(V^{0} \setminus \mathcal{K}_{N})\|_{1} - C(N).$
3. $\|\mathcal{W}_{can}^{\nu}(V^{rN} \setminus \mathcal{K}_{n})\|_{1}^{2} \leq 2 \cdot 2^{2r}\|\mathcal{W}_{can}^{\nu}(V_{0} \setminus \mathcal{K}_{N})\|_{1}\|\mathcal{W}_{can}^{\nu+h}(V_{0} \setminus \mathcal{K}_{N})\|_{1} + C(r, N).$

$$1 \ll 2 \implies \| \mathcal{V}_{\mathsf{can}}(\mathcal{V} \setminus \mathcal{K}_n) \|_1 \ge \| \mathcal{V}_{\mathsf{can}}(\mathcal{V} \setminus \mathcal{K}_N) \|_1 - C(\mathcal{N})$$

$$\&3\implies \|\mathcal{W}_{\mathsf{can}}^{\mathsf{v}}(V^0\setminus\mathcal{K}_n)\|_1\geq 2^{-16}\|\mathcal{W}_{\mathsf{can}}^{h+\mathsf{v}}(V^0\setminus\mathcal{K}_N)\|_1-C(N).$$

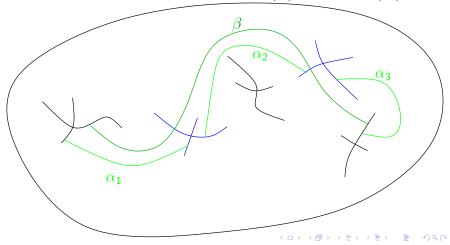
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Arrow Relation

Suppose that $U \subset V$, and $\beta \in \mathcal{A}(V)$, and $\alpha_i \in \mathcal{A}(U)$. We say that

$$(\alpha_i) \rightarrow \beta$$

if β has a representative b that restricts to (a_i) representing (α_i) .



The Art of Domination

Suppose that $U \subset V$, and $X \in \mathcal{WA}(U)$, $Y \in \mathcal{WA}(V)$. We say that $X \multimap Y$ if _____

$$X = \sum w_{ij} \alpha_{ij}$$

and

$$Y \leq \sum v_i \beta_i$$

and

$$\begin{array}{l} \forall i \quad (\alpha_{ij})_j \to \beta_i \\ \\ \forall i \quad \sum w_{ij}^{-1} \le v_i^{-1}. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Domination and Restriction

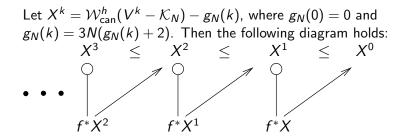
Suppose that $U \subset V$ (and $\pi_1(U) \to \pi_1(V)$ is surjective), and \mathcal{F} is a proper partial foliation of V. Then

 $\mathcal{W}(\mathcal{F}|_U) \multimap \mathcal{W}(\mathcal{F}).$

Corollary

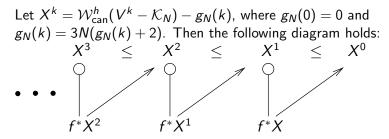
$$\mathcal{W}_{\mathsf{can}}(U) \multimap \mathcal{W}_{\mathsf{can}}(V) - 6|\chi(U)|.$$

The Pullback Diagram



イロト イポト イヨト イヨト

The Pullback Diagram



We will show that this diagram implies that

$$X^{7N} < \frac{1}{2}X^0.$$

イロト イポト イヨト イヨト

We can find $0 \le k \le k + 1 \le 3N$ such that

 $\operatorname{supp} X^{k+1} = \operatorname{supp} X^k.$

We can find $0 \le k \le k + 1 \le 3N$ such that

$$\operatorname{supp} X^{k+1} = \operatorname{supp} X^k$$

Then for every $\beta \in \operatorname{supp} X^k$, we can find $(\alpha_i) \in f^* \operatorname{supp} X^k$ such that $(\alpha_i) \to \beta$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We can find $0 \le k \le k + 1 \le 3N$ such that

$$\operatorname{supp} X^{k+1} = \operatorname{supp} X^k$$
.

Then for every $\beta \in \operatorname{supp} X^k$, we can find $(\alpha_i) \in f^* \operatorname{supp} X^k$ such that $(\alpha_i) \to \beta$. Then for every vertical $\gamma \in \mathcal{A}(\mathbb{C} - \mathcal{K}_N)$,

$$\left\langle \gamma, \operatorname{supp} X^k \right\rangle = 0 \implies \left\langle f^* \gamma, \operatorname{supp} X^k \right\rangle = 0.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

We can find $0 \le k \le k + 1 \le 3N$ such that

$$\operatorname{supp} X^{k+1} = \operatorname{supp} X^k.$$

Then for every $\beta \in \operatorname{supp} X^k$, we can find $(\alpha_i) \in f^* \operatorname{supp} X^k$ such that $(\alpha_i) \to \beta$. Then for every vertical $\gamma \in \mathcal{A}(\mathbb{C} - \mathcal{K}_N)$,

$$\left\langle \gamma, \operatorname{supp} X^k \right\rangle = 0 \implies \left\langle f^* \gamma, \operatorname{supp} X^k \right\rangle = 0.$$

Then $\langle \eta, \operatorname{supp} X^k \rangle = 0$ for every external ray η to \mathcal{K}_N .

We can find $0 \le k \le k + 1 \le 3N$ such that

$$\operatorname{supp} X^{k+1} = \operatorname{supp} X^k.$$

Then for every $\beta \in \operatorname{supp} X^k$, we can find $(\alpha_i) \in f^* \operatorname{supp} X^k$ such that $(\alpha_i) \to \beta$. Then for every vertical $\gamma \in \mathcal{A}(\mathbb{C} - \mathcal{K}_N)$,

$$\left\langle \gamma, \operatorname{supp} X^k \right\rangle = 0 \implies \left\langle f^* \gamma, \operatorname{supp} X^k \right\rangle = 0.$$

Then $\langle \eta, \operatorname{supp} X^k \rangle = 0$ for every external ray η to \mathcal{K}_N . Let $H_* \subset \mathcal{A}^h(\mathbb{C} - \mathcal{K}_N)$ be those arcs that do not intersect any external ray from \mathcal{K}_N . Then $\operatorname{supp} X^{3N} \subset X^k \subset H_*$.

We can find $0 \le k \le k + 1 \le 3N$ such that

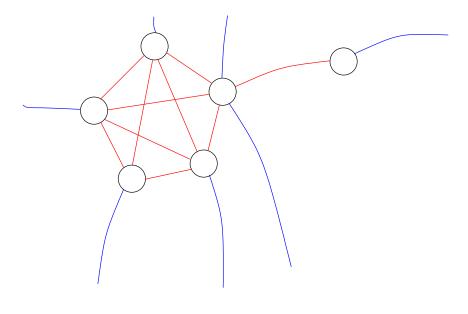
$$\operatorname{supp} X^{k+1} = \operatorname{supp} X^k.$$

Then for every $\beta \in \operatorname{supp} X^k$, we can find $(\alpha_i) \in f^* \operatorname{supp} X^k$ such that $(\alpha_i) \to \beta$. Then for every vertical $\gamma \in \mathcal{A}(\mathbb{C} - \mathcal{K}_N)$,

$$\left\langle \gamma, \operatorname{supp} X^k \right\rangle = 0 \implies \left\langle f^* \gamma, \operatorname{supp} X^k \right\rangle = 0.$$

Then $\langle \eta, \operatorname{supp} X^k \rangle = 0$ for every external ray η to \mathcal{K}_N . Let $H_* \subset \mathcal{A}^h(\mathbb{C} - \mathcal{K}_N)$ be those arcs that do not intersect any external ray from \mathcal{K}_N . Then $\operatorname{supp} X^{3N} \subset X^k \subset H_*$. We say that $\operatorname{supp} X^{3N}$ is aligned with the Hubbard tree.

Arcs "aligned with the Hubbard tree"



The straight-arrow relation

For $\beta \in H_*$, we say that $(\alpha_i) \twoheadrightarrow \beta$ if (α_i) is the shortest sequence in $f^{k*}H_*$ such that $(\alpha_i) \to \beta$. For each β and k there is a unique such sequence (α_i) .

The straight-arrow relation

For $\beta \in H_*$, we say that $(\alpha_i) \twoheadrightarrow \beta$ if (α_i) is the shortest sequence in $f^{k*}H_*$ such that $(\alpha_i) \to \beta$. For each β and k there is a unique such sequence (α_i) .

Theorem

If $(\alpha_i) \twoheadrightarrow \beta$ and the $\alpha_i \in f^{kN*}H_*$ then $\#(\alpha_i) \ge 2^k$.

Weighted arc diagrams restricted to a single $K_N(i)$.

Let

 $X|_{D_i} = \sum X(\alpha).$ $D_i \in \partial \alpha$

Then

$$\sup_{D_i} X^{4N} \leq 2 \inf_{D_i} X^{3N}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose $(\alpha_i) \twoheadrightarrow \beta$ where the $\alpha_i \in f^{rN*}H_*$ and $\beta \in H_*$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Suppose $(\alpha_i) \rightarrow \beta$ where the $\alpha_i \in f^{rN*}H_*$ and $\beta \in H_*$. Suppose that $X, Y \in \mathcal{WA}(\mathbb{C} - \mathcal{K}_N)$ are supported in H_* and $f^{rN*}X \rightarrow Y$.

Suppose $(\alpha_i) \twoheadrightarrow \beta$ where the $\alpha_i \in f^{rN*}H_*$ and $\beta \in H_*$. Suppose that $X, Y \in \mathcal{WA}(\mathbb{C} - \mathcal{K}_N)$ are supported in H_* and $f^{rN*}X \multimap Y$. Then $Y(\beta) \leq \frac{1}{\sum} \sup(X|_D).$

$$\mathcal{L}(\beta) \leq rac{1}{\#(lpha_i)} \sup_D (X|_D).$$

Suppose $(\alpha_i) \rightarrow \beta$ where the $\alpha_i \in f^{rN*}H_*$ and $\beta \in H_*$. Suppose that $X, Y \in \mathcal{WA}(\mathbb{C} - \mathcal{K}_N)$ are supported in H_* and $f^{rN*}X \rightarrow Y$. Then $Y(\beta) \in \frac{1}{2} \exp(Y|_{-})$

$$Y(\beta) \leq rac{1}{\#(lpha_i)} \sup_D (X|_D).$$

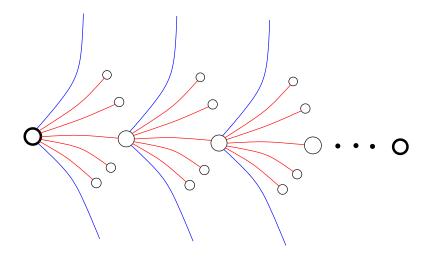
Corollary

We have

$$\|X^{7N}\|_1 \le 2^{-1}\|X^{3N}\|_1 \quad (\le 2^{-1}\|X^0\|_1).$$

(because $f^{3N*}X^{4N} \multimap X^{7n}$))

The picture for the fundamental theorem



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで