1. Let R be a commutative ring, let R' be a commutative R-algebra. Prove that if an R-algebra A is finite étale over R, then $A \otimes_R R'$ is finite étale over R'.

2. Prove that $A = \{(n, m) \in \mathbb{Z}^2 \mid n \equiv m \mod 2\}$ is not finite étale as \mathbb{Z}-algebra.

3. Give coordinate free definitions of determinant and trace, and prove that they coincide with the ‘usual definition’ that picks a basis first.

4. Let $g \geq 1$ be an integer. Prove that
 \[
 \mathbb{Z}_g \cong \prod_{p \mid g} \mathbb{Z}_p
 \]
as topological rings.

5. Prove that $\hat{\mathbb{Z}}$ is flat as \mathbb{Z}-module.

6. Prove that there is an isomorphism $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ of topological rings. Here, the product ranges over all prime numbers p.

7. A Steinitz number or supernatural number is a formal expression
 \[
a = \prod_p p^{a(p)},
 \]
where p ranges over the set of all prime numbers, and $a(p) \in \{0, 1, 2, \ldots, \infty\}$ for each p. If $a = \prod_p p^{a(p)}$ is a Steinitz number, then we write $a\hat{\mathbb{Z}}$ for the subgroup of $\hat{\mathbb{Z}}$ that under the isomorphism $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ from the previous exercise corresponds to $\prod_p p^{a(p)}\mathbb{Z}_p$, with $p^\infty\mathbb{Z}_p = \{0\}$.
 (a) Let a be a Steinitz number. Prove that $a\hat{\mathbb{Z}}$ is the intersection of all groups $n\hat{\mathbb{Z}}$, with n ranging over the positive integers that divide a (definition obvious).
 (b) Prove that the map sending a to $a\hat{\mathbb{Z}}$ gives a bijection from the set of Steinitz numbers to the set of closed subgroups of $\hat{\mathbb{Z}}$. For which Steinitz numbers a is $a\hat{\mathbb{Z}}$ an open subgroup of $\hat{\mathbb{Z}}$?
 (c) Let k be a finite field. Explain how Steinitz numbers classify k-isomorphism classes of algebraic field extensions l/k.
 (d) A profinite group π is called procyclic if there exists $\sigma \in \pi$ such that the subgroup generated by σ is dense in π. Prove that π is procyclic if and only if $\pi \cong \hat{\mathbb{Z}}/a\hat{\mathbb{Z}}$ for some Steinitz number a. Is a unique?
8. Lang, Exercise III.14.

9. An R-module M is called *projective* if and only if the functor $\text{Hom}_R(M, -)$ is exact. Suppose that M is finitely generated and projective. Prove that there exists a finitely generated projective R-module Q with $M \oplus Q \cong R^n$ for some non-negative integer n.

10. An R-module M is called *injective* if and only if the functor $\text{Hom}_R(-, M)$ is exact. Prove that a \mathbb{Z}-module is injective if and only if it is divisible as abelian group (meaning that $x \mapsto nx$ is surjective for all integers n).

11. Let R be commutative, and suppose that $R[X]$ is Noetherian. Prove that R is Noetherian. (This is the converse of Hilbert’s basis theorem.)