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These are incomplete notes for Math 2720T: Graphs, matroids, and moduli spaces,
taught at Brown University, Spring 2022. The subsection headings give a rough idea of
what we covered in the classroom, but some of them have remained unfilled in these typed
notes. There are surely errors.

1. Engaged Pedagogy

Reference: Teaching to Transgress: Education as the Practice of Freedom by bell hooks.

“The classroom remains the most radical space of possibility in the acad-
emy.”

Question 1.1. Is it possible for a graduate topics course in graphs, matroids, and moduli
spaces be about the practice of freedom, of liberation? Is transgression an appropriate word
to describe graduate education in mathematics? Should I be teaching to transgress, should
you be learning to transgress? And how, if so? What specific structures, what practices
can this class build towards the end of liberation? What forms of liberation would an ideal
graduate topics course bring you?

Question 1.2. bell hooks ties engaged pedagogy to self-actualization, bringing the whole
self to the classroom. In what ways is it challenging to bring our whole selves into a
mathematics classroom? In what ways can we rise to the challenge?

How does your thinking above relate to the physical classroom versus a virtual, Zoom
classroom? We’ve spent a long time out of the physical classroom. What did we lose, and
what specifically do we gain in convening in the physical classroom, as far as bringing our
fully engaged, whole selves? (And what do we lose when we step away from Zoom and into
the physical classroom?)
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Part 1. Graphs

2. Basics. Spanning trees

Definition 2.1. A graph G is a pair of finite sets V and H, a fixed point free involution
i on H, and a root map r : H → V .

The edge set E(G) is the set of pairs {h, i(h)}. Can relax i to be an arbitrary involution,
to get a graph with legs L(G). These form the objects of a groupoid G◦ of graphs. There
is a geometric realization functor | · | : G◦ → Top.

Let G = (V (G), H(G), i, r) be a graph. A subgraph is a choice of V ′ ⊆ V and H ′ ⊆ H
such that i(H ′) ⊆ H ′ and r(H ′) ⊆ V ′. Informally: choose some of the vertices, and
some edges between them. G is called acyclic if it contains no cycle as a subgraph, i.e.,
H1(G;Z) = 0. G is called a tree if it is connected and acyclic.

Say a subgraph H is spanning if V (H) = V (G).

Proposition 2.2. LetG be a connected graph on n vertices. Let T be a spanning subgraph.
The following are equivalent:

(1) T is minimal connected.
(2) T is maximal acyclic.
(3) T has n− 1 edges and is connected.
(4) T has n− 1 edges and is acyclic.

In these situations, say T is a spanning tree.

Exercise 2.3. Enumerate the spanning trees of K4.

Proof. Orient the edges of G arbitrarily; now you have a CW -complex. Consider the
cellular chain complex

QE ∂−→ QV.
Because G is connected, dim Im(∂) = n− 1; more generally

dim Im(∂) = n− dimH0(G;Q) = n−#{connected components}.
Consider the set of vectors

S = {∂e : e ∈ E(T )}.
By the same reasoning, a spanning subgraph T is

(1) connected iff S is a spanning set for Im(∂),
(2) acyclic iff S is linearly independent.

The proposition then follows from linear algebra: these are four equivalent ways of saying
that S is a basis for Im(∂). �

Let T (G) denote the set of spanning trees of G. Evidently T is a functor T : G◦ → Set.

Theorem 2.4. (Cayley’s Theorem, actually due to Borchardt 1860)

|T (Kn)| = nn−2.

That is, the number of trees on vertex set {1, . . . , n} is nn−2.
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Remark 2.5. Possibly discuss two proofs: by Prüfer codes1, and Joyal’s proof of 1980
blogged about here.

Exploration 2.6. What is the Sn-representation on the nn−2 spanning trees of Kn?2

3. Parking functions

Definition 3.1. A parking function is a sequence (b1, . . . , bn) of nonnegative numbers such
that if c1 ≤ · · · ≤ cn is the reordering, then ci < i.

Give the interpretation of parking functions in terms of, well, parking. Cars are num-
bered 1, . . . , n, and parking spots are linearly ordered 0, . . . , n− 1.

Example 3.2. The three parking functions for n = 2 are 01, 10, and 00.

There is an amazingly slick proof that the number of parking functions is also (n+1)n−1,
due to Pollak 1974, see these slides.

There are known bijections between parking functions and spanning trees of Kn+1:

Exploration 3.3. Postnikov-Shapiro define G-parking functions for an arbitrary rooted
graph (G, v) [PS04]. These are functions b : V (G) \ {v} → Z≥0 such that for all I ⊆
V (G) \ {v}, there exists v ∈ I such that b(i) < # edges at i leaving I. Verify that the case
G = Kn+1 recovers parking functions of length n. Let Park(G) be the set of G-parking
functions. Read [CP05] for a family of bijections between T (G) and Park(G), and see the
references therein.

At this point we have three equinumerous sets: T (G), S(G), and Park(G). Here’s some-
thing worth exploring:

Is there a natural isomorphism between T and Park as functors

RootedGraphs◦ → Set?

If not (I believe not), add as little rigidifying data to get a natural isomorphism, e.g., try
rooted ribbon graphs.

1See my notes for first-year undergraduates at here, §2.2, or [Sta99, §5.6]. Can Prüfer codes be related to
any of the other bijections swirling around here? Note that they take as input a graph with total ordering
on vertex set.

2This has surely been studied, but I asked a couple experts and don’t know where. On the other hand,
the Sn action on the (n + 1)n−1 parking functions of length n, denoted Parkn, is of central interest. See
[Hai02], where Haiman proves that the space of diagonal harmonics DHn, of dimension (n + 1)n−1, is
Parkn⊗ sgnn as an Sn-representation and resolves a bunch of conjectures. The proof features the geometry
of Hilbn(C2).

https://golem.ph.utexas.edu/category/2019/12/a_visual_telling_of_joyals_pro.html
https://math.mit.edu/~rstan/transparencies/parking3.pdf
https://docs.google.com/a/brown.edu/viewer?a=v&pid=sites&srcid=YnJvd24uZWR1fG1hdGgtNzUwLTc2MHxneDo0NTNiMjhiZTQwZjU4MDIz
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4. The matrix tree theorem

Definition 4.1. Laplacian matrix of G. Let G be a connected graph on vertex set
{1, . . . , n}. Define a symmetric n× n matrix ∆ = ∆(G) by

∆i,j =

{
−#{edges ij} if i 6= j

#{nonloop edges at i} if i = j.

Since row and column sums are all 0, ∆ is not full rank. On the other hand, the reduced
Laplacian ∆red

i (G) = ∆red(G), obtained by deleting row i and column i for some i, is full
rank. This follows immediately from an even more interesting statement:

Theorem 4.2. (Kirchhoff’s Matrix Tree Theorem) For any3 graph G,

det ∆red(G) = |T (G)|.

Proof. Note ∂∂t = ∆ and ∂i∂
t
i = ∆red

i , where ∂i is obtained from ∂ by deleting row i. Now
use Cauchy-Binet. �

In the Matrix Tree theorem, we have an equality of numbers. One immediately wishes
for a combinatorial proof. The right hand side is evidently the cardinality of a set. The
left hand side is naturally the cardinality of a finite abelian group: the sandpile group of
G, which we shall define.

Definition 4.3. Let G be a connected graph. Regard ∂ : ZE → ZV,∆: ZV → ZV as an
integral map now.

Let Div(G) = ZV , the divisor group on G.
Let Div0(G) = Im(∂) ⊂ ZV , the divisors of degree 0.
Let Prin(G) = Im(∆), the principal divisors.
The sandpile group Pic0(G) = S(G) is the quotient

Pic0(G) =
Div0(G)

Prin(G)
.

Said with less fanfare, S(G) is the cokernel of ∆red : Div0(G)→ Div0(G).

The fact that |S(G)| = det ∆red(G) must have some good conceptual proof, but the only
one I can think of is via Smith normal forms.

Example 4.4.

(1) Compute S(G) for the n-edge banana graph (2 vertices, n parallel edges).
(2) Compute S(G) for the n-cycle Cn. Fun fact: S(G) ∼= S(G∗), and with an isomor-

phism that is canonical up to sign.

Exploration 4.5. Prove det ∆red(Kn) = nn−2. In fact I assert that

S(Kn) ∼= (Z/nZ)n−2,

3The interesting case is connected graphs. If G is not connected, both sides are 0.
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noncanonically. This is a group-theoretic promotion of Cayley’s theorem. This isomor-
phism cannot possibly be canonical with respect to Aut(Kn) = Sn. Prove the existence of
such an isomorphism, and quantify failure of canonicity.

Remark 4.6. Discuss torsor structures on spanning trees. To dig deeper, see [CCG15]
especially the introduction; note this paper arose from a question of Jordan Ellenberg on
MathOverflow [Ell]! Also [BW18].

5. Matrix Tree Theorem, weighted version

Lemma 5.1. (Weighted Cauchy-Binet theorem) Fix d ≤ n, let A ∈ Kd×n, B ∈ Kn×d. Let
D ∈ K[x1, . . . , xn]n×n be diagonal with Di,i = xi. Then

det(ADB) =
∑

S={i1,...,id}

det(AS) det(BS) · xS ∈ K[x1, . . . , xn]d

where xS = xi1 · · ·xid . In particular, det(ADB) is homogeneous of degree d and supported
on squarefree monomials.

For later use, note the interpretation AS = A·πS where πS denotes coordinate projection
Kn → KS .

In particular, given graph G, let DG be the diagonal E(G)× E(G) matrix with formal
variables xe on the diagonal.

Definition 5.2. Define the edge-weighted Laplacian

∆({xe}, G) = ∆ = ∂D∂T .

Explicitly,

∆({xe}, G)i,j =

{
−
∑

e=ij xe if i 6= j∑
e nonloop at i xe if i = j

Consider any reduction ∆red(xe) obtained by deleting row and column corresponding to
e0 ∈ E(G). Then a consequence of the weighted Cauchy-Binet theorem is

Corollary 5.3. (Weighted Matrix Tree Theorem)

det ∆red({xe}, G) =
∑

T∈T (G)

∏
e∈E(T )

xe.

6. Dual Laplacians

We follow here the perspective of Bloch-Esnault-Kreimer [BEK06]; see also [Bro21]. Let
G be a connected graph. Let HG = H : H1(G;Z) ↪→ ZE be the inclusion, regarded by
abuse of notation also as a matrix with respect to any Z-basis for H1 and the basis E for
ZE.

Definition 6.1. The dual Laplacian of G is

ΛG = HtGDGHG.
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Definition 6.2. The graph polynomial, or Symanzik polynomial, of G is ΨG = det ΛG ∈
K[xe : e ∈ E(G)].

Note that although we chose arbitrarily a Z-basis for H1(G;Z), ΛG is independent of
that choice, since another choice results in multiplication of detLG by (±1)2 = 1.

Proposition 6.3. (Spanning tree formula for graph polynomial)

ΛG =
∑

T∈T (G)

∏
e6∈E(T )

xe.

This theorem is proved as a special case of the functional equation below, which I believe
is due to [BEK06].

Definition 6.4. The graph hypersurface of G is the projective hypersurface

XG = V (ΛG) ⊂ P|E(G)|−1.

Let X̂G = V (ΛG) ⊆ A|E(G)| be its affine cone, and let YG = A|E(G)| \ V (ΛG) be the
complement in affine space.

7. A functional equation for polynomials of configurations

See [BEK06, §1]. Let K a field, E a finite set. KE shall denote the vector space with
basis E. This chosen basis gives a choice of identification KE ∼= (KE)∨.

Definition 7.1. A configuration is a linear subspace iV : V ↪→ KE.

Let d = dimV , and let MV be the matrix for iV with respect to a chosen basis v1, . . . , vd
for V . Define

ΨV (xe) = det(M t
VDMV ),

where D is a diagonal matrix with Di,i = xi. Here we suppress the dependence on choice
of basis for V , though note a different choice of basis just changes ΨV by a constant in
(K∗)2.

Now let W sit in the short exact sequence

0→ V
iV−→ KE →W → 0,

with dual short exact sequence

0→W∨
iW∨−−→ KE → V ∨ → 0,

where we identified (KE)∨ ∼= KE.
Let s : W → KE be any splitting of the first short exact sequence. Choose ordered bases

for V and W , and an ordering of E furnishing an ordered basis of KE. The maps (iV , s)
produce an isomorphism

detV ⊗ detW
∼=−→ detKE

which actually does not depend on choice of s. (Exercise). With respect to our choices of
ordered bases of V , W , and KE, we get a 1× 1 matrix [c], for some c ∈ K∗, representing
this isomorphism. Then, also with respect to our choices, the following equation holds:
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Theorem 7.2.

ΨV (xe) = c2

(∏
e∈E

xe

)
ΨW∨(x−1e ).

Before proving Theorem 7.2, we use it to deduce Proposition 6.3.

Proof of Proposition 6.3.

0→ H1(G;Q) ↪→ QE ∂−→ Im(∂)→ 0

and its dual short exact sequence

0→ Im(∂)∨ ↪→ QE → H1(G;Q)→ 0.

We shall apply Theorem 7.2 to this setup to deduce the explicit formula for the graph
polynomial. One term in Theorem 7.2 we may recognize as a reduced Laplacian. Indeed,
pick any root vertex v, and write V ′ = V \ {v}. Then identify Im ∂ ∼= QV ′ for any root
vertex v, by sending v′ − v 7→ v′. To be very formal, then we write ∂v : QE � QV ′. Then

ΨIm ∂∨ = det ∂Tv D∂ = det ∆red
v =

∑
T∈T (G)

∏
e∈E(T )

xe.

Next, note that any Z-basis for H1(G;Z) together with any Z-basis for Im ∂, for example
{v′ − v : v′ ∈ V ′}, form a Z-basis for ZE. This says that, in our situation, the constant
c = ±1 in the Theorem.

The formula for the graph polynomial follows. �

Proof of Theorem 7.2. It suffices to prove, for each T ⊆ E of size |E| − d = |E| − dimV ,
that

coeff(ΨV , xE\T ) = c2 · coeff(ΨW∨ , xT ).

Let αE\T and βT be, respectively, the compositions

V
iv−→ KE → K(E \ T ) KT → KE �W,

regarding both as matrices with respect to the chosen bases of V,W,E. Then αE\T
and βT are each full rank iff the other is4. Moreover, if both are full rank, then ±c =
detαE\T det(βT )−1. (The ± arises because it is not known whether listing all the elements
of E \ T and then listing the elements of T is the same, up to alternating permutation, as
listing the elements of E in specified order.)

In any case, we are done once we note that the coefficient of xE\T in ΨV is (detαE\T )2,

and the coefficient of xT in ΨW∨ is (detβtT )2.
�

4directly, or draw a diagram and use snake lemma
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7.1. Basic properties of graph hypersurfaces.

Proposition 7.3. See, e.g., [Alu14, Proposition 4.4].

(1) Let G1 and G2 be connected graphs and let G = G1 ∨ G2 be the 1-vertex join at
any two vertices. Then

ΨG = ΨG1 ·ΨG2 ∈ Z[xe : e ∈ E(G1)q E(G2)].

Therefore YG = YG1 × YG2 . In particular, if G and G′ are related by a sequence of
1-vertex cuts and joins, then YG ∼= YG′ .

(2) If G consists of a bridge joining graphs G1 and G2, then YG ∼= YG1 × YG2 × A1.
(3) Let G be obtained from G′ by a “Whitney flip.” Then YG ∼= YG′ .

Proof. The second claim is a special case of the first. For the last one, convince yourself
that there is a commuting diagram

H1(G;Z)

∼=
��

// ZE(G)

∼=
��

H1(G
′;Z) // ZE(G′)

�

For purposes of blowing up to integrate forms on graph hypersurface complements, it is
useful to know what coordinate linear subspaces are contained in graph hypersurfaces. For
S ⊆ E(G), let LS = V (xe : e ∈ S). For which subsets S is LS ⊆ XG?

Proposition 7.4. LS ⊆ XG iff S contains a cycle.

Proof. Suppose S contains a cycle. Then every spanning tree T misses some edge eT of S,
therefore LS ⊆ XG. Conversely, if S is acyclic, then S is contained in a spanning tree T .
Then the point with xe = 0 for e ∈ E(T ) and xe = 1 otherwise is in LS but not in XG.
(Note ΨG has all nonnegative coefficients!) �

Exercise 7.5. If G′ is obtained from subdividing an edge of G, then how is X̂G′ related to

X̂G? Dually, same question if G′ is obtained from G by adding an edge parallel to a given
edge.

8. Graph hypersurfaces and the Grothendieck ring

I found the survey by Aluffi [Alu14] to be very intuitive and helpful for my understanding,
and much of this material is culled from there and other sources mentioned below.

Let k be a field. Define the Grothendieck ring of varieties K0(Vark)), generated by
quasiprojective varieties over k. Can actually make this definition definition over a base
ring R, e.g., R = Z, or indeed arbitrary base scheme S; a possible source is [CLNS18, §1.2].
Thus K0(VarZ) is, as an additive group, the free abelian group generated by [X] for X a
finite-type scheme over SpecZ, with relations

[X] = [Y ] + [X \ Y ]
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for Y a closed subscheme of X. It becomes a ring via [X] · [Y ] = [X ×Z Y ].
Beyond the scope of this course is the still-partly-conjectural notion of a motive due to

Grothendieck. Let k be any field.
Say a variety X is (näıve) mixed Tate if [X] lies in the subring Z[L], where L = [A1]

is the Lefschetz (näıve) motive. Now if a variety X defined over SpecZ is mixed Tate,
then it must be polynomially countable, i.e., there is a polynomial NX(t) ∈ Z[t] such that
#X(Fq) = NX(q) for all finite fields Fq.

For a while, physical evidence suggested that perhaps all graph hypersurfaces are mixed
Tate. This would imply, as was conjectured informally by Kontsevich in a lecture in 1997
(see [Sta98], that all graph hypersurfaces were polynomially countable.

There was some early evidence by combinatorialists Stanley [Sta98] and Stembridge
[Ste98], but a big disproof by Belkale-Brosnan, that uses matroids and appeals to Mnev
universality [BB03]. Maybe we can return to this paper. There are some interesting
questions in [Sta98]: one could ask if the hypersurface of a regular matroid is polynomially
countable, but Stembridge shows that it is not for the matroid R10. Stanley also asks
whether it is at least true that graph hypersurfaces are quasipolynomial (determined by N
possibly different polynomials, depending on the residue class of q mod N , for some N),
but [BB03] disproves this.

Exploration 8.1. Later: classify those regular matroids that are polynomially countable,
in view of Seymour’s decomposition theorem for regular matroids.

An interesting more recent reference is [DSW21].

9. Kontsevich’s graph complexes

Kontsevich [Kon93] defined six flavors of graph complexes

commutative/associative/Lie× even/odd,

the first having to do with vertex decorations, and the second having to do with a choice
of a notion of orientation. In fact, the three choices can be replaced by any cyclic operad
in a more general construction, as described in [CV03].

Why?5 They arise, as Kontsevich sketches, from three infinite-dimensional Lie alge-
bras `∞, a∞, c∞, sitting in a conjectural unifying framework of noncommutative symplectic
geometry. Each of these contain a copy of the symplectic Lie algebra sp(2n). The sp(2n)-
invariants of the exterior algebra of the Lie algebra is related to the three respective flavors
of graph complexes (with “even” orientation.) These graph complexes have precise rela-
tions with

• H∗(Out(Fn);Q), in the Lie case, via Culler-Vogtmann Outer Space;
• H∗(Mg,m/Sm;Q), in the associative case, via Penner’s ribbon orbi-cellular decom-

position of moduli spaces of marked graphs;
• Invariants of manifolds of odd dimension, in the commutative case, in a precise way

that unfortunately I do not know.

5Helpfully sketched in [CV03].
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The first mystery is that the commutative odd graph complex has recently been shown
to be related to cohomology of moduli spaces of curves Mg.

Definition 9.1. (Commutative, odd) graph complex GC. This is a rational chain complex
(for now). Generators are (G,ω) where G is a connected graph with minimum valence ≥ 3,

and ω is an additive generator of ∧|E(G)|Z|E(G)| ∼= Z.

The degree of (G,ω) is |E(G)| − 2|V (G)|. Define the differential, of degree −1. Note
that GC breaks up as

GC =
⊕
g≥2
GC(g).

Theorem 9.2. [CGP21] There is a canonical surjection

H4g−6−k(Mg;Q)→ Hk(GC).

We can already compare with Looijenga’s calculation of what is called in that paper the
Poincaré-Serre polynomial of M3, which is 1 + t2u2 + t6u12 [Loo93, 4.7]. This calculation
encodes that the nonzero rational cohomology groups of M3 are

H0(M3;Q), H2(M3;Q), H6(M3;Q),

each of rank 1, pure of weights 0, 2, and 12 respectively.

Part 2. Moduli spaces of smooth and stable curves

10. The Deligne-Mumford-Knudsen compactification of Mg,n

The material below comes directly from [Cha17, §2.1, 2.3] and the references therein.
See [Cha21] for a more recent colloquium-style survey on algebraic and tropical moduli
spaces.

10.1. Stable curves. Fix k an algebraically closed field. By a curve we shall mean a
reduced, proper, connected scheme X of dimension 1 over k. The arithmetic genus of the

curve is h1(X,OX). A node of X is a point p ∈ X(k) with the property that ÔX,p ∼=
k[[x, y]]/(xy). A nodal curve is a curve whose only singularities, if any, are nodes.

Definition 10.1. (Stable n-pointed curves). A nodal, n-marked curve of genus g is
(X, p1, . . . , pn), where pi ∈ X(k) are distinct nonsingular points of a genus g nodal curve
X.

We say that a nodal, marked curve (X, p1, . . . , pn) is stable if Aut(X, p1, . . . , pn) is
finite, that is, there are only finitely many automorphisms of the curve X that fix each
p1, . . . , pn pointwise. This is often equivalently stated as follows: (X, p1, . . . , pn) is stable
if the restriction of ωX(p1 + · · ·+ pn) to every irreducible component of X is a line bundle
of positive degree. Here ωX denotes the dualizing sheaf of X.
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Notice that all smooth curves of genus g ≥ 2 already have only finitely many automor-
phisms. A smooth curve of genus 1 has finitely many automorphisms once one fixes one
marked point; and a smooth curve of genus 0, also known as P1, has finitely many auto-
morphisms once one fixes three marked points. So we could equally phrase the stability
condition as follows:

Observation 10.2. For every irreducible component C of X, let φ : Cν → C denote the
normalization of C. An n-marked nodal curve (X, p1, . . . , pn) is stable if and only if

(1) for every component C of geometric genus 0,

|C ∩ {p1, . . . , pn}|+ |{q ∈ Cν : φ(q) ∈ Xsing}| ≥ 3;

(2) for every component C of geometric genus 1,

|C ∩ {p1, . . . , pn}|+ |{q ∈ Cν : φ(q) ∈ Xsing}| ≥ 1.

(The second condition sounds misleadingly general. You can trace through the definition
yourself to see that it excludes only one additional case, the case that the whole of X is
just a smooth curve of genus 1 with no marked points.)

Exercise 10.3. Let g, n ≥ 0. Check that stable n-marked curves of genus g exist if and
only if 2g − 2 + n > 0.

10.2. Dual graphs of stable curves. We are working towards the goal of associating a
graph, with some vertex decorations and some edge lengths, to a smooth curve X/K. The
graph we are going to associate to X is the dual graph of the special fiber of a stable model
for X. Basically, the dual graph of a stable curve Y is a combinatorial gadget that records:

• how many irreducible components Y has, and what their geometric genera are;
• how the irreducible components of Y intersect; and
• the way in which the n marked points are distributed on Y .

Now we will explain this completely, starting with the graph theory.

Conventions on graphs. All graphs will be finite and connected, with loops and par-
allel edges allowed. (Graph theorists would call such objects finite, connected multigraphs.)
Remember that a graph G consists of a set of vertices V (G) and a set of edges E(G). Each
edge is regarded as having two endpoints which are each identified with vertices of G,
possibly the same.

Definition 10.4. (Vertex-weighted marked graphs). A vertex-weighted, n-marked graph
is a triple (G,m,w) where:

• G is a graph;
• w : V (G)→ Z≥0 is any function, called a weight function, and
• m : {1, . . . , n} → V (G) is any function, called an n-marking.6

6Another common setup for marking a tropical curve is to attach infinite rays to a graph, labeled
{1, . . . , n}. Our marking function m is obviously combinatorially equivalent.



GRAPHS, MATROIDS, AND MODULI SPACES 13

1 1 1 1 2

Figure 1. The seven genus 2 stable vertex-weighted graphs with no marked
points. The vertices have weight zero unless otherwise indicated.

The genus of (G,m,w) is

g(G) +
∑

v∈V (G)

w(v)

where

g(G) = |E| − |V |+ 1

is the first Betti number of G, considered as a 1-dimensional CW complex, say.

Definition 10.5. (Stability for vertex-weighted marked graphs). With (G,m,w) as above,
we’ll say that (G,m,w) is stable if for every v ∈ V (G),

2w(v)− 2 + val(v) + |m−1(v)| > 0.

Here val(v) denotes the graph-theoretic valence of the vertex v, which is defined as the
number of half-edges incident to it.

Figure 1 shows the seven distinct stable vertex-weighted graphs of type (g, n) = (2, 0).

Exercise 10.6. Find the five stable, 2-marked weighted graphs of genus 1.

Definition 10.7. (Dual graph of a stable curve). Let k be an algebraically closed field,
and let (Y, p1, . . . , pn) be a stable, n-marked curve over k.

The dual graph of (Y, p1, . . . , pn) is the vertex-weighted, marked graph (G,m,w) obtained
as follows.

• The vertices vi of G are in correspondence with the irreducible components Ci of
Y , with weights w(vi) recording the geometric genera of the components.
• For every node p of Y , say lying on components Ci and Cj , there is an edge ep

between vi and vj .
• The marking function m : {1, . . . , n} → V (G) sends j to the vertex of G corre-

sponding to the component of Y supporting pj .

Note that by Observation 10.2, (G,m,w) is stable since (Y, pi) is stable.
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10.3. Clutching and gluing maps. The encyclopedic reference for moduli spaces of
curves is [ACG11]. A useful reference for connections to tropical moduli spaces is [ACP15].

Proposition 10.8. We have morphisms

κg1,n1,g2,n2 : Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

and
γg,n : Mg−1,n+2 →Mg,n

called clutching and gluing morphisms. Notice that the image of these morphisms is con-
tained strictly in the boundary of the target compactified moduli space.

There are also forgetful maps πi : Mg,n+1 →Mg,n for i = 1, . . . , n + 1, that forget the
marked point i and stabilize. Clutching, gluing, and forgetful morphisms taken together
are called the tautological morphisms.

10.4. The boundary strata MG of Mg,n. The strata of the boundaryMg,n \Mg,n are
naturally indexed by genus g, n-marked stable graphs G = (G,m,w), according to the
dual graphs of the stable curves that they parametrize. I would now like to describe these
strata, which we’ll denote YG. This description follows [ACP15, §3.4] and the correctness
of this description is proved in [ACG11, §12.10].

Fix a combinatorial type G = (G,m,w). For each vertex v, let nv = val(v) + |m−1(v)|
where val(v) is the valence of v. Let

MG =
∏

v∈V (G)

Mw(v),nv
.

Using clutching and gluing maps,MG can be identified with the moduli space of n-marked
genus g stable curves, together with a chosen isomorphism of the dual graph with G. To get
rid of that choice of isomorphism, we take the stack quotient [MG/Aut(G)]. The theorem
is then that there is a canonical isomorphism

YG ∼= [MG/Aut(G)].

An explicit example is given in Example 10.9 below.

Example 10.9. Let’s see everything at work in the following specific example of a stratum
in M1,3.

Let G be the combinatorial type below.

1

2
3

Consider the boundary stratum YG ofM1,3. Locally, it is a self-intersection of the boundary
component whose dual graph is obtained from G by contracting either edge.

Let’s describe YG. I’ll assume char k 6= 2 in this example. According to the discussion
above we haveMG

∼=M0,4. Essentially, to give a stable curve C with dual graph G along
with a fixed identification of the two nodes of C with the two edges of G, we choose (up
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to projective equivalence) four distinct points p1, p2, q1, q2 on a P1, with the understanding
that p1 will be marked 1, p2 marked 2, and q1 and q2 will be the two points of attachment
of the other rational curve. Of course M0,4 is an honest variety: for example, fixing
p1 = 0, p2 = 1, and q1 =∞ identifies M0,4 with A1 − {0, 1}.

Now DG is then the stack quotient [M0,4/(Z/2Z)], where the action is the one that

exchanges q1 and q2. You can work out that with the identification M̃G = A1 − {0, 1}
above, the action sends a to 1− a.7

Thus the quotientMG is a once-punctured plane with a Z/2Z-stacky point, correspond-
ing to the fixed point (0, 1,∞, 1/2) ofM0,4 under Z/2Z. It is the stacky point that produces
monodromy: walking around it interchanges the analytic branches of the boundary divisor
that meet along it.

10.5. Beyond clutching and gluing. We previously defined

MG :=
∏

v∈V (G)

Mw(v),L(v),

and we may as well define

MG :=
∏

v∈V (G)

Mw(v),L(v).

One might guess that [MG/Aut(G)] is the closed stratum DG, the moduli space of stable
curves with dual graph admitting a sequence of edge contractions to G. This is close: in fact
[ACG11, XII.10.11, p. 315] [MG/Aut(G)] is canonically identified with the normalization
of DG.

By repeatedly clutching and gluing (and in any order), notice that for any stable graph
G of type (g, n) we have a map

MG →Mg,n.

inducing maps on homology

H∗(MG;Q)→ H∗(Mg,n;Q).

The data of

(1) a graded Sn-representation H∗(Mg,n) for each pair of nonnegative integers g, n
satisfying 2g − 2 + n > 0, and

(2) for each stable graph G of type (g, n), a morphism

H∗(MG;Q)→ H∗(Mg,n;Q)

7We can use, e.g., the following convention for the cross ratio

cr(a, b, c, d) =
(a− d)(b− c)

(a− b)(d− c)

as a coordinate on M0,4. Then

cr(0, 1,∞, x) = x, cr(0, 1, x,∞) = 1− x.
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forms an example of a modular operad. But first, what is an operad?

Part 3. Operads

11. Operads

A great beginner’s reference is [Val14], h/t Kaelin Cook-Powell.
Here is an analogy. Recall that a linear representation of a group G is a vector space V

together with a homomorphism of groups G→ GL(V ).
This definition allows one to isolate the notion of a group and study it in the abstract,

separately from a specific action on some object in a category like a vector space. This is
useful on a number of levels: a group G can be studied in the abstract. Then it can be
related to a particular object in a category, like a vector space V , by specifying a particular
group GL(V ) and a homomorphism G→ GL(V ).

Similarly, an operad isolates the notion of an operation on objects in a symmetric
monoidal category. For example, how would you define an associative operation on V ?
Our goal is to define the notion of an operad, which isolates the very notion of “operation.”
Then, to describe an associative operation on V , we would do it as in this table of analogies:

group operad
the group GL(V ) the endomorphism operad End(V )

a particular group G a particular associative operad Ass
linear representation G→ GL(V ) associative algebra Ass→ End(V )

We work over Vectk for concreteness; note Vectk can be replaced by any symmetric
monoidal category.

Definition 11.1. An S-module over Vectk is a sequence {Vn}n≥1 of right Sn-representations.

Definition 11.2. An symmetric operad or simply operad over Vectk is

(1) an S-module P over Vectk,
(2) a unit e : K → P(1) (regarded as picking out a unit I = e(1) ∈ P(1), and
(3) for all k and numbers n1, . . . , nk ≥ 1, a map

µn1,...,nk,k : P(n1)⊗ · · · ⊗ P(nk)⊗ P(k)→ P(n1 + · · ·+ nk),

satisfying unital, associative, and equivariance axioms (omitted).

Remark 11.3. (An example of an equivariance axiom). Say f, g1, and g2 are functions
V → V that are binary, binary, and ternary respectively. Then σ = (12) ∈ S2 acts by

f (12)(g1(x1, x2, x3), g2(x4, x5)) = f(g2(x4, x5), g1(x1, x2, x3)).

In other words, we have an equality of 5-ary functions

f (12)(g1(−,−,−), g2(−,−)) = f(g2(−,−), g1(−,−,−))τ

where τ =
(
1 2 3 4 5
4 5 1 2 3

)
∈ S5.

Exercise 11.4. Encode the example above as an equivariance axiom.
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Example 11.5.

(1) The commutative operad Com has Com(n) = K as a trivial right Sn-module, for
each n.

(2) The associative operad Ass has Ass(n) = K[Sn] as a right Sn-module, for each n.
(3) Let V be a vector space. The endomorphism operad End(V ) is given by End(V )(n) =

Hom(V ⊗n, V ).

Exercise 11.6. Define a morphism of operads.

Definition 11.7. Let P be an operad. Then a representation of P, also called a P-algebra
structure, is a morphism of operads P → End(V ).

Example 11.8. A morphism of operads Ass→ End(V ) is exactly the data of an associative
algebra structure on V , i.e., a bilinear operation × : V × V → V that is associative.

In one direction, a morphism Ass → End(V ) restricts to K[S2] = Ass(2) → Hom(V ⊗
V, V ) yielding a bilinear map f which is the image of id ∈ S2. It might seem like the
morphism Ass → End(V ) has many more layers of data, for example a ternary operation
g which is the image of id in K[S3] = Ass(3), a 4-ary operation, and so on. However, we
have diagrams

K[S2]⊗K[S1]⊗K[S2]

��

// K[S3]

��

End(V )(2)⊗ End(V )(1)⊗ End(V )(2) // End(V )(3)

id⊗ id⊗ id_

��

� // id_

��

f ⊗ 1⊗ f � // f(f(−,−),−)

K[S1]⊗K[S2]⊗K[S2]

��

// K[S3]

��

End(V )(1)⊗ End(V )(2)⊗ End(V )(2) // End(V )(3)

id⊗ id⊗ id_

��

� // id_

��

1⊗ f ⊗ f � // f(−, f(−,−))

which show that g = f(f(−,−),−) = f(−, f(−,−)), and in particular that f is associa-
tive. And so on.

11.1. Operads as monoids in S-modules. It’s worth mentioning a more algebraic def-
inition of an operad, as a monoid in the category of S-modules. Let k be a field of charac-
teristic 0.

Definition 11.9. An S-module is a functor B → Vectk where B is the groupoid of finite
sets and isomorphisms.

(Alternatively, take B to be the skeletal category consisting of one object {1, . . . , n} for
every integer n = 0, 1, . . . and all isomorphisms. However, not passing to the skeleton has
some advantages.) It is also interesting to replace Vectk with GrVectk, as is done in [Get95]
or [GK98]; or Set; in the latter case we have exactly a combinatorial species.
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Definition 11.10. Define a monoid structure on S-modules which we shall call plethysm:
given S-modules V,W, let V ◦W be the S-module given by

(V ◦W)(n) :=
⊕
d≥0

V(d)⊗
⊕

f : [n]→[d]

d⊗
i=1

W(f−1(i))


Sd

.

and define the unit S-module 1 to be the trivial S1-representation in arity 1 and 0 in
other arities.

Then an operad is a monoid in the monoidal category of S-modules. In other words, an
operad is an S-module P, and morphisms of S-modules

ρ : P ◦ P → P, u : 1→ A
satisfying associativity and unit axioms.

Exercise 11.11. Spell out the equivalence of the two definitions.

Example 11.12. Operad of little discs Dk. This is a topological operad, with Dk(n)
being the topological space parametrizing arrangements of n labelled nonoverlapping k-
discs inside a unit k-disc. What is the operadic structure?

See the survey [Val14, Theorem 10] and the references to [Boardman-Vogt] and [Ma]
therein for the following:

Exercise 11.13. Any k-fold loop space Ωk(Y ) is an algebra over Dk.

Recall the loop space Ω(Y, y0), the space of based maps Map(S1, Y ), topologized by the
compact-open topology. It is itself a based space, based at the constant loop. Iterated loop
spaces Ωk(Y ) = Ω(Ω(· · · (Y )), and more specifically iterated deloopings play a central role
in the construction of groups Ki(R) associated to a ring R in algebraic K-theory.

Notice that (dropping basepoints from the notation whenever convenient)

Map(S1,Map(S1, Y )) ∼= Map(S1 ∧ S1, Y ),

where S1 ∧ S1 = (S1 × S1)/(S1
∨
S1) ∼= S2 is the smash product on pointed topological

spaces. In other words, there is a smash/map adjunction, in an appropriately restricted
category of weakly Hausdorff, compactly generated (WHCG) spaces.

Theorem 11.14. Any connected topological space X that is an algebra over Dk is homo-
topy equivalent to some k-fold loop space Ωk(Y ).

12. Cyclic operads

Possible reference: [Get95, §2.2, p. 6], [GK95]. A cyclic S-module is an S-module P with
an action of Sn+1 on each P(n) extending the action of Sn. Write v∗ = (01 · · ·n) · v. Write
P((n)) = P(n− 1), so P((n)) has a right Sn action.

Definition 12.1. A cyclic operad is an operad P which is simultaenously an cyclic S-
module, such that 1∗ = 1 and

(1) a(1, . . . , 1, b)∗ = b∗(a∗, 1, . . . , 1).
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(Draw a picture.) Side remark: if we replace Vectk by GrVectk then the equality above is
replaced by

a(1, . . . , 1, b)∗ = b∗(a∗, 1, . . . , 1) · (−1)|a||b|.

Example 12.2. Suppose V has nondegenerate symmetric bilinear pairing 〈−,−〉. Then
End(V ) is a cyclic operad, given by the right Sn+1 action on

Hom(V ⊗n+1, k) ∼= Hom(V ⊗n,Hom(V, k)) = Hom(V ⊗n, V ) = End(V )(n),

where the pairing 〈−,−〉 provides the identification between V and Hom(V, k).

For example, if T ∈ Hom(V, V ) then what is T ∗ ∈ Hom(V, V )? We have

Hom(V, V )
∼=−→ Hom(V,Hom(V, k))

∼=−→ Hom(V ⊗ V, k)

T 7−→ (v 7→ 〈−, T v〉) 7−→ (v ⊗ w 7→ 〈w, Tv〉).
And

Hom(V, V )← Hom(V,Hom(V, k))← Hom(V ⊗ V, k),

T ∗ ←− [ (v 7→ (w 7→ 〈v, Tw〉))←− [ (v ⊗ w 7→ 〈v, Tw〉)
where T ∗ is given by

〈T ∗v, w〉 = 〈v, Tw〉
for all v, w. Thus T ∗ is exactly the adjoint of T , in the familiar case that V is an inner
product space, and condition (1) amounts to the fact that

(TS)∗ = S∗T ∗.

Exercise 12.3. More generally, if T ∈ Hom(V ⊗n, V ), then T ∗ ∈ Hom(V ⊗n) is the unique
linear map satisfying

〈vn, T ∗(v0 ⊗ · · · ⊗ vn−1)〉 = 〈(v0, T (v1 ⊗ · · · ⊗ vn)〉.

Definition 12.4. An symmetric pairing 〈−,−〉 on an associative k-algebra V is invariant
if for all vi ∈ V ,

〈v0, v1v2〉 = 〈v0v1, v2〉, equivalently 〈v0, v1v2〉 = 〈v2, v0v1〉,
by symmetry of the pairing.

By iterating, the condition in Definition 12.4 is equivalent to

(2) 〈v0, v1 · · · vn〉 = 〈vn, v0 · · · vn−1〉
for all vi ∈ V .

Now turn the question on its head: suppose we have given to us a vector space V and
a nondegenerate symmetric pairing 〈−,−〉. What would it mean to put an associative
structure on V with respect to which the pairing 〈−,−〉 is invariant?

It would be exactly the specification of an associative product

f : V ⊗ V → V

such that the n-fold product map fn : V ⊗n → V satisfies (2), in other words

f∗n = fn.
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In other words, we expect the cyclic operad Ass to be given in arity n by

Ass(n) =

{
Ind

Sn+1

Cn+1
1 if n ≥ 2,

0 otherwise.

(Recall that a transitive right (say) action of G on X is isomorphic to the action of G on
the right cosets of Stab(x0), for some x0 ∈ X.)

Exercise 12.5. Turn the expectation above into a definition of the cyclic operad Ass by
defining operadic composition.

Remark 12.6. To be fair, the above doesn’t quite fit our definition of a cyclic operad
because it has no unit. It is, rather, an example of a non-unital operad.

Definition 12.7. A non-unital operad is an S-module together with operadic compositions

◦i : P(m)⊗ P(n)→ P(m+ n− 1)

, satisfying associativity and equivariance. This shall be useful

Example 12.8. The commutative cyclic operad is

Com(n) =

{
1 if n ≥ 2,

0 otherwise.

13. Graph complexes from cyclic operads

There are now functors (even,odd) from cyclic operads to chain complexes. The details
are left to [CV03], which describe the even case, which was the case that [Kon93] focuses
on.

The chain complex GP associated to an operad P in rational vector spaces is the direct
sum, over (even resp. odd) oriented graphs G (connected, minimum vertex valence ≥ 3),
of the vector spaces

⊗v∈V (G)P(Leg(v)),

subject to appropriate relations for isomorphisms (G, or)→ (G′, or′). There are two orien-
tation conventions:

• even, in which an orientation of a graph is defined to be an orientation of the vector
space H1(G;R)⊕ RE(G),

• odd, in which an orientation of a graph is defined to be an orientation of RE(G).

The differential is a signed sum of non-loop contractions in which the operad P governs the
“merging” of vertices along a contracted edge.

Because edge-contraction preserves first Betti number (genus), the complex GP splits as
a direct sum

GP =
⊕
g

GP,g.

One wishes for the Euler characteristics of the complexes GP,g. That is hard. What is
achievable is to compute the orbifold Euler characteristics of these complexes. Kontsevich
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asserts that it is reasonable to expect that this is asymptotically the same—most graphs,
one expects, have no automorphisms. However, recently, Borinsky-Vogtmann give a refined
perspective on the asymptotics.

Definition 13.1. Define the orbifold Euler characteristic: I take this to mean the sum

∑
[G]

(−1)|V (G)|

dim
(⊗

v∈V (G) P(v)
)
Aut(G)

|AutG|


over isomorphism classes of connected graphs of first Betti number g. (If P vanishes in
arity ≤ 1 then only graphs with 3-valent vertices can contribute to the sum, and the sum
can thus be shown to be finite.

Exercise 13.2. Compute the orbifold Euler characteristic of the Commutative and Asso-
ciative graph complexes in genus 2.

14. Interlude: Fulton-Macpherson compactifications

Part 4. Mixed Hodge structures and the weight spectral sequence

Definition 14.1. Let R be a subring of R; think of R = Z, or R = Q or R. An R-Hodge
structure, pure of weight n, is a finitely generated R-module H and a decomposition

HC = H ⊗Z C = ⊕p+q=nHp,q

such that Hp,q = Hq,p.

A morphism (H,Hp,q)→ (H ′, H ′p,q) between Hodge structures, both pure of weight n,
is a map f : H → H ′ such that the complexification fC : HC → H ′C sends Hp,q to (H ′)p,q.

Exercise 14.2. Given u ∈ C \ R, define a Hodge structure of weight 1 and dimension 2
temporarily denoted Hu:

Hu = Z2 (Hu)C = H1,0 ⊕H0,1 = 〈(1, u)〉 ⊕ 〈(1, u)〉
Classify all weight 1, dimension 2 Hodge structures supported in bidegrees (1, 0) and (0, 1).

Discussion of Hodge theorem.
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15. Mixed Hodge structures

Definition 15.1. An R-mixed Hodge structure is

(1) a finitely generated R-module H,
(2) an ascending weight filtration on H

· · · ⊂Wj ⊂Wj+1 ⊂ · · · = H

(3) a decending Hodge filtration on HC

HC · · ·F p ⊃ F p+1 ⊃ · · ·

such that for each k,

GrWk H := Wk/Wk−1

with filtration on (GrWk H)C induced by F • is a pure Hodge structure of weight k.

A morphism of these is a map H → H ′ respecting the filtrations. These form an abelian
category, but not semisimple, as explored in the exercise below.

Exercise 15.2. (Good first exercise adapted from S. Howe’s helpful talk notes on mixed
Hodge structures). Compute the abelian group

Ext1Q-MHS(Q(−1),Q).

Here Q(−n) is the 1-dimensional pure rational Hodge structure of weight 2n, so Hn,n ∼=
Q. (Actually by convention/for reasons that haven’t yet been explained, one takes Hn,n =
(2πi)nQ.)

Brief background: for H a MHS, the functors Exti(H,−) : MHS→ AbGp are the right
derived functors of Hom(H,−), and the elements of Ext1(H,H ′) are in bijection with
isomorphism classes of extensions

0→ H ′ → E → H → 0.

Let E = (H,W•, F
•) be a rational MHS with

0→ Q→ E → Q(−1)→ 0.

(1) Argue that up to isomorphism, we may take

W−1 = 0,W0 = W1 = Q× 0 = Q,W2 = Q2.

(2) Write C = C× 0 ⊂ C2. Argue that

F 0 ∩ C = C, F 1 ∩ C = 0,

dimF 1 = 1, F 2 = 0.

(3) What are all possibilities for F 1?
(4) Conclude the problem.



GRAPHS, MATROIDS, AND MODULI SPACES 23

16. Spectral sequences

Let’s work over Q-vector spaces for a warm fuzzy feeling, but may freely replace this
category with R-modules or any abelian category.

A (cohomological) spectral sequence Ep,q• is:

• a vector space Ep,qr for each r ∈ Z≥0 and each p, q ∈ Z;
• For each r, a differential

∂r : Ep,qr → Ep−r,q+r−1r

with ∂2r = 0,
• For each r, p, q, an isomorphism

Ep,qr+1
∼= ker(∂r : Ep,qr → Ep−r,q+r−1r )/ im(∂r : Ep+r,q−r+1

r → Ep,qr ).

The last bullet point is often suppressed.
That is all. The remarkable part is how ubiquitous spectral sequences are in geome-

try/topology:

Proposition 16.1. Suppose X0 ⊂ X1 ⊂ · · · ⊂ Xn = X is a filtration of a space X by
closed subspaces.

Then there is a spectral sequence in compactly supported cohomology

Ep,q1 = Hp+q
c (Xp;Q)⇒ Ep,q∞ = Hp+q

c (X).

Proposition 16.2. More generally, suppose X is a stratified space X =
⋃
α∈P Sα, where

(P,≤) is the poset of strata (bigger strata are lower in P . Let σ : P → Z be any strictly
increasing function on P . For example, σ could measure codimension of strata, with
appropriate constant shift.

Then there is a spectral sequence

Ep,q1 =
⊕

σ(β)=−p

Hp+q
c (Sβ);Z)⇒ Hp+q

c (X;Z).

16.1. The Philip Hall Theorem and Petersen’s spectral sequence.

Part 5. Matroids

Source: course notes from a graduate course on matroids by P. Seymour.

Definition 16.3. Definition of a matroid on ground set S by way of independence. Base,
circuit, rank.

Proposition 16.4. Submodularity of rank.

Definition 16.5. Let A,B ⊆ S. Then A spans B if r(A ∪B) = r(A).

Proposition 16.6. A spans B if and only if for all x ∈ B\A, there is a circuit Cx ⊆ A∪{x}
containing x.
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Proof. Suppose r(A∪B) = r(A). Then for all x ∈ B \A, I ∪{x} is dependent, so contains
a circut Cx that necessarily contains x since it can’t lie entirely in I.

Conversely, suppose r(A ∪ B) > r(A). Let I be maximal independent in A. Then the
hypothesis implies that there is some x ∈ B \ A such that I ∪ {x} is independent. Now
suppose for a contradiction there were some circuit Cx = J ∪ {x} for some independent
J ⊆ A. Extend J to an independent set J ′ of size |I| + 1 inside A ∪ {x}; this is possible
since I ∪ {x} is one such set. Now J ′ can’t contain x since J ′ can’t contain Cx; therefore
J ′ ⊆ A. But then |J ′| > |I|, contradicting that I was maximal independent in A. �

Proposition 16.7. The two base exchange properties.

Proposition 16.8. Let B ⊆ P(S). Then B is the set of bases of a matroid if and only if

(1) B 6= ∅,
(2) all elements of B have the same size,
(3) Given B1, B2 ∈ B and given x1 ∈ B1 \ B2, there exists x2 ∈ B2 \ B1 such that

(B1 \ {x1}) ∪ {x2} ∈ B.

Proof. The forward direction was already proved. For the backwards direction, let I be
the set of subsets of elements of B. Let X,Y ∈ I, with |X| < |Y |. The goal is to show that
there is some y ∈ Y \X such that X ∪ {y} ∈ I.

First, choose B2 ⊇ Y a base, and choose B1 ⊇ X another base subject to the property
that B1 ∩B2 is maximal.

Suppose for a moment that there exists y ∈ B1 ∩ Y with y 6∈ X. Then X ∪ {y} ∈ I,
since X ∪ {y} is a subset of B, and we win. So we may assume instead that B1 ∩ Y ⊆ X.

Now suppose for a moment that there is some x1 ∈ B1 \ B2 with x1 6∈ X. Then there
exists some x2 ∈ B2 \ B1 such that (B1 \ {x1}) ∪ {x2} ∈ B. This new base still contains
X by design, and has larger intersection with B2 than B1 did, contradicting the choice of
B1. Therefore we may assume instead that (B1 \B2) ⊆ X.

Now draw a Venn diagram with B1 and B2, and use it to compare the sizes of X and
Y . The point is that Y has at most as many elements as X within B1 ∩ B2, because
Y ∩ B1 ⊆ X. And Y has at most as many elements as X within B1∆B2, because in fact
every single element of B1 \B2 is in X. Conclude that |Y | ≤ |X|, contradiction.

�
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