Combinatorics of the tropical Torelli map

arxiv:1012.4539

Melody Chan
University of California, Berkeley
A tropical curve C is a triple (G, l, w), where (G, l) is a metric graph, and w is a weight function

$$w : V(G) \rightarrow \mathbb{Z}_{\geq 0}$$

on the vertices of G, with the property that every weight zero vertex has degree at least 3.
What is a tropical curve?

A tropical curve C is a triple (G, l, w), where (G, l) is a metric graph, and w is a weight function

$$w : V(G) \to \mathbb{Z}_{\geq 0}$$

on the vertices of G, with the property that every weight zero vertex has degree at least 3.

Its genus is $g(G) + \sum_{v \in V} w(v)$.

Its combinatorial type is the pair (G, w).
The Jacobian of a tropical curve

Given a genus g tropical curve $C = (G, l, w)$, with edges of G oriented for reference, let $H_1(G, \mathbb{R})$ = formal sums of edges of G with zero boundary.
The Jacobian of a tropical curve

Given a genus g tropical curve $C = (G, l, w)$, with edges of G oriented for reference, let $H_1(G, \mathbb{R}) = \text{formal sums of edges of } G \text{ with zero boundary.}$

Now define a positive semidefinite form Q on $H_1(G, \mathbb{R}) \oplus \mathbb{R} \sum w(v)$ which is 0 on $\mathbb{R} \sum w(v)$ and on $H_1(G, \mathbb{R})$ is

$$Q\left(\sum_{e \in E(G)} \alpha_e \cdot e, \sum_{e \in E(G)} \beta_e \cdot e \right) = \sum_{e \in E(G)} \alpha_e \cdot \beta_e \cdot l(e).$$

Choosing a \mathbb{Z}-basis for $H_1(G, \mathbb{Z})$ defines Q as a $g \times g$ positive semidefinite matrix with rational nullspace.
The Jacobian of a tropical curve

\[
\begin{pmatrix} a & e_1 \\ 0 & -b & e_2 & 0 \end{pmatrix}
\qquad
\begin{pmatrix} e_1 - e_2, e_2 - e_3 \\ \end{pmatrix}
\quad
\begin{pmatrix} (a + b & -b) \\ (-b & b + c) \end{pmatrix}
\]

Choosing a different \(\mathbb{Z}\)-basis for \(H_1(G, \mathbb{Z})\) changes \(Q\) by a \(GL_g(\mathbb{Z})\)-action:

\[
\begin{pmatrix} a & e_1 \\ 0 & -b & e_2 & 0 \end{pmatrix}
\qquad
\begin{pmatrix} e_1 - e_2, e_1 - 2e_2 + e_3 \\ \end{pmatrix}
\quad
\begin{pmatrix} (a + b & a + 2b) \\ (-a + 2b & a + 4b + c) \end{pmatrix}
\]
The Jacobian of a tropical curve

\[
\begin{pmatrix}
 a & e_1 \\
 0 & -b & e_2 \\
 c & e_3
\end{pmatrix}
\quad e_1 - e_2, e_2 - e_3
\quad \left(\begin{array}{cc}
a + b & -b \\
-b & b + c
\end{array}\right)
\]

Choosing a different \mathbb{Z}-basis for $H_1(G, \mathbb{Z})$ changes Q by a $GL_g(\mathbb{Z})$-action:

\[
\begin{pmatrix}
 a & e_1 \\
 0 & -b & e_2 \\
 c & e_3
\end{pmatrix}
\quad e_1 - e_2, e_1 - 2e_2 + e_3
\quad \left(\begin{array}{cc}
a + b & a + 2b \\
-a + 2b & a + 4b + c
\end{array}\right)
\]

\[
\begin{pmatrix}
a + b & a + 2b \\
-a + 2b & a + 4b + c
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}^T \begin{pmatrix} a + b & -b \\ -b & b + c \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}.
\]
So we obtain a well-defined element of

$$\tilde{S}_{\geq 0}^g / GL_g(\mathbb{Z}) := \frac{\text{psd matrices with rational nullspace}}{Q \sim X^T Q X \text{ for all } X \in GL_g(\mathbb{Z})},$$

and this point in $\tilde{S}_{\geq 0}^g / GL_g(\mathbb{Z})$ is called the **Jacobian** of the curve.
The tropical Torelli map

Classically, the Torelli map, from the moduli space of curves to the moduli space of principally polarized abelian varieties, sends a curve to its Jacobian.

We will construct a tropical analogue: a tropical Torelli map

\[t^\text{tr}_g : M^\text{tr}_g \rightarrow A^\text{tr}_g \]

from the moduli space of tropical curves to the moduli space of principally polarized tropical abelian varieties that takes a tropical curve to its Jacobian.

Brannetti-Melo-Viviani arXiv:0907.3324
Towards a moduli space of tropical curves

Warm up: what are the possible combinatorial types of genus 2 tropical curves?
Towards a moduli space of tropical curves

Warm up: what are the possible combinatorial types of genus 2 tropical curves?

This is the poset of combinatorial types of genus 2 tropical curves, ordered by contraction. Note: contracting a loop at a vertex increases its weight by 1.
Motivation: stratification of $\overline{\mathcal{M}}_g$ by dual graphs

Figure: Posets of cells of \mathcal{M}^{tr}_2 (left) and of $\overline{\mathcal{M}}_2$ (right). Vertices record irreducible components, weights record genus, edges record nodes.
Construction of M_g^{tr}

Our goal is to construct a moduli space M_g^{tr} for genus g tropical curves, that is, a space whose points correspond to tropical curves of genus g and whose geometry reflects the geometry of the tropical curves in a sensible way.
Construction of M^tr_g

Our goal is to construct a moduli space M^tr_g for genus g tropical curves, that is, a space whose points correspond to tropical curves of genus g and whose geometry reflects the geometry of the tropical curves in a sensible way.

Construction due to B-M-V.

Fix a combinatorial type (G, w) of genus g. What is a parameter space for all tropical curves of this type?
Construction of M^tr_g

Our goal is to construct a moduli space M^tr_g for genus g tropical curves, that is, a space whose points correspond to tropical curves of genus g and whose geometry reflects the geometry of the tropical curves in a sensible way.

Construction due to B-M-V.

Fix a combinatorial type (G, ω) of genus g. What is a parameter space for all tropical curves of this type?

\[\frac{\mathbb{R}^3_{\geq 0}}{(a,b,c) \sim (a,c,b)} = \frac{\mathbb{R}^3_{\geq 0}}{S_2} \]
Construction of M_g^{tr} continued

Strategy: each combinatorial type of genus g gets a cell

$$\mathbb{R}_{\geq 0}^{\left|\mathcal{E}(G)\right|} \quad \frac{\left|\mathcal{E}(G)\right|}{\text{Aut}(G, w)}.$$

Now identify two graphs in the disjoint union of all such cells if they are the same after contracting all edges of length zero.
The resulting space, denoted M^tr_g, has points in bijection with genus g tropical curves. It is a Hausdorff topological space (Caporaso 2010).

Figure: Cells of M^tr_2.
Theorem (C, also Maggiolo-Pagani 2010)

The moduli space M^tr_3 has 42 cells and f-vector $(1, 2, 5, 9, 12, 8, 5)$.

diagram
Theorem (C, also Maggiolo-Pagani 2010)

- The moduli space M^tr_{4} has 379 cells and f-vector

$$(1, 3, 7, 21, 43, 75, 89, 81, 42, 17).$$

- The moduli space M^tr_{5} has 4555 cells and f-vector

$$(1, 3, 11, 34, 100, 239, 492, 784, 1002, 926, 632, 260, 71).$$
Note: does $\mathcal{M}_g^{\text{tr}}$, the moduli space of tropical curves, really deserve to be called that?

That is, we saw a poset correspondence between $\overline{\mathcal{M}}_g$ and $\mathcal{M}_g^{\text{tr}}$, but what about a tropicalization map $\overline{\mathcal{M}}_g \rightarrow \mathcal{M}_g^{\text{tr}}$?

This point is not addressed in my work, but see work on Berkovich spaces by Baker, Payne, and Rabinoff.
What kind of space is M^tr_g?

It consists of rational open polyhedral cones modulo symmetries, glued along boundaries via integral linear maps. We will make this precise by defining a category of stacky fans.
What is a Stacky Fan?

Definition (C) Let

\[X_1 \subseteq \mathbb{R}^{m_1}, \ldots, X_k \subseteq \mathbb{R}^{m_k} \]
be full-dimensional rational open polyhedral cones and

\[G_1 \subseteq GL_{m_1}(\mathbb{Z}), \ldots, G_k \subseteq GL_{m_k}(\mathbb{Z}) \]
be subgroups such that the action of each \(G_i \) on \(\mathbb{R}^{m_i} \) fixes \(X_i \). Let

\[X_i/G_i \quad \text{and} \quad \overline{X_i}/G_i \]
be the topological quotient spaces.
What is a Stacky Fan?

Definition (C) Let

\[X_1 \subseteq \mathbb{R}^{m_1}, \ldots, X_k \subseteq \mathbb{R}^{m_k} \]

be full-dimensional rational open polyhedral cones and

\[G_1 \subseteq GL_{m_1}(\mathbb{Z}), \ldots, G_k \subseteq GL_{m_k}(\mathbb{Z}) \]

be subgroups such that the action of each \(G_i \) on \(\mathbb{R}^{m_i} \) fixes \(X_i \). Let \(X_i/G_i \) and \(\overline{X_i}/G_i \) be the topological quotient spaces.

Suppose that we have a topological space \(X \) and, for each \(i = 1, \ldots, k \), a continuous map \(\alpha_i : \overline{X_i}/G_i \to X \).
Then X is a **stacky fan**, with cells X_i/G_i, if the following four properties hold:

1. The restriction of α_i to $\frac{X_i}{G_i}$ is a homeomorphism onto its image,

 \[\overline{X}_i \quad \overline{G}_i \]

 \[\alpha_i \quad X \]

2. We have an equality of sets $X = \coprod \alpha_i(X_i/G_i)$,
3. For each face F of any cone $\overline{X_i}$, there exists k such that $\alpha_i(F) = \alpha_k(\overline{X_k}/G_k)$, and an invertible, lattice point-preserving linear map L taking F to $\overline{X_k}$, such that the following diagram commutes:

We say that $\overline{X_k}/G_k$ is a **stacky face** of $\overline{X_i}/G_i$ in this situation.
3. For each face F of any cone $\overline{X_i}$, there exists k such that $\alpha_i(F) = \alpha_k(\overline{X_k}/G_k)$, and an invertible, lattice point-preserving linear map L taking F to $\overline{X_k}$, such that the following diagram commutes:

We say that $\overline{X_k}/G_k$ is a stacky face of $\overline{X_i}/G_i$ in this situation.

4. For each pair i, j,

$$\alpha_i(\overline{X_i}/G_i) \cap \alpha_j(\overline{X_j}/G_j) = \alpha_{k_1}(\overline{X_{k_1}}/G_{k_1}) \cup \cdots \cup \alpha_{k_t}(\overline{X_{k_t}}/G_{k_t})$$

where the union ranges over the common stacky faces.
Theorem (B-M-V,C)

The moduli space M_g^{tr} is a stacky fan with cells corresponding to combinatorial types of genus g.
Theorem (B-M-V,C)

The moduli space M^tr_g is a stacky fan with cells corresponding to combinatorial types of genus g.

We have constructed the moduli space M^tr_g and shown that it is a stacky fan. Next, we will construct the moduli space of principally polarized tropical abelian varieties, denoted A^tr_g, and then show that the tropical Torelli map is a stacky morphism.
Construction of the moduli space A^tr_g

A principally polarized tropical abelian variety is a point in

$$\frac{\mathcal{S}_g^g_{\geq 0}}{GL_g(\mathbb{Z})} := \frac{\text{psd matrices with rational nullspace}}{Q \sim X^T QX \text{ for all } X \in GL_g(\mathbb{Z})}.$$
Construction of the moduli space A_{g}^{tr}

A **principally polarized tropical abelian variety** is a point in

$$\frac{\tilde{S}_{g}^{\geq 0}}{GL_{g}(\mathbb{Z})} := \frac{\text{psd matrices with rational nullspace}}{Q \sim X^{T}QX \text{ for all } X \in GL_{g}(\mathbb{Z})}.$$

What is a good moduli space of principally polarized tropical abelian varieties?

$$\tilde{S}_{g}^{g}/GL_{g}(\mathbb{Z}) \text{ itself?}$$
Construction of the moduli space A^tr_g

A **principally polarized tropical abelian variety** is a point in

$$\frac{\tilde{S}_g^g}{GL_g(\mathbb{Z})} := \frac{\text{psd matrices with rational nullspace}}{Q \sim X^T Q X \text{ for all } X \in GL_g(\mathbb{Z})}.$$

What is a good moduli space of principally polarized tropical abelian varieties?

$\tilde{S}_g^g / GL_g(\mathbb{Z})$ itself?

Not good enough: it’s not even Hausdorff, and does not admit stacky fan structure.

Instead, we will use the beautiful combinatorics of **Voronoi reduction theory** (Voronoi, 1908) to break $\tilde{S}_g^g / GL_g(\mathbb{Z})$ into a finite number of polyhedral pieces, then glue them back together.
Given $Q \in \tilde{S}^g_{\geq 0}$, the **Delone subdivision** $\text{Del}(Q)$ is the infinite-periodic regular subdivision of \mathbb{R}^g obtained by lifting each lattice point $x \in \mathbb{Z}^g$ to the height $x^T Q x$, then taking lower faces of the convex hull of the lifted points.
Given \(Q \in \tilde{S}^g_{\geq 0} \), the **Delone subdivision** \(\text{Del}(Q) \) is the infinite-periodic regular subdivision of \(\mathbb{R}^g \) obtained by lifting each lattice point \(x \in \mathbb{Z}^g \) to the height \(x^T Q x \), then taking lower faces of the convex hull of the lifted points.

Now, given a Delone subdivision \(D \), let

\[
\sigma_D = \{ Q \in \tilde{S}^g_{\geq 0} : \text{Del}(Q) = D \}.
\]

Then \(\sigma_D \) is an open rational polyhedral cone, called the **secondary cone** of \(D \).
Voronoi reduction theory

Figure: Infinite decomposition of \tilde{S}_0^2 into secondary cones.
Theorem (Main theorem of Voronoi reduction theory)

The set of closed secondary cones

\[\{ \overline{\sigma_D} : D \text{ is a Delone subdivision of } \mathbb{R}^g \} \]

yields an infinite polyhedral fan whose support is \(\tilde{S}_g \geq 0 \). There are only finitely many \(GL_g(\mathbb{Z}) \)-orbits of this set.
Theorem (Main theorem of Voronoi reduction theory)

The set of closed secondary cones

\[\{ \overline{\sigma_D} : D \text{ is a Delone subdivision of } \mathbb{R}^g \} \]

yields an infinite polyhedral fan whose support is \(S_{\geq 0}^g \). There are only finitely many \(GL_g(\mathbb{Z}) \)-orbits of this set.

For example, when \(g = 2 \), there are four \(GL_g(\mathbb{Z}) \)-classes of Delone subdivisions, with representatives shown below. They give rise to secondary cones of dimensions 3, 2, 1, and 0, respectively.

\[
\begin{align*}
\text{D}_1 & \quad \text{D}_2 & \quad \text{D}_3 & \quad \text{D}_4 \\
\end{align*}
\]
The moduli space A_g^{tr}

Pick Delone subdivisions D_1, \ldots, D_k that are representatives for the $GL_g(\mathbb{Z})$-equivalence classes. Let $\text{Stab}(\sigma_D)$ denote the subgroup of elements of $GL_g(\mathbb{Z})$ that fix σ_D as a set.
The moduli space A^tr_g

Pick Delone subdivisions D_1, \ldots, D_k that are representatives for the $GL_g(\mathbb{Z})$-equivalence classes. Let $\text{Stab}(\sigma_D)$ denote the subgroup of elements of $GL_g(\mathbb{Z})$ that fix σ_D as a set.

Then define the moduli space of principally polarized tropical abelian varieties, denoted A^tr_g, to be the topological space

$$A^\text{tr}_g = \left(\prod_{i=1}^{k} \frac{\sigma_{D_i}}{\text{Stab}(\sigma_{D_i})} \right) / \sim,$$

where \sim denotes gluing by $GL_g(\mathbb{Z})$-equivalence.
The moduli space A^tr_g

Theorem (B-M-V, C)

The moduli space A^tr_g is a stacky fan. Its cells correspond to $\text{GL}_g(\mathbb{Z})$-equivalence classes of Delone subdivisions.

Theorem (C)

A^tr_g is a Hausdorff topological space. It is independent of the choice of representative Delone subdivisions in its construction. That is, choosing different representatives produces an isomorphic stacky fan.
Example: A_2^{tr}

When $g = 2$, we have four $GL_g(\mathbb{Z})$-classes of Delone subdivisions, with secondary cones of dimensions 3, 2, 1, and 0, respectively.

A_2^{tr} is homeomorphic to a closed, 3-dimensional simplicial cone.
The tropical Torelli map

Definition
We define the **tropical Torelli map**

\[t_g^{\text{tr}} : M_g^{\text{tr}} \rightarrow A_g^{\text{tr}} \]

to send a tropical curve \(C \in M_g^{\text{tr}} \) to its Jacobian \(Jac(C) \in A_g^{\text{tr}} \).
The tropical Torelli map

Definition
We define the tropical Torelli map

$$t_g^{\text{tr}} : M^\text{tr}_g \rightarrow A^\text{tr}_g$$

to send a tropical curve $C \in M^\text{tr}_g$ to its Jacobian $\text{Jac}(C) \in A^\text{tr}_g$.

Theorem (B-M-V)

The map t_g^{tr} is a morphism of stacky fans. That is, it takes each cell of M^tr_g to a cell of A^tr_g, and this map is induced by an integral-linear map on the relevant cones.
Figure: Cells of M_3^{tr} and of A_3^{tr}, color-coded according to t_g^{tr}.
The tropical Schottky locus

The tropical Torelli map t^tr_g is surjective when $g = 2, 3$, but not when $g \geq 4$.

Thus, it becomes interesting to study the tropical Schottky locus, i.e. the image of t^tr_g inside A^tr_g.
The tropical Schottky locus

The tropical Torelli map t_g^{tr} is surjective when $g = 2, 3$, but not when $g \geq 4$.

Thus, it becomes interesting to study the tropical Schottky locus, i.e. the image of t_g^{tr} inside A_g^{tr}.

Theorem (C)

We obtained the following computational results:

1. The tropical Schottky locus A_3^{cogr} has nine cells and f-vector $(1, 1, 1, 2, 2, 1, 1)$.
2. The tropical Schottky locus A_4^{cogr} has 25 cells and f-vector $(1, 1, 1, 2, 3, 4, 5, 4, 2, 2)$.
3. The tropical Schottky locus A_5^{cogr} has 92 cells and f-vector $(1, 1, 1, 2, 3, 5, 9, 12, 15, 17, 15, 7, 4)$.
The tropical Schottky locus: computations

<table>
<thead>
<tr>
<th>g</th>
<th>M_g^{tr}</th>
<th>A_g^{cogr}</th>
<th>A_g^{tr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>4</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
<th>M_g^{tr}</th>
<th>A_g^{cogr}</th>
<th>A_g^{tr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>379</td>
<td>25</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>4555</td>
<td>92</td>
<td>179433</td>
</tr>
</tbody>
</table>

Number of maximal cells and total number of cells in the stacky fans M_g^{tr}, the Schottky locus A_g^{cogr}, and A_g^{tr}.

A closer look at the tropical Schottky locus

There is a close relationship between the tropical Schottky locus and cographic matroids.

Let M be a simple regular matroid of rank at most g, and let A be a $g \times n$ totally unimodular matrix that represents M. Let v_1, \ldots, v_n be the columns of A. Then let $\sigma_A \subseteq \mathbb{R}^{g+1 \choose 2}$ be the rational open polyhedral cone

$$\mathbb{R}_{>0} \langle v_1 v_1^T, \ldots, v_n v_n^T \rangle.$$
A closer look at the tropical Schottky locus

There is a close relationship between the tropical Schottky locus and cographic matroids.

Let M be a simple regular matroid of rank at most g, and let A be a $g \times n$ totally unimodular matrix that represents M. Let v_1, \ldots, v_n be the columns of A. Then let $\sigma_A \subseteq \mathbb{R}^{(g+1)/2}$ be the rational open polyhedral cone

$$\mathbb{R} > 0 \langle v_1 v_1^T, \ldots, v_n v_n^T \rangle.$$

Example. Let M be the uniform matroid $U_{2,3}$. Then

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

represents M, and σ_A is the open cone generated by matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$
A closer look at the tropical Schottky locus

Proposition (B-M-V)

The cone σ_A is a secondary cone in $\tilde{S}_g^{\geq 0}$. Choosing a different matrix A' to represent M produces a cone $\sigma_{A'}$ that is $GL_g(\mathbb{Z})$-equivalent to σ_A. Thus, we may associate to M a unique cell of A^t_{g}, denoted $C(M)$.

Proposition (B-M-V)

The tropical Schottky locus is the union of cells

\[\{ C(M) : M \text{ a simple cographic matroid of rank } \leq g \} \]
A closer look at the tropical Schottky locus

What permutations on the rays of σ_A are realized by $\text{Stab}(\sigma_A)$?
A closer look at the tropical Schottky locus

What permutations on the rays of σ_A are realized by $\text{Stab}(\sigma_A)$?

Theorem (Gerritzen 1980s, C)

*The subgroup of permutations on the rays of σ_A that are realized by $\text{Stab}(\sigma_A)$ is isomorphic to $\text{Aut}(M)$.***
A closer look at the tropical Schottky locus

What permutations on the rays of σ_A are realized by $\text{Stab}(\sigma_A)$?

Theorem (Gerritzen 1980s, C)

The subgroup of permutations on the rays of σ_A that are realized by $\text{Stab}(\sigma_A)$ is isomorphic to $\text{Aut}(M)$.

Example. Each cell of A_3^{tr} is cographic, and A_3^{tr} is a 6-dimensional closed simplicial cone modulo the automorphisms of the matroid $M(K_4)$, plus some additional identifications along the boundary.
One problem with the spaces M_{g}^{tr} and A_{g}^{tr} is that although they are tropical moduli spaces, they do not “look” very tropical: they do not satisfy a tropical balancing condition. In other words: stacky fans, so far, are not tropical varieties.

But what if we allow ourselves to consider finite-index covers of our spaces – can we then produce a more tropical object?

We can do this for A_{3}^{tr}, using the Fano matroid F_{7}.
A tropical cover for A_3^{tr}

Theorem (C)

Let $\mathbb{F}P^6$ denote the complete polyhedral fan in \mathbb{R}^6 usually associated to the toric variety \mathbb{P}^6, e.g. with rays $e_1, \ldots, e_6, e_7 := -e_1 - \cdots - e_6$.

Then there is a surjective morphism of stacky fans

$$\mathbb{F}P^6 \rightarrow A_3^{tr}$$

mapping each of the seven maximal cells of $\mathbb{F}P^6$ surjectively onto the maximal cell of A_3^{tr}.
A tropical cover for A_3^{tr}

Proof Sketch.

We would like to send each maximal cone of \mathbb{FP}^6 to the unique maximal cell of A_3^{tr}, with maps that agree on the lower-dimensional cones of \mathbb{FP}^6. The only possible obstacle is that not all 3-dimensional and 4-dimensional cells of A_3^{tr} look alike.

However, the Fano matroid precisely gives a way to coherently identify each 6-element set of $\{1, \ldots, 7\}$ with the matroid $M(K_4)$.