Math 54: Honors Linear Algebra
Links to textbooks:
NEW: Course Reserves
NEWER: Math Resource Center
Syllabus/Reading/Assignments:
| Date | Read ahead: | Homework due: | Topics covered or to be covered (approx.) |
| 9/2 | Math interests survey | Vector spaces & subspaces def. and examples | |
| 9/7 | R: p. 1-14; W: p. 6-11 |
W: p5 (1.2 &1.4); R: p19 (5-9) | Linear independence, span, bases, dimension |
| 9/9 | R: p. 37-41 | Bases cont., definition of linear map | |
| 9/14 | R: p. 41-47, W: 12-22 | W: p11 (2.2 c,d,e & prove a) |
Linear maps as matrices, composition and matrix multiplication |
| 9/16 | W: 22-30, Sec. 8 highly recmd. | Linear map properties, fundamental subspaces | |
| 9/21 | W: 39-45 | W: p16-17 (3.1c, 3.3a,b,c,d) |
Linear systems & Gaussian elimination |
| 9/23 | W: 46-52 | Gaussian elimination | |
| 9/28 | W: 52-59 | W: p46 (2.1, 2.2), p51 (3.1, 3.2, 3.8, 3.9) |
Fundamental subspaces & rank theorem |
| 9/30 | W: 59-68 | Inverses, change of bases | |
| 10/5 | Mini-midterm (solutions) | ||
| 10/7 | Invariant subspaces, eigenvalues & eigenvectors | ||
| 10/12 | R: Chapter 5 (76-91) | Upper-triangular & diagonal matrices | |
| 10/14 | R: Chapter 5 (91-93) | R: Ch. 1 (1, 2-optional, 15); Ch 2 (12); Ch. 3 (8); Ch. 5 (3, 5, 9, 10) |
Upper-triangular & diagonal matrices |
| 10/19 | Upper-triangular & diagonal matrices | ||
| 10/21 | Notes shared by Joy Ko W: 99-103 |
Determinants & finding eigenvalues | |
| 10/26 | Midterm review | ||
| 10/28 | Midterm (solutions) | ||
| 11/2 |
|
Determinants & finding eigenvalues | |
| 11/4 | W: 115-122 | W: p85 (3.1, 3.3 (any method), 3.5, 3.6, 3.7); p103 (1.2); p112 (2.3, 2.9) | Determinants & finding eigenvalues |
| 11/9 | W: 115-122 | Inner products and norms | |
| 11/11 | W: 123-132 | Gram-Schmidt orthogonalization | |
| 11/16 | W: 133-138 (rec: R Ch. 6) | W: p122 (1.2, 1.6, 1.7, 1.9); |
Least squares approximation |
| 11/18 | W: 138-144 (rec: R Ch. 6) | Adjoint | |
| 11/23 | W: 144-148 | W: p132 (3.2, 3.6); p138 (4.2, 4.3); R: Ch. 6 (10) | Isometries & rigid motions |
| 11/25 | HOLIDAY | ||
| 11/30 | W: 157-159 | Schur representation | |
| 12/2 | W: 159-162 (rec: R 128-137) | (Due Friday) R: Ch 6 (2, 18); W: p141 (5.1, 5.3); p147 (6.5,6.8,6.9); p149 (7.1) |
Spectral theorem |
| 12/7 | Flexible | ||
| 12/10 | Final exam: 2:00 - 5:00 PM | ||