Modular polynomials for genus 2

Reinier Bröker
joint work with Kristin Lauter

Microsoft Research

University of Washington
April 2008
Modular polynomials for genus 1

For $N \geq 1$, put $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid c \equiv 0 \mod N \right\}$.

The Riemann surface $Y_0(N) \overset{\text{def}}{=} \Gamma_0(N) \backslash \mathbb{H}$ has the structure of an affine curve.

The function field $\mathbb{C}(Y_0(N))$ equals $\mathbb{C}(j, j_N)$ with $j : \mathbb{H} \to \mathbb{C}$ the ‘classical’ j-function and $j_N(\tau) = j(N\tau)$.

Definition. The minimal polynomial $\Phi_N \in \mathbb{C}(j)[X]$ of j_N over $\mathbb{C}(j)$ is called the modular polynomial.
Modular polynomials for genus 1

Properties of Φ_N:

- $\deg(\Phi_N) = N \prod_{p|N} (1 + 1/p)$
- $\Phi_N \in \mathbb{Z}[j, X]$
- $\Phi_N(j, X) = \Phi_N(X, j)$.

Moduli interpretation:
The roots of $\Phi_N(j(E), X) \in \mathbb{C}[X]$ are the j-invariants of elliptic curves that are N-isogenous to E/\mathbb{C}.
Modular polynomials for genus 1

Knowledge of Φ_p for small primes p speeds up

- point counting for elliptic curves over finite fields
- computation of the Hilbert class polynomial

 - primality proving (ECPP)
 - constructing ‘crypto curves’.

Example: $\Phi_2 =$

$$X^3 - X^2 j^2 + 1488X^2 j - 162000X^2 + 1488X j^2 + 40773375X j +$$
$$+ 8748000000X + j^3 - 162000j^2 + 8748000000j$$
$$- 157464000000000.$$
Genus 1 \rightarrow Genus 2

Gaudry, Schost: tailor-made variant of Φ_N for point counting. Idea is similar to Atkin-Elkies’ improvements to Schoof’s algorithm.

Today’s talk: Direct generalization of Φ_N to genus 2. Definitions, properties, examples.
Genus 2: symplectic group

A 2-dimensional principally polarized abelian variety (p.p.a.v.) \(A/\mathbb{C} \) can be given as \(\mathbb{C}^2/L \) with \(L \) a polarized lattice. Every p.p.a.v. arises this way. The Hermitian form \(L \times L \rightarrow \mathbb{Z} \) is given by the matrix

\[
J = \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}
\]

for a suitably chosen basis.

The group

\[
\text{Sp}(4, \mathbb{Z}) = \{ M \in \text{GL}(4, \mathbb{Z}) \mid MJM^T = J \}
\]

that respects the form is the symplectic group.
Genus 2: isomorphism classes

The group $\text{Sp}(4, \mathbb{Z})$ acts on $H_2 = \{ \tau \in \text{Mat}_2(\mathbb{C}) | \tau^T = \tau, \text{Im}(\tau) > 0 \}$ via

$$(a \ b) \tau \overset{\text{def}}{=} a\tau + b \quad \frac{c\tau + d}{c\tau + d}.$$

The quotient $\text{Sp}(4, \mathbb{Z}) \backslash H_2$ is in bijection with the isomorphism classes of 2-dimensional p.p.a.v.’s via

$$\tau \mapsto A_\tau \overset{\text{def}}{=} \mathbb{C}^2/(\mathbb{Z}^2 + \mathbb{Z}^2 \tau).$$
Isotropic subspaces

The p-torsion of A/C has rank 4 as \mathbf{F}_p-vector space. The space $A[p]$ is symplectic: the polarization of A induces a non-degenerate skew-symmetric bilinear (symplectic) form v.

A subspace $G \subset A[p]$ is called isotropic if $v|_G = 0$.

One-dimensional subspaces are always isotropic; not true for two-dimensional.

The kernel of a (p, p)-isogeny $A \to A'$ of p.p.a.v.’s is a 2-dimensional isotropic subspace of $A[p]$.

The subgroup of $\text{GL}(4, \mathbf{F}_p)$ that respects v is $\text{Sp}(4, \mathbf{F}_p)$.
Isotropic subspaces

Set $\Gamma^{(2)}(p) = \text{Ker}(\text{Sp}(4, \mathbb{Z}) \to \text{Sp}(4, \mathbb{F}_p))$ and

$$\Gamma_0^{(2)}(p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sp}(4, \mathbb{Z}) \mid c \equiv 0 \pmod{2} \mod p \right\} \supset \Gamma^{(2)}(p).$$

Lemma. The index $[\text{Sp}(4, \mathbb{Z}) : \Gamma_0^{(2)}(p)]$ equals the number of 2-dimensional isotropic subspaces of \mathbb{F}_p^4.

Proof. Map $\Gamma_0^{(2)}(p)$ to $H \subset \text{Sp}(4, \mathbb{F}_p)$. The group H is parabolic and is (Borel-Tits) the stabilizer of a 2-dimensional isotropic subspace.

By Witt’s extension theorem, $\text{Sp}(4, \mathbb{F}_p)$ permutes the 2-dimensional isotropic subspaces transitively. \qed
Isotropic subspaces

Set $S(p) = \{(A, G) \mid G \subset A[p] \text{ 2-dimensional and isotropic } \} / \sim$.

Theorem. The map $\Gamma_0^{(2)}(p) \setminus H_2 \to S(p)$ sending τ to the pair $(A_\tau, \langle (1/p, 0, 0, 0), (0, 1/p, 0, 0) \rangle)$ is bijective.

Proof. Well-defined and injective: clear.

Surjective: every 2-dimensional p.p.a.v. occurs as some A_τ. Now apply the lemma. □

The analogue of $Y_0(p)$ in genus 1 is

$$Y_0^{(2)}(p) \overset{\text{def}}{=} \Gamma_0^{(2)}(p) \setminus H_2.$$

Baily-Borel: $Y_0^{(2)}(p)$ is a quasi-projective variety.
Igusa functions

Igusa: $Y_0^{(2)}(1) = \mathcal{A}_2$ has dimension 3 and function field $\mathbb{C}(j_1, j_2, j_3)$.

The functions $j_i : H_2 \to \mathbb{P}^1(\mathbb{C})$ are rational functions in the 2-dimensional Eisenstein series. They have poles at τ corresponding to products of elliptic curves.

Definition. For $i = 1, 2, 3$ define $j_{i,p} : H_2 \to \mathbb{P}^1(\mathbb{C})$ by $j_{i,p}(\tau) = j_i(p\tau)$.

The functions $j_{i,p}$ are $\Gamma_0^{(2)}(p)$-invariant and satisfy

$$j_i(A_\tau/\langle(1/p, 0, 0, 0), (0, 1/p, 0, 0)\rangle) = j_i(A_{p\tau}) = j_{i,p}(\tau).$$
Igusa functions

Lemma. The function field of $Y_0^{(2)}(p)$ equals $\mathbb{C}(j_1, j_2, j_3, j_{i,p})$ for every $i = 1, 2, 3$.

Proof. General theory: the function field of $Y_0^{(2)}(p)$ has degree $[\text{Sp}(4, \mathbb{Z}) : \Gamma_0^{(2)}(p)]$ over $\mathbb{C}(j_1, j_2, j_3)$.

It suffices to show that the functions $j_{i,p}(\alpha \tau)$ are distinct for $\alpha \in \text{Sp}(4, \mathbb{Z})/\Gamma_0^{(2)}(p)$.

If two of them are equal, the stabilizer of $j_{i,p}$ is larger than $\Gamma_0^{(2)}(p)$.

The image of $\Gamma_0^{(2)}(p)$ inside $\text{Sp}(4, \mathbb{F}_p)$ is maximal by Borel-Tits. □
Modular polynomials for genus 2

Definition. The minimal polynomial P_p of $j_{1,p}$ over $\mathbb{C}(j_1, j_2, j_3)$ is called the modular polynomial for j_1.

The functions $j_{2,p}$ and $j_{3,p}$ are contained in $\mathbb{C}(j_1, j_2, j_3)[j_{1,p}]$. Write

$$j_{2,p} = Q_p(j_{1,p}) \quad j_{3,p} = R_p(j_{1,p})$$

with $Q_p, R_p \in \mathbb{C}(j_1, j_2, j_3)[X]$ monic and of minimal degree.

Definition. The polynomials Q_p and R_p are the modular polynomials for $j_{2,p}$ and $j_{3,p}$.
Properties in genus 1

Properties of Φ_p:

- $\deg(\Phi_p) = p + 1$
- $\Phi_p \in \mathbb{Z}[j, X]$
- $\Phi_p(j, X) = \Phi_p(X, j)$.

Moduli interpretation:
The roots of $\Phi_p(j(E), X) \in \mathbb{C}[X]$ are the j-invariants of elliptic curves that are p-isogenous to E/\mathbb{C}.
Properties in genus 2: degree

Lemma. We have $[\text{Sp}(4, \mathbb{Z}) : \Gamma_0^{(2)}(p)] = (p^4 - 1)/(p - 1)$.

Proof. We need to count the number of 2-dimensional isotropic subspaces of \mathbb{F}_p^4.

Any two-dimensional subspace contains $(p^2 - 1)/(p - 1)$ lines.

Any line is contained in $(p^2 - 1)/(p - 1)$ isotropic subspaces.

The number of lines equals $(p^4 - 1)/(p - 1)$. \qed
Properties in genus 2: field of definition

The Igusa functions are rational functions in the Eisenstein series E_k for $k = 4, 6, 10, 12$.

The E_k’s have a Fourier series expansion

$$E_k(\tau) = \sum_T a(T) \exp(2\pi i \text{Tr}(T\tau))$$

with $T \in \text{Mat}_2(\frac{1}{2}\mathbb{Z})$ symmetric with integer diagonal entries.

The coefficients $a(T)$ are zero unless T is positive semi-definite.

The non-zero $a(T)$ can be given in terms of generalized Bernoulli-numbers. They are rational.
Properties in genus 2: field of definition

The Eisenstein series have a Laurent series expansion in \(q_1, q_2, q_3 \).

The denominator of \(j_1, j_2, j_3 \) is a power of the cusp form

\[
\chi_{10} = E_4E_6 - E_{10}.
\]

Every term of the expansion of \(\chi_{10} \) is divisible by \(q_1q_2q_3 \).

Consequence. The Igusa functions have a Laurent series expansion in \(q_1, q_2, q_3 \) with rational coefficients.

Hence: \(P_p, Q_p, R_p \in \mathbb{Q}(j_1, j_2, j_3)[X] \).
Properties in genus 2: moduli interpretation

The roots of $P_p(j_1(A), j_2(A), j_3(A), X)$ are j_1-invariants of p.p.a.v.’s that are (p, p)-isogenous to A.

For such a root x, the triple

$$x$$

$$Q_p(j_1(A), j_2(A), j_3(A), x)$$

$$R_p(j_1(A), j_2(A), j_3(A), x)$$

determines a p.p.a.v. that is (p, p)-isogenous to A.

All (p, p)-isogenous p.p.a.v.’s arise in this way.
Explicit computations

Set $S = \text{Sp}(4, \mathbb{Z})/\Gamma_0^{(2)}(p)$. We have $P_p = \prod_{M \in S} (X - j_{1,p}(M\tau))$.

The polynomials

$$F_{k,p} = \sum_{M \in S} \left(\prod_{\substack{B \in S \, \mid \, B \neq M}} \frac{X - j_{1,p}(B\tau)}{j_{1,p}(M\tau) - j_{1,p}(B\tau)} \right) j_{k,p}(M\tau)$$

satisfy $F_{k,p}(j_{1,p}(M\tau)) = j_{k,p}(M\tau)$ for $k = 2, 3$ and all $M \in S$.

The coefficients of $F_{k,p}$ live in $\mathbb{Q}(j_1, j_2, j_3)$, and hence: $R_p = F_{2,p}$ and $Q_p = F_{3,p}$.
Explicit computations

Set

\[\tilde{F}_{k,p} = \sum_{M \in S} \left(\prod_{\substack{B \in S \\ B \neq M}} X - j_{1,p}(B \tau) \right) j_{k,p}(M \tau) \in \mathbb{Q}(j_1, j_2, j_3)[X]. \]

We have \(R_p = \tilde{F}_{2,p}/P'_p \) and \(Q_p = \tilde{F}_{3,p}/P'_p \).

Conclusion: need to compute \(P_p, \tilde{F}_{2,p} \) and \(\tilde{F}_{3,p} \).
Explicit computations: denominators

A Jacobian A is (p, p)-split if A is (p, p)-isogenous to a product of elliptic curves.

The locus \mathcal{L}_p of such A is a 2-dimensional algebraic subvariety of A_2.

It is also known as the Humbert surface H_{p^2}. It can be given by an equation $L_p = 0$.

Lemma. The denominators of the coefficients of $P_p, \tilde{F}_{2,p}, \tilde{F}_{3,p}$ are divisible by L_p.
Explicit computations: denominators

Lemma. The denominators of the coefficients of $P_p, \tilde{F}_{2,p}, \tilde{F}_{3,p}$ are divisible by L_p.

Proof sketch. Let $\tau \in H_2$ correspond to a (p, p)-split Jacobian.

For some $M \in \text{Sp}(4, \mathbb{Z})/\Gamma_0^{(2)}(p)$, the value $j_{1,p}(M\tau)$ is infinite.

The values $j_i(\tau)$ are finite, so the numerator of a coefficient is finite.

The denominator of a coefficient must vanish at τ. □
Computing L_2

Lemma. If C has $(2, 2)$-reducible Jacobian, then C can be given by

$$Y^2 = X^6 - aX^4 + bX^2 - 1.$$

The Igusa-invariants of $\text{Jac}(C)$ are simple expressions in $u = ab$ and $v = a^3 + b^3$, like

$$j_1(\text{Jac}(C)) = \frac{(240 + 16u)^5}{64(27 - 18u - u^2 + 4v)^2}.$$

Compute a Gröbner basis for the $\mathbb{Q}[u, v, a, j_1, j_2, j_3]$-ideal

$$\langle 64(27-18u-u^2+4v)^2 j_1 - (240+16u)^5, \ldots, a64(27-18u-u^2+4v)^2 - 1 \rangle$$

for an order eliminating u, v, a.
Computing L_2

$L_2 = 236196j_1^5 - 972j_1^4j_2^2 + 5832j_1^4j_2j_3 + 19245600j_1^4j_2 - 8748j_1^4j_3^2$

\[-104976000j_1^4j_3 + 125971200000j_1^4 + j_1^3j_2^4 - 12j_1^3j_2^3j_3\]

\[-77436j_1^3j_2^3 + 54j_1^3j_2^2j_3^2 + 870912j_1^3j_2^2j_3 - 507384000j_1^3j_2^2\]

\[-108j_1^3j_2j_3^3 - 3090960j_1^3j_2j_3^2 + 2099520000j_1^3j_2j_3 + 81j_1^3j_2^4\]

\[+3499200j_1^3j_3^3 + 78j_1^2j_2^5 - 1332j_1^2j_2^4j_3 + 592272j_1^2j_2^4\]

\[+8910j_1^2j_2^3j_3^2 - 4743360j_1^2j_2^3j_3 - 29376j_1^2j_2^2j_3^3 + 9331200j_1^2j_2^2j_3^2\]

\[+47952j_1^2j_2j_3^4 - 31104j_1^2j_3^5 - 159j_1j_2^6 + 1728j_1j_2^5j_3\]

\[-41472j_1j_2^5 - 6048j_1j_2j_3^6 + 6912j_1j_2j_3^5 + 80j_2^7 - 384j_2^6j_3.\]
Computing one coefficient c of P_2

It is easy to give a set of coset representatives for $\text{Sp}(4, \mathbb{Z})/\Gamma_0^{(2)}(2)$.

We can compute $P_2(\{j_i(\tau)\}) \in \mathbb{C}[X]$ for any $\tau \in H_2$.

Idea. Compute $P_2(\{j_i(\tau)\})$ for enough τ’s to reconstruct a coefficient c using interpolation techniques.

We need to know the ‘full’ denominator for the interpolation to work.

Dupont’s trick: fix $y, z \in \mathbb{Q}(i)$ and for many $x_k \in \mathbb{Q}(i)$ compute τ with

$$(j_1(\tau), j_2(\tau), j_3(\tau)) = (x_k, y, z).$$
Multivariate → Univariate

With Dupont’s trick, we can evaluate the *univariate* function $c(X, y, z)$.

Compute the degree of numerator and denominator of c by computing the solution space of

$$
\begin{pmatrix}
1 \ldots x_1^m & -c(x_1, y, z) & \ldots & -c(x_1, y, z)x_1^n \\
\vdots & \vdots & \ddots & \vdots \\
1 \ldots x_{m+n+2}^m & -c(x_{m+n+2}, y, z) & \ldots & -c(x_{m+n+2}, y, z)x_{m+n+2}^n
\end{pmatrix}
$$

for increasing m, n and random $x_k \in \mathbb{Q}(i)$.
Some guessing

The degree in j_2 is 42 for all coefficients and 30 for j_3. It varies for j_1.

Guess. The denominator of c if $L_2^6 j_1^{\alpha(c)}$.

We can ‘check’ the guess by looking at the denominator of $c(x, y, z) \in \mathbb{Q}(i)$.

Computing the numerator is now easy: interpolation!

The degrees are large, so it takes a ‘long’ time.
Some results

The constant term of P_2 contains 16975 monomials.

The coefficients have up to 200 decimal digits.

They are *smooth*, like $2^{127} \cdot 3^{58} \cdot 5 \cdot 7 \cdot 13^{26}$, the coefficient of $j_1^{53} j_2 j_3^3$.

It takes 50 Megabytes to store the polynomials P_2, R_2, Q_2.
Larger primes

Lemma. If C has $(3,3)$-split Jacobian, then C can be given by

$$Y^2 = (4X^3 + b^2 X^2 + 2bX + 1)(X^3 + aX^2 + bX + 1).$$

Use the same Gröbner basis technique as for $p = 2$ to find L_3. The result needs more than 10 slides to display.

In principle, we can compute P_3, Q_3, R_3 without too much effort.

For $p \geq 7$ no explicit models for Humbert surfaces are known.

Question. Are these cases *intrinsically* more difficult?