1. Let \(R = \{(a_1, a_2, a_3, \ldots) : a_i \in \mathbb{Z}\} \), i.e., \(R \) is the ring of infinite tuples of \(\mathbb{Z} \), indexed by the positive integers, with coordinatewise addition and multiplication. For each \(j = 1, 2, \ldots \) let

\[I_j = \{(a_1, a_2, a_3 \ldots) \in R : a_i = 0 \text{ for all } i \geq j\} \]

(a) Show that the \(I_j \) are principal ideals forming an ascending chain \(I_1 \subseteq I_2 \subseteq \cdots \) that doesn’t stabilize. Conclude that \(I = \bigcup_{j \geq 1} I_j \) an ideal that is not finitely generated.

(b) Is \(I \) prime?

(c) (extra, just for fun) Show \(R/I \) contains a copy of \(\mathbb{Z}[x] \) inside it. That is, \(R/I \) has a subring isomorphic to \(\mathbb{Z}[x] \).

2. Dummit and Foote p. 306 problem 2

3. Convince yourself that the polynomial \(x^3 + x + 1 \) is irreducible in \(\mathbb{F}_2[x] \). Write out the multiplication table for the 8-element field \(K = \mathbb{F}_2[x]/(x^3 + x + 1) \), and check that the multiplicative group of nonzero elements in \(K \) is isomorphic to \(\mathbb{Z}/7\mathbb{Z} \).

4. For \(K \) a field of characteristic \(p > 0 \), we define the Frobenius map \(e: K \rightarrow K \) by \(e(a) = a^p \). Show that \(e \) is a homomorphism. (To show that \(e(a+b) = e(a) + e(b) \) you may wish to appeal to the Binomial Theorem.)

Also, compute what \(e \) does to each element of the field \(K \) from Problem 3.