
Math 141 Summary

Rich Schwartz

September 18, 2009

General Information: Math 141 is a first course in topology. Generally
speaking, topology deals with properties of spaces (e.g., curves, graphs, and
surfaces) that only depend on notions of continuity and not on rigid notions
in geometry like length and angle. On the other hand, topology and geome-
try are very closely intertwined, and part of the beauty of the two subjects
is discovering how one subject influences the other. In M141, you learn some
of the basic principles of topology and also prove some of the famous classic
results in the subject. The exposition is “combinatorial” in the sense that
most of the spaces involved are described in terms of collections of triangles
(or higher dimensional tetrahedra) that have been glued together. In these
notes, I’ll give an account of selected topics that typically appear in M141.

Homeomorphism and Shape: Suppose that X and Y are two spaces
on which one has a well defined notion of continuous maps. For example, X
and Y might be curves in the plane, or surfaces in space. A map f : X → Y
is called a homeomorphism if f is a bijection and if both f and f−1 are
continuous. The spaces X and Y are said to be homeomorphic if there is a
homeomorphism between them. Here are some examples:

• An ellipse is homeomorphic to a circle.

• The surface of a cube is homeomorphic to sphere of the same dimension.

• The open unit ball in R
n is homeomorphic to all of R

n.

• The surface of a donut (a torus) is not homeomorphic to a sphere.

• R
2 −{0} is homeomorphic to R

2 −B, where B is the closed unit ball.
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Note, for instance, that the surface of a cube has a rather different geometric
shape than a sphere, but there is something “generally spherical” about it.
This something is captured by the notion of a homeomorphism. On the other
hand, the notion of homeomorphism is tight enough so that it distinguishes
between the surface of a sphere and the surface of a donut.

There are other, related, notions of equivalence that are similar to home-
omorphisms. One related notion is that of homotopy equivalence. For the
sake of simplicity, I won’t discuss homotopy equivalence in these notes.

Surfaces: One can ask the general question: Which spaces are homeomor-
phic to which others? This question is too vague, but special cases of it have
interesting answers. A classic special case is that of surfaces. Most people
have an intuitive notion of a surface – e.g. a sphere or a torus – but one can
give a precise definition along the following lines. A surface is a finite union of
(solid) triangles, glued together edge-to-edge such that each triangle is glued
to a distinct triangle along each of its edges. Figure 1 shows an example.

Figure 1

The arrow notation is supposed to indicate additional gluings that cannot
be accurately represented on the page. For instance, the top edge is glued
to the bottom edge in a left-to-right fashion and the left edge is glued to
the right edge in a bottom-to-top fashion. In M141 this definition is made
precise. The surface defined by Figure 1 is not homeomorphic to either the
sphere or the torus. In M141 you will see how to determine exactly when
two of these kinds of surface are homeomorphic to each other.
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One way to tell apart these surfaces is the Euler characteristic,

χ = F − E + V.

Here F is the number of triangles, and E is the number of edges, and V is the
number of vertices. In our example, we have χ = 8−12+2 = −2. If one puts
the additional restriction that the surfaces are oriented, then two surfaces are
homeomorphic if and only of they have the same Euler characteristic.

Knots: We say that a knot is an embedded closed loop in S3, the 3-
dimensional sphere. In other words, we have a continuous and injective
map γ : S1 → S3, where Sd denotes the d-dimensional sphere. Two knots
K0 and K1 are equivalent if there is a homeomorphism from S3 to S3 that
carries K0 to K1. This turns out to be equivalent to the condition that there
exists a continuous 1-parameter family of knots {Kt| t ∈ [0, 1]}. Informally,
if you make K0 and K1 out of string, they are equivalent if and only if you
can jiggle K0 around until it looks like K1. The simplest knot is just a round
circle in S3. This is known as the unknot . Amazingly, there are many in-
equivalent knots. Figure 2 shows that trefoil knot, which is not equivalent
to the unknot.

Figure 2

Figure 2 shows a picture of the trefoil knot projected into the plane. The
little gaps in the picture indicate where one strand of the loop passes over
another one. It turns out that one can work with these knot projections and
get a lot of information about when knots are equivalent. One typical thing
is to attach a number, polynomial, or group to a knot based on one of its
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projections. Then one shows by combinatorial means that the quantity is the
same for all possible projections. This means that two knots are equivalent
only if they have the same attached quantity. Such an attached quantity is
called a knot invariant .

Fundamental Group Attaching auxilliary objects such as numbers and
groups to a space is one of the themes of topology. Here I’ll explain one of
the central constructions along these lines. In this construction, you attach a
group to a pair (X, x), where x is a distingished point in X. Assuming that
X is a path connected space – meaning that any two points can be joined
by a continuous curve – the choice of point x is not so important. Any other
choice leads to an isomorphic group.

Here is the construction. Let S1 be the circle, as above, and let 0 be some
point of S1. Let’s say that a loop is a continuous map

f : S1 → X

such that f(0) = x. We call 2 loops f0 and f1 equivalent if there exists a
continuous family {ft| t ∈ [0, 1]} of loops. We write f0 ∼ f1 in this case.

π1(X, x) is the set of equivalence classes of loops. The group law for loops
is “concatenation”. Given loops f1 and f2, the loop f1◦f2 is obtained by first
“going around” f1 and then “going around” f2. Setting g = f1 ◦ f2, the map
g restricted to the interval [0, 1/2] agrees with f1, and the map g restricted
to the interval [1/2, 1] agrees with f2. The map g does f1 in half the time
and then does f2 in half the time. One needs to check that this operation
is well defined on equivalence classes. That is, we would need to check that
f1 ◦ f2 ∼ f ′

1
◦ f ′

2
if f1 ∼ f ′

1
and f2 ∼ f ′

2
. The identity element of this group is

the equivalence class of the constant loop. The inverse of any loop is the loop
one gets by tracing the loop out in the opposite direction. Everything works
out, and π1(X, x) is a well-defined group called the fundamental group. Here
are some examples.

• π1(S
2) = {e}, the trivial loop. This result reflects the fact that any

loop on S2 can be shrunk down to a point.

• π1(S
1) = Z.

• π1(T
n) = Z

n, for any choice of point x. Here T n is the n-torus, namely
the n-fold product of circles.
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• π1(S
3 − S1) = Z. Here S1 is a round circle sitting in S3.

• Let K be the trefoil knot. Then π1(S
3 −K) is infinite and nonabelian.

Suppose X and Y are spaces and f is a homeomorphism from X to Y .
Then f induces an isomorphism from π1(X) to π1(Y ). Hence, two spaces
with different fundamental groups are not homeomorphic. In particular, the
trefoil knot is not equivalent to the unknot.

Triangulations and the Fundamental Group When the space X is given
as a union of glued-together triangles or tetrahedra, one can compute π1(X)
in a combinatorial way. The rough idea is that one can replace any loop with
one that stays in the edges of the triangulation. One can then work out the
equivalence relations between loops by looking at the pattern of edges and
triangles that bound them. This kind of thing is worked out in M141.

Van Kampen’s Theorem One of the most powerful computational re-
sults about the fundamental group is Van Kampen’s Theorem. This result
describes π1(X ∪ Y ) in terms of π(X) and π1(Y ) and π1(X ∩ Y ), provided
that X∩Y is connected. Here we think of X∪Y as a more complicated space
that is built out of simpler components X and Y . For instance, you could
glue two annuli together to build a torus. If you have a complicated space
that is built out of simple pieces (like tetrahedra), you can use Van Kampen’s
theorem in an inductive way to effectively compute the fundamental group.

One nice application of Van Kampen’s Theorem is a formula, known as
the Wirtinger presentation, for the fundamental group of S3 − K, where K
is a knot. The Wirtinger presentation is computed from any knot projection.
Different projections of K lead to different-looking descriptions of the same
group, but the underlying group is always the same. Thus, one way to tell
knots K1 and K2 apart is to compute π1(S

3 − K1) and π1(S
3 − K2) and see

that the groups are different. This isn’t always easy to do, but sometimes it
is possible.

Brouwer Fixed Point Theorem: Topological ideas such as the funda-
mental group can be used to establish some classical results about maps
between spaces. Here is an example:

Theorem 0.1 Let D2 be the unit disk, with boundary S1. There is no con-

tinuous map f : D2 → S1 that is the identity on the boundary.

5



Proof: (sketch) Suppose f : D2 → S1 exists, with f being the identity on S1.
Consider the chain of maps S1 → D2 → S1. The first map is just inclusion.
The second map is f . This chain of maps sets up a sequence of homomor-
phisms π1(S

1) → π1(D
2) → π1(S

1). The composed map is the identity. This
gives us a chain of homomorphisms Z → {e} → Z, where the middle group is
the trivial group and the composed map is the identity. This is impossible. ♠

The result we just sketched has a classical corollary, known as the Brouwer
Fixed Point Theorem.

Corollary 0.2 Any continuous mapping f : D2 → D2 has a fixed point.

Proof: Suppose that such an g exists, with no fixed point. Then one can
define a retraction f : D2 → S1 as follows. f(p) = R ∩ S1, where R is the
ray that emanates from g(p) and contains p. (Draw a picture!) One checks
that f violates the previous result, giving a contradiction. ♠

These kinds of results are proved in much more detail in M141.

Some Classic Results: In M141 you prove a number of classic results
that are similar in spirit to the Brouwer Fixed Point Theorem.

• The Brouwer Fixed Theorem for Dn, the n-dimensional ball. This
requires different ideas than those mentioned above.

• The Hairy Ball Theorem: Any continuous vector field on the sphere
vanishes at some point.

• The Borsuk-Ulam Theorem: Any continuous function from Sn to R
n

maps a pair of antipodal points to the same point.

• The Index Theorem: Given a continuous vector field on a surface,
this result relates the number of places where the vector field vanishes
(suitably counted) to the Euler Characteristic of the surface.

6


