## MATH 1530 ABSTRACT ALGEBRA PROBLEM SET 6, DUE TUESDAY MARCH 14 1PM IN CLASS worth 1/2 a problem set

1. An element g of a group G is called *torsion* if it has finite order, and G is called *torsion-free* if its only torsion element is the identity.

Let A be an abelian group and let N be the set of its torsion elements. Prove that N is a subgroup and that A/N is torsion-free.

- 2. (No proofs necessary) Let  $N = Z(D_{12}) \leq D_{12}$ .
  - (a) List the elements of N. You may use Dummit and Foote Problem 4 on p.28, on Homework 3, or combine your answers from Problems 5 and 6 from Homework 5. Now list the elements of  $D_{12}/N$ ; there should be six of them.
  - (b) Write out the multiplication table for the group  $D_{12}/N$ . This should be a  $6 \times 6$  table, all of whose entries are taken from your list of elements of  $D_{12}/N$  from part (a).
- 3. Number the three diagonals of a regular hexagon as shown. Let  $D_{12}$  act on the set  $\{1, 2, 3\}$  via  $g \cdot i = j$  if  $g \in D_{12}$  takes the diagonal i to diagonal j.

Let  $\phi: D_{12} \to S_3$  be the permutation representation of this action. Use  $\phi$  to prove that

$$D_{12}/N \cong S_3.$$

Feel free to appeal to your geometric intuition. (In light of this fact, you may wish to compare your multiplication table for  $D_{12}/N$  with your multiplication table for  $S_3$  from Homework 3.)

