The 4×4 minors of a 5 × n matrix are a tropical basis

Melody Chan
UC Berkeley

joint work with Anders Jensen and Elena Rubei
[arXiv:0912.5264]

June 16, 2010
The **tropical semiring** $\left(\mathbb{R}, \oplus, \otimes \right)$ consists of the real numbers equipped with tropical addition and multiplication:

\[
\begin{align*}
 x \oplus y &:= \min(x, y) \\
 x \otimes y &:= x + y.
\end{align*}
\]

Example:

\[
\begin{align*}
 3 \oplus 4 &= 3 \\
 3 \otimes 4 &= 7
\end{align*}
\]
Let K be the field of well-ordered power series in a variable t

$$\{ \alpha = \sum_{n \in S} a_n t^n : S \text{ a well-ordered subset of } \mathbb{R}, \ a \in \mathbb{C} \}.$$
Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$\{ \alpha = \sum_{n \in S} a_n t^n : S \text{ a well-ordered subset of } \mathbb{R}, \ a \in \mathbb{C} \}.$$

The tropicalization of a polynomial f with coefficients in K is the tropical polynomial F obtained by replacing each coefficient with its valuation (lowest exponent) and replacing all classical operations with tropical ones.

Example: $f = t^3 x + 4 i y - 5 z$ yields $F = 3 \, \circ \, X \, \oplus \, 1 \, \circ \, Y \, \oplus \, Z$.

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$\{ \alpha = \sum_{n \in S} a_n t^n : S \text{ a well-ordered subset of } \mathbb{R}, \ a \in \mathbb{C} \}.$$

The tropicalization of a polynomial f with coefficients in K is the tropical polynomial F obtained by replacing each coefficient with its valuation (lowest exponent) and replacing all classical operations with tropical ones.

Example: $f = t^3x + 4ity - 5z$ yields $F = 3 \odot X \oplus 1 \odot Y \oplus Z$.

The tropical hypersurface $T(f)$ of a polynomial $f \in K[x_1, \ldots, x_n]$ is the set of points in \mathbb{R}^n at which F attains its minimum at least twice.

Example: $T(f)$ is a tropical line centered at $(-3, -1, 0)$.
Background: Tropical Prevarieties and Varieties

Fix polynomials $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$. Their tropical prevariety is

$$T(f_1) \cap \cdots \cap T(f_k).$$
Fix polynomials \(f_1, \ldots, f_k \in K[x_1, \ldots, x_n] \). Their tropical prevariety is
\[
T(f_1) \cap \cdots \cap T(f_k).
\]

Their tropical variety is
\[
\bigcap \{ T(h) : h \in \langle f_1, \ldots, f_k \rangle \}.
\]

The polynomials \(f_1, \ldots, f_k \) are a tropical basis if their prevariety equals their variety.
Fix polynomials $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$. Their tropical prevariety is

$$T(f_1) \cap \cdots \cap T(f_k).$$

Their tropical variety is

$$\bigcap \{ T(h) : h \in \langle f_1, \ldots, f_k \rangle \}.\]$$

The polynomials f_1, \ldots, f_k are a tropical basis if their prevariety equals their variety.

Theorem ("Fundamental Theorem of Tropical Geometry")

For $I \subseteq K[x_1, \ldots, x_n]$, the tropical variety $T(I)$ consists of those real points which lift (coordinate-wise) to the classical variety $V(I)$.
Definition 1: Tropical Rank

An \(n \times n \) real matrix \(A \) is **tropically singular** if the minimum, over all permutations \(\pi \in S_n \), of \(a_{1\pi(1)} + \cdots + a_{n\pi(n)} \) occurs at least twice.

The **tropical rank** of a matrix is the size of its largest nonsingular square submatrix.
Definition 1: Tropical Rank

An $n \times n$ real matrix A is tropically singular if the minimum, over all permutations $\pi \in S_n$, of $a_{1\pi(1)} + \cdots + a_{n\pi(n)}$ occurs at least twice.

The tropical rank of a matrix is the size of its largest nonsingular square submatrix.

Example: \[
\begin{pmatrix}
0 & 1 & 2 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}
\] has tropical rank 2.

The set of $d \times n$ matrices of tropical rank $< r$ is the prevariety of the $r \times r$ minors of a $d \times n$ matrix.
Definition 2: Kapranov rank

Given a matrix \mathcal{A} over the field K, let A be the real matrix of lowest exponents appearing in each entry of \mathcal{A}. We say that \mathcal{A} is a lift of A.

Example: $\mathcal{A} = \begin{pmatrix} 1 & t & t^2 \\ 2t & 3t & 5t \\ 1 + 2t & 4t & 5t + t^2 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.
Definition 2: Kapranov rank

Given a matrix A over the field K, let \mathcal{A} be the real matrix of lowest exponents appearing in each entry of A. We say that \mathcal{A} is a lift of A.

Example: $\mathcal{A} = \begin{pmatrix} 1 & t & t^2 \\ 2t & 3t & 5t \\ 1 + 2t & 4t & 5t + t^2 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

The Kapranov rank of a real matrix A is the smallest rank of any lift of A to the field K. Example: The Kapranov rank of A is 2.
Definition 2: Kapranov rank

Given a matrix A over the field K, let A be the real matrix of lowest exponents appearing in each entry of A. We say that A is a lift of A.

Example: $A = \begin{pmatrix} 1 & t & t^2 \\ 2t & 3t & 5t \\ 1 + 2t & 4t & 5t + t^2 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

The Kapranov rank of a real matrix A is the smallest rank of any lift of A to the field K. Example: The Kapranov rank of A is 2.

The set of $d \times n$ matrices of Kapranov rank $< r$ is the variety of the $r \times r$ minors of a $d \times n$ matrix.
These notions of rank were studied by Develin, Santos, Sturmfels; also Akian, Gaubert, Izhakian, Rowen, Kim-Roush, . . .

Today: Proof of a conjecture made by [Develin-Santos-Sturmfels]: the 4×4-minors of a $5 \times n$ matrix form a tropical basis
Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank $< r$ have Kapranov rank $< r$?

Equivalently: are the $r \times r$-minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

Theorem
The 4×4-minors of a $5 \times n$ matrix are a tropical basis.
Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank $< r$ have Kapranov rank $< r$?

Equivalently: are the $r \times r$-minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

- Yes, if $r \leq 3$ or $r = \min\{d, n\}$ (Develin, Santos, Sturmfels 2006)
- No, if $r = 4$ and $d = n = 7$ (Fano plane)
- Challenge posed for $r = 4, d = n = 5$ (50€, Berlin, 2007)
Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank $< r$ have Kapranov rank $< r$?

Equivalently: are the $r \times r$-minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

- Yes, if $r \leq 3$ or $r = \min\{d, n\}$ (Develin, Santos, Sturmfels 2006)
- No, if $r = 4$ and $d = n = 7$ (Fano plane)
- Challenge posed for $r = 4, d = n = 5$ (50€, Berlin, 2007)

Theorem

The 4×4-minors of a $5 \times n$ matrix are a tropical basis.
Computational proof for the 5×5 case

The tropical prevariety of the $25 \ 4 \times 4$-minors is a pure 21-dimensional fan with 9-dimensional lineality space, and $f = (1450, 28450, 257300, \ldots, 2521800)$.

The tropical variety of the ideal $\langle 4 \times 4$-minors \rangle is a pure 21-dimensional fan with 9-dimensional lineality space, and $f = (3250, 53650, 421750, \ldots, 2894400)$.

Same Euler characteristic $\chi = -3120$

Careful computations in \texttt{gfan} (Anders Jensen) show that the supports agree.
Combinatorial Proof for a $5 \times n$ Matrix

Suppose

$$W = \left[\begin{array} { c | c | c | \cdots | c } w_1 & w_2 & w_3 & \cdots & w_n \end{array} \right]$$

has tropical rank ≤ 3; want to lift it to a matrix in $K^{5 \times n}$ of rank 3.
Combinatorial Proof for a $5 \times n$ Matrix

Suppose

$$W = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}$$

has tropical rank ≤ 3; want to lift it to a matrix in $K^{5 \times n}$ of rank 3.

Idea: Delete last row of W, get n coplanar points in $\mathbb{T}P^3$. They lie on a plane $a_1 \odot x_1 \oplus a_2 \odot x_2 \oplus a_3 \odot x_3 \oplus a_4 \odot x_4$. So columns of W lie on hyperplane

$$H_5 = a_1 \odot x_1 \oplus \cdots \oplus a_4 \odot x_4 \oplus \infty \odot x_5$$
Combinatorial Proof for a $5 \times n$ Matrix

Suppose
\[
W = \begin{bmatrix}
 w_1 & w_2 & \cdots & w_n
\end{bmatrix}
\]
has tropical rank ≤ 3; want to lift it to a matrix in $K^{5 \times n}$ of rank 3.

Idea: Delete last row of W, get n coplanar points in \mathbb{TP}^3. They lie on a plane $a_1 \odot x_1 \oplus a_2 \odot x_2 \oplus a_3 \odot x_3 \oplus a_4 \odot x_4$. So columns of W lie on hyperplane

\[
H_5 = a_1 \odot x_1 \oplus \cdots \oplus a_4 \odot x_4 \oplus \infty \odot x_5
\]

Similarly for other rows: Get five special hyperplanes H_1, \ldots, H_5.

Combinatorial Proof for a $5 \times n$ Matrix

Lemma: If the stable intersection $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.
Combinatorial Proof for a $5 \times n$ Matrix

Lemma: If the stable intersection $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l: a pair such that some column w_s lies in the closed sectors k and l, and no other closed sectors, for both hyperplanes H_i and H_j.

![Diagram]

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these conditions.

In fact no tropical oriented matroid can satisfy these conditions (Ardila and Develin).
Lemma: If the *stable intersection* $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a *witness pair* k, l: a pair such that some column w_s lies in the closed sectors k and l, and no other closed sectors, for both hyperplanes H_i and H_j.

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these $\binom{5}{2}$ conditions.
Lemma: If the stable intersection $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l: a pair such that some column w_s lies in the closed sectors k and l, and no other closed sectors, for both hyperplanes H_i and H_j.

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these $\binom{5}{2}$ conditions.

In fact no tropical oriented matroid can satisfy these conditions (Ardila and Develin).
What next?

- 4×4-minors and 5×5-minors of $6 \times n$ matrices
- Topology, e.g. shellability, schönness of these spaces.
- Matrices with special structure: symmetric, Hankel,