MATH 1530 ABSTRACT ALGEBRA PROBLEM SET 12 DUE TUESDAY MAY 2 1PM IN CLASS

1. Let $R=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in \mathbb{Z}\right\}$, i.e., R is the ring of infinite tuples of \mathbb{Z}, indexed by the positive integers, with coordinatewise addition and multiplication. For each $j=1,2, \ldots$ let

$$
I_{j}=\left\{\left(a_{1}, a_{2}, a_{3} \ldots\right) \in R: a_{i}=0 \text { for all } i \geq j .\right\}
$$

(a) Show that the I_{j} are principal ideals forming an ascending chain $I_{1} \subsetneq I_{2} \subsetneq \cdots$ that doesn't stabilize. Conclude that $I=\bigcup_{j \geq 1} I_{j}$ an ideal that is not finitely generated.
(b) Is I prime?
(c) (extra, just for fun) Show R / I contains a copy of $\mathbb{Z}[x]$ inside it. That is, R / I has a subring isomorphic to $\mathbb{Z}[x]$.
2. Dummit and Foote p. 306 problem 2
3. Convince yourself that the polynomial $x^{3}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$. Write out the multiplication table for the 8-element field $K=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$, and check that the multiplicative group of nonzero elements in K is isomorphic to $\mathbb{Z} / 7 \mathbb{Z}$.
4. For K a field of characteristic $p>0$, we define the Frobenius map e: $K \rightarrow K$ by $e(a)=a^{p}$. Show that e is a homomorphism. (To show that $e(a+b)=e(a)+e(b)$ you may wish to appeal to the Binomial Theorem.)
Also, compute what e does to each element of the field K from Problem 3.

