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Basic Definitions I

1. Quadratic-like map: f : U → V .
I f is proper and holomorphic of degree 2.
I U ⊂⊂ V .

We let Kf =
⋂∞

k=0 f −kV . We will assume that f ′(0) = 0.

2. f : U → V is N-renormalizable: We can find UN ⊂ U,
VN ⊂ V such that f N : UN → VN is quadratic-like and
0 ∈ Kf N . We let KN be Kf N .

3. f : U → V is primitively N-renormalizable: f is
N-renormalizable and f k(KN) ∩ KN = ∅ for 0 < k < N.

4. We say that fc(z) = z2 + c is infinitely renormalizable of
B-bounded primitive type if f is primitively
N0|N1|N2| . . .-renormalizable (with N0 = 1), and
Nk+1/Nk ≤ B for all k ≥ 0.



Bounds for bounded-primitive type

Theorem
Suppose that f (z) = z2 + c is B-bounded infinitely primitively
renormalizable. Then for every primitive renormalization time N,
we can find UN ,VN such that f N : UN → VN is an
N-renormalization of f and mod(VN ,UN) ≥ ε(B).

We say that f has the a priori bounds.
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Examples and Applications

I Suppose that fc(z) = z2 + c is infinitely renormalizable of
bounded primitive type.

1. The Mandelbrot set is locally connected at c .
2. The quasiconformal map from M to MΛ for any

Mandelbrot-like family Λ is C 1+α at c , with conformal
derivative.

3. The rescalings of M around c converge in the Hausdorff
topology to C.

I Suppose that fc(z) is infinitely renormalizable of constant
primitive type. Then the rescalings of the small Mandelbrot
sets Mk around c converge in the Hausdorff topology.

I The set of parameter values c such that fc is infinitely
renormalizable of bounded primitive type has measure 0.
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Basic Definitions II

Suppose that f is primitively N-renormalizable.

I We let KN =
⋃N−1

k=0 f k(KN) be the union of small Julia sets.

I We let γN be the curve in C \ KN separating KN from the
other small Julia sets.

I We let L(γN ; C \ KN) denote the Poincaré length of the
geodesic representative of γN in C \ KN .

Suppose that f is N0|N1|N2| . . .-primitively renormalizable. For
n > 0, we let Kn ≡ KNn , Kn ≡ KNn , and γn ≡ γNn if there is
danger of no confusion. We will prove the following well-known
theorem as part of our theory:

Theorem
Suppose that f is as above, and L(γn; C \ Kn) ≤ L0(f ) for n ∈ Z+.
Then f has the a priori bounds.
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Illustration of KN , KN , and γN for N = 5

KN

γN

KN



If it’s bad now, it was worse earlier

We will prove the following:

Theorem
Suppose that f is B-bounded N0|N1|N2| . . .-primitively
renormalizable. Then

L(γn−12; C \ Kn−12) ≥ L(γn−12; C \ Kn) ≥ 2L(γn; C \ Kn)

whenever L(γn; C \ Kn) ≥ L0(B).

This implies that L(γn; C \ Kn) ≤ L0(B) for all n, and hence the a
priori bounds.



Pseudo-quadratic-like maps

Pseudo-quadratic-like map (i , f ): U → V :

I Simply connected Riemann surfaces U and V .

I Non-degenerate compact full continua KU ⊂ U and KV ⊂ V .

I A holomorphic immersion i : U → V such that i−1(KV ) = KU ,
and i : KU → KV is a bijection.

I A proper degree 2 holomorphic map f : U → V such that
f −1(KV ) = KU .

A pseudo-quadratic-like map (i , f ): U → V is quadratic-like if i is
injective and i(U) ⊂⊂ V .

Theorem
Suppose that (i , f ): U → V is a pseudo-quadratic-like map. Then
we can find U ′ ⊂ U and V ′ ⊂ V such that (i , f ): U ′ → V ′ is
quadratic-like. Moreover, we can make
mod(V ′, i(U ′)) ≥ ε(mod(V ,KV )).
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The Canonical Renormalization

Theorem
Suppose that fc(z) = z2 + c is primitively M|N-renormalizable.
Then we can find a pseudo-quadratic-like M-renormalization
(iM , fM): UM → VM such that

I L(γ1; VM \ K N
M

) = L(γM ; C \ KN).

I L(γ N
M

; VM \ K N
M

) = L(γN ; C \ KN)

KN

γ1γ N
M

K N
M

γN
γM

RM



The Main Local Theorem

Theorem
Suppose that the pseudo-quadratic-like map (i , f ): U → V is
N-renormalizable. Then

L(γ1; V \ KN) ≥ 2−18 · N · L(γN ; V \ KN)− C (N).

Theorem
Suppose that fc is B-bounded N0|N1|N2| . . .-primitively
renormalizable. Then

L(γn−12; C \ Kn) ≥ 2L(γn; C \ Kn)

whenever L(γn; C \ Kn) ≥ L0(B).

Let N ≡ Nn
Nn−12

: then N ≤ B12 and 2−18N ≥ 2−18312 > 2.

(Let (i , f ): U → V be the canonical Nn−12-renormalization of fc).
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The Extremal Width “Functor”

For any path family Γ we let

W(Γ) = inf

{∫
ρ2 | Lρ(γ) ≥ 1 for all γ ∈ Γ

}
Let S be a compact Riemann surface with boundary. We let A(S)
denote the space of arcs on S , and WA(S) denote the space of
formal sums of disjoint arcs on S . Let F be a partial proper
foliation on S . Then we let

W(F) =
∑

α∈A(S)

W(F|α)α,

or
W(F)(α) =W(F|α).



The canonical foliation: we illustrate Fcan|α
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We let Wcan(S) =W(Fcan(S)).

1. If f : S → T is a finite cover, then Wcan(S) = f ∗Wcan(T ).

2. If F is any proper partial foliation on S , then
Wcan(S) ≥ W(F)− 2
(Wcan(S)(α) ≥ W(F)(α)− 2).

3. If γ is a peripheral closed Poincaré geodesic on S , then

L(γ; S) = π 〈γ,Wcan(S)〉+ O(1;χ(S)).



Horizontal and vertical arcs

horizontal

vertical

ignored



γN

γ1



The Wcan version of the Main Local Theorem

We let Wh
can(V \ KN) denote Wcan(V \ KN) restricted to the

horizontal arcs of Wcan(V \ KN), and likewise define Wv
can.

Theorem

‖Wv
can(V \ Kn)‖1 ≥ 2−16‖Wh+v

can (V \ Kn)‖1 − C (N).

By property 3,

L(γ1; V \ Kn) = π 〈γ1,V \ KN〉+ O(1; N) ≥ π‖Wv
can‖1 − C (N)

and

N−1∑
k=0

L(f −k∗γN ; V \KN) = π‖Wv+2h
can ‖1+O(1; N) ≤ 2π‖Wv+h

can ‖1+C (N).

Moreover L(γ1) ≤ 2L(f −k∗(γ1)) for k = 1, . . . ,N − 1. So Theorem
8 implies the Main Local Theorem.
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Three steps to prove the Main Local Theorem

We let V k = f −kV (for f : V ′ → V a quadratic-like map).

1. ‖Wh
can(V 7N \ KN)‖1 ≤ 1

2‖W
h
can(V 0 \ KN)‖1 + C (N).

2. ‖W2h+v
can (V k \ Kn)‖1 ≥ ‖W2h+v

can (V 0 \ KN)‖1 − C (N).

3. ‖Wv
can(V rN \ Kn)‖2

1 ≤
2 · 22r‖Wv

can(V0 \ KN)‖1‖Wv+h
can (V0 \ KN)‖1

+ C (r ,N).

1&2 =⇒ ‖Wv
can(V 7N \ Kn)‖1 ≥ ‖Wh+v

can (V 0 \ KN)‖1 − C (N)

&3 =⇒ ‖Wv
can(V 0 \ Kn)‖1 ≥ 2−16‖Wh+v

can (V 0 \ KN)‖1 − C (N).
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The Arrow Relation
Suppose that U ⊂ V , and β ∈ A(V ), and αi ∈ A(U). We say that

(αi )→ β

if β has a representative b that restricts to (ai ) representing (αi ).

β

α1

α2

α3



The Art of Domination

Suppose that U ⊂ V , and X ∈ WA(U), Y ∈ WA(V ). We say
that X ( Y if

X =
∑

wijαij

and
Y ≤

∑
viβi

and
∀i (αij)j → βi

∀i
∑

w−1
ij ≤ v−1

i .



Domination and Restriction

Suppose that U ⊂ V (and π1(U)→ π1(V ) is surjective), and F is
a proper partial foliation of V . Then

W(F|U)(W(F).

Corollary

Wcan(U)(Wcan(V )− 6|χ(U)|.



The Pullback Diagram

Let X k =Wh
can(V k −KN)− gN(k), where gN(0) = 0 and

gN(k) = 3N(gN(k) + 2). Then the following diagram holds:

������������

X 0

f ∗Xf ∗X 1f ∗X 2

≤ ≤X 1X 3 ≤ X 2

We will show that this diagram implies that

X 7N <
1

2
X 0.
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From horizontal arcs to the Hubbard tree

We can find 0 ≤ k ≤ k + 1 ≤ 3N such that

supp X k+1 = supp X k .

Then for every β ∈ supp X k , we can find (αi ) ∈ f ∗ supp X k such
that (αi )→ β.
Then for every vertical γ ∈ A(C−KN),〈

γ, supp X k
〉

= 0 =⇒
〈

f ∗γ, supp X k
〉

= 0.

Then
〈
η, supp X k

〉
= 0 for every external ray η to KN .

Let H∗ ⊂ Ah(C−KN) be those arcs that do not intersect any
external ray from KN . Then supp X 3N ⊂ X k ⊂ H∗.
We say that supp X 3N is aligned with the Hubbard tree.
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Arcs “aligned with the Hubbard tree”



The straight-arrow relation

For β ∈ H∗, we say that (αi )� β if (αi ) is the shortest sequence
in f k∗H∗ such that (αi )→ β. For each β and k there is a unique
such sequence (αi ).

Theorem
If (αi )� β and the αi ∈ f kN∗H∗ then #(αi ) ≥ 2k .
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Weighted arc diagrams restricted to a single KN(i).

Let
X |Di

=
∑

Di∈∂α
X (α).

Then
sup
Di

X 4N ≤ 2 inf
Di

X 3N .



The Fundamental Theorem

Suppose (αi )� β where the αi ∈ f rN∗H∗ and β ∈ H∗.

Suppose that X ,Y ∈ WA(C−KN) are supported in H∗ and
f rN∗X ( Y .
Then

Y (β) ≤ 1

#(αi )
sup
D

(X |D).

Corollary

We have
‖X 7N‖1 ≤ 2−1‖X 3N‖1 (≤ 2−1‖X 0‖1).

(because f 3N∗X 4N ( X 7n))
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The picture for the fundamental theorem
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