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Given ¢ € C, let f, : C — C be defined by f.(z) = 2% + ¢, and let f* be
the n'™® iterate of f.. The Mandelbrot set M is defined by

M = {c| f2(0)# oo}.

It is easy to show that the Mandelbrot set is compact: one shows that if
|z| > max(|c|,2), then |f*(2)] > |z] and f(z) — oo; therefore

M ={c]||f0)] <2foralln>1}.

Douady and Hubbard[1] showed that the Mandlebrot set is connected. Their
proof was analytic in that it directly constructed the Riemann map from the
complement of the Mandelbrot set to the complement of the disk.

We give here a topological proof that M is connected. For each n > 1, let
P,(¢) = f(0). Choose R > 2, and let Dp denote the (open) disk of radius
R, and C% its boundary. It is convenient to choose R transcendental, so that

it is generic for our purposes. Let X denote the closure of a set X C C.
We have that

M = ﬁ P! (Dg)

n=1

is a nested intersection of compact sets, so we need only show that Pn_i‘D—R)
is connected for all n > 1. So assume that for some n > 1, P, '(Dg) is
disconnected. Let U be a component of P, '(Dy) such that 0 ¢ U. We claim

that, for 1 < k <n,

(*) 0¢ Pu(U).



But P, is a branched cover, so P,(U) = Dg, which contradicts the claim.
So all that remains is to prove (%) above. This in turn will follow from
the “principle of correspondence of winding number”, namely

Proposition
Let S be a smooth Jordan curve, and (Cs)ses be a smoothly varying family
of smooth Jordan curves, and for s € S, let D, be the Jordan domain such
that Cy = dD,. Now let a,b, f : S — C be smooth functions such that for
all s € S, a(s),b(s) € D(s), and f(s) € C(s). Then

#ses(f(5) —a(s)) = #es(f(s) = b(s))

where # denotes the winding number around 0.

Given this proposition, we can prove (x) by induction on k. For k = 1,
equation (x) is just our assumption that 0 ¢ U. Now assume (%) for some
k € [1,n); we will prove it for k + 1. We have

o)y #£0forceU

and therefore _
) £cforceU.

Now if ¢ is an analytic function on a neighborhood of U, then
0¢ g(U)
if and only if
H#ecu g(C) = 0.
Thus we have
#eev (fEH(0) =) =0
and need only show that
#eev(fT(0) = 0) = 0.

This follows immediately from the principle of correspondence of winding
number, because for ¢ € U,

FFH0) € £ (C),
which is a smoothly varying family of smooth Jordan curves, and
0,c € f&7"(Dr),

because 77 !(c) € Cg, so f™(c) € Dg form <n — 1.

2



1 Dotting the i’s and crossing the t’s

In order to complete our argument, we should
1. define a smoothly varying family of curves,
2. prove proposition 1, and
3. prove the italicized statement in the previous section.

We say that a family of Jordan curves Jy, for A € A C C, varies smoothly
if there is a diffeomorphism

J:AXCr—={(N\z): A€ Aand z € J,}

that preserves the first coordinate. Thus a smoothly varying family is a
smooth isotopy, and we can extend it by the ambient isotopy theorem to

J: AxC—=AxC

that is again a diffeomorphism preserving the first coordinate.
Now returning to the notation of proposition 1, we have by the above a

diffeomorphism
C:SxC—-5xC

such that for each s there exists C, : C — C such that
C(s,2) = (s,Cs(2)),

with
and

Then we define, for ¢ € [0,1],
er(s) = Cs((1 = )G (als)) +tC7H (b(s))),

so that e;(s) € Dy for all s,t, and hence e,(s) # f(s) for any s,t. It follows
that

#sec, (f(s) —ei(s))

is constant (in t), and the proposition follows.
We now show



2 Lemma
Let V = P_Y(Dg), for R > 2. Then (f,™(Cg))cev is a smoothly varying
family of smooth Jordan curves.

This implies, in the notation of the previous section, that for k£ > 1,
fE+H1=n(CR) is a smoothly varying family of smooth Jordan curves over OU C
P! (Dg). This is the italicized statement of the previous section.

The lemma is more or less obvious, given the standard (topological) fact
that f-™(Cg) is a smooth Jordan curve provided that f(0) € Dg.

We can give a cute proof of the lemma that reproves this standard fact,
on the assumption that P'(Dpg) is connected. This is of course what we are
trying to prove as the main theorem, but if we assume in the previous section
that n is the least value for which P, *(Dp) is disconnected, then P ', (Dg)
is connected, and we need the lemma only for m =n — 1.

Accordingly, let V' = P'(Dg), and assume that V is connected. Then
V' is simply connected by the maximum modulus principle. Let f(c,2) =

(¢, fe(2)); then
" {(c,2) :c€V, f{z) € Cr} =V x Cg

is a covering map that preserves the first coordinate. Now let Fy = f;"(Cg);
then the map
VXFy—Vx CR

given by (¢, z) — (c, fi'(2)) is also a covering that preserves the first coor-
dinate, and it has the same image in m; as f" above. Therefore there is a
diffeomorphism

VxFy—{(c,z):ceV, flz) € Cr}

that preserves the first coordinate; and Fj is a round circle, so (f,™(Cg))cev
is a smoothly varying family of smooth Jordan curves.
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