1. (For those of you who didn’t look this up yet.) Let R be a commutative ring and let $\langle M_i \rangle$ be the set of maximal ideals of R. Prove:

$$\bigcup_i M_i = R \setminus R^*.$$

2. Let $R = \mathbb{Z}[X]$ and $I = (2, X)$. Observe that I is maximal. Find an I-primary ideal that is not a power of I.

3. Let R be a ring such that each local ring R_p is Noetherian. Is R Noetherian? Give a proof or counterexample.

4. Let $f : R \to R'$ be a ring homomorphism, and let S be a multiplicative subset of R. Prove that $S^{-1}R'$ and $f(S)^{-1}R'$ are isomorphic as $S^{-1}R$ modules.

5. Let R be a ring such that each local ring R_p is an integral domain. Is R an integral domain? Give a proof or counterexample.

6. Let R be a ring with the property that every ideal I is decomposable. Show that $S^{-1}R$ has the same property (for every S).

7. Let A be a ring, and $A \subseteq B$ an integral extension ring. Prove that we have $\dim(A) = \dim(B)$.

8. Let A be a domain which is integrally closed in its field of fractions K. Let L/K be a normal field extension of K (in the sense of Galois theory). Let B be the integral closure of A in L. Prove that all prime ideals of B lying over a prime ideal p of A are conjugate over K. (The case $[L : K] < \infty$ will be done in class, your mission is to do the infinite case.)