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General Information: M156 is a course in number theory. There is signif-
icant overlap between the topics in M42 and the topics in M156, but M156
discusses things at a higher level and goes much further. In this summary,
I'll discuss the main topics taught in M156. The online M156 syllabus has
a list of additional advanced topics that are covered if time permits. If you
have trouble reading this summary, you might want to read the summary for
M42 first.

The Euclidean Algorithm: Given positive integers a and b, the great-
est common divisor of a and b, denoted (a, b) is the largest integer d which
divides both. It turns out that d is the minimum positive value of the set of
integer combinations

{ma +bn| m,n € Z}.

In particular, there exist integers m and n such that
d = am + bn. (1)

Note, however, that m and n are not unique. The Fuclidean Algorithm
produces d and a pair m,n satisfying Equation 1. We order so that a < b
and set ap = a and by = b. Given a; < by, produced by the algorithm, we
write

Ag11 = min(ak, bk — ak); bk+1 = max(ak, bk — CLk).

Eventually, we reach a, = b, = d. Keeping track of the steps in the
algorithm—e.g. whether a, < by — a; at each step, we can produce m and n.

Congruences: We write a = b mod n if a — b is divisible by n. Let Z/nZ



denote the set of equivalence classes mod n. If m and n are relatively prime,
we have a map
F:Z/mnZ — Z/mZ x Z/nZ.

We just take our element of Z /mnZ and list out its class mod m and its class
mod n. The Chinese Remainder Theorem says that this map is a bijection.
One can use the Chinese Remainder Theorem to understand relative pri-
mality. Let (Z/nZ)* denote those elements in Z/nZ that are relatively
prime to n. A number relatively prime to mn is relatively prime to both m
and n and vice versa. So, when (m,n) = 1, the map above induces a map

F*: (Z)mnZ)" — (Z/mZ)" x (Z/nZ)".

This map is a bijection by the Chinese Remainder Theorem. Letting ¢(n)
denote the cardinality of (Z/nZ)*, we get

¢(mn) = ¢(m)d(n) (2)
when (m,n) = 1. One checks easily that
o(p*) = p" —p" (3)

when p is prime. Combining Equations 2 and 3 one can easily evaluate ¢(n)
provided that n has been factored into primes. The fact that ¢(n) is often
hard to compute if n has not been factored into primes is the basis for the
famous RSA public key cryptosystem. The M42 summary discusses the RSA
system in detail.

In M156 (and also M153) you prove Euler’s Theorem:

a®™ =1 mod n. (4)

Here (a,n) = 1. As a special case, when n = p is prime, we have ¢(p) = p—1,
and we get Fermat’s Theorem:

a® =1 mod n. (5)
The formulas for ¢(n) above make Euler’s theorem useful in practice.

Multiplicative Functions: A function f : N — Z is multiplicative if
f(mn) = f(m)f(n) when (m,n) = 1. We have already seen that Euler’s
¢-function is multiplicative. Here are some other examples.
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e Let I(1) =1 and otherwise I(n) = 0.

e Let e(n) =1 for all n.

Let f(n) equal to the sum of the divisors of n. For instance

F6) =1+2+3+6=12.

The Mobius function p such that u(p™) = (—1)" provided that p is
prime. Otherwise p(n) = 0.

In M156, you see a beautiful “convolution formula” which produces new
multiplicative functions out of old:

frgn) =23 fd)g(n—d).

The sum takes place over all divisors of n. Once you know that f x g is mul-
tiplicative, you can give easy proofs that other functions are multiplicative.
Taking our example f from above, we have f = e x e. This proves that the
“sum of the divisors” is a multiplicative function.

We also have the formula

exp=1.
This gives the so-called Mobius inversion formula:
F=fxe = f=Fxpu. (6)

Here F'(n) is obtained by summing the values of f over all divisors of n. You
can think of F' as a kind of integral of F'. The Mobius inversion formula tells
us how to reverse the process and recover f from F.

Primes: In M156, you see the (easy) proof that every positive integer fac-
tors uniquely into primes, provided that the primes are written in increasing
order. It is also an easy result that there are infinitely many primes: The
number N!+ 1 is not divisible by and number k£ < N, so there must be some
prime greater than N.

Here is a quick proof that there are infinitely many primes congruent to
3 mod 4. Let pi,...,p, be the list of the first n primes that are congruent
to 3 mod 4. Consider the product 4p;...p, + 3. This number is congruent to
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3 mod 4 and consequently must be divisible by some prime congruent to 3
mod 4. On the other hand, this number is not divisible by and of our listed
primes. So, there is some larger prime congruent to 3 mod 4.

A much more difficult result is Dirichlet’s Theorem: If (a,n) = 1 then
there are infinitely many primes congruent to @ mod n. One might wonder
if there is a trick, similar to the one above, for proving Dirichlet’s Theorem
in general. The only known proofs are deeper, and are based on Dirichlet
L-functions. See the Analyic Number Theory section below.

Another beautiful result about the infinitude of primes is Fuler’s Theo-
rem:

> 1
> — =00 (7)
i—1 Pi
This result is also proved by analysis, but the analysis is pretty soft. We
sketch a proof in the Analytic Number Theory section.
The famous Prime Number Theorem says roughly that there are about

n/In(n) primes between 1 and n.

Finite Fields: A field is a set F' together with two operations, addition
and multiplication, which satisfy the same algebraic axioms (e.g. distribu-
tive law, associative law, existence of inverses...) that the rationals @ satisfy.
See the M153 summary for a precise definition.

Amazingly, there are finite fields. For instance, Z/pZ is a finite field
when p is prime. As another example, consider the set F' of all sums a + bi
where a,b € Z/5Z and i is a formal symbol such that i* = [2] in Z/5Z. You
can add and multiply these expressions together, and you can also divide by
nonzero expressions. In short, it turns out that F is a finite field with 25 = 52
elements. Using more sophisticated constructions like this, one shows that
there exists a field of order p™ for any prime p and any positive integer n.

Let F' be a finite field. In M156 you prove the Primitive Element Theo-
rem which shows that there is some element f € F' such that every nonzero
element of F' is a power of f. That is, F' = {0, f, f%, f3,...}.

Quadratic Reciprocity: For p an odd prime, An integer a is a quadratic
residue mod p if the equation 22> = k mod p has a solution. One writes
(k/p) = 1if k is a quadratic residue mod p and (k/p) = —1 if not. There are
a number of interesting results about quadratic residues.

e If pis an odd prime than (—1/p) = 1 if and only if p = 1 mod 4. This
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is closely related to the theorem that p can be written as the sum of
two squares if and only if p = 1 mod 4.

- a
o'F = <—> mod p.
p

e If p and ¢ are odd primes then (¢/p) = (p/q) if and only if p = 1 mod
4 or ¢ =1 mod 4.

e Kuler’s Criterion:

The last result is the bulk of Gauss’s famous Quadratic Reciprocity Theorem.
The other part of the QRT discusses what happens when one of the primes
is 2. The QRT gives you an algorithm for determining whether one number
of a quadratic residue mod another one. In M156 you see both the algorithm
and a proof of Quadratic Reciprocity.

Diophantine Equations A Diophantine Equation asks for integer solu-
tions to polynomial equations. The most famous Diophantine equation is
probably a? + b*> = 2. Integer solutions to this equation are known as
Pythagorean Triples. On easy topic in M1156 is a complete classification of
the Pythagorean Triples. This is also done in M42.

The famous Fermat’s Last Theorem says that the equation a™ + b" = ¢"
has no integer solutions for n > 3. Andrew Wiles proved this about 10 years
ago, but Fermat actually did succeed in proving this result when n = 4. His
technique is called the method of descent. You start with a supposed small-
est solution (a,b,c) and through algebraic manipulations produce a smaller
solution (&', ¥, ), thus arriving at a contradiction. In M156 you apply the
method of descent to the equation a* + b* = ¢* and perhaps to some related
equations.

Another classic equation is Pell’s Equation. Pell’s equation asks for pos-
itive integer solutions to the equation

22— Dy? = 1.

where D > 0 is an integer that is not a perfect square. For instance, the pair
(z,y) = (3,2) is a solution to the equation z? — 2y? = 1. Given one solution
you can produce infinitely many. For example, if you write

(34 2V2)" = a, + b, V2.



Then (a,,b,) is also a solution to x? — 2y*> = 1. In fact, all solutions to
the equation 22 — 2y? = 1 arise in this way. In M156, you prove that the
general case has infinitely many solutions, and they have the same structure
I suggested for the case D = 2.

Analytic Number Theory: We already mentioned two applications of
analyic number theorem, Dirichlet’s Theorem and Equation 7. The proof of
Equation 7 is based on the famous Fuler product formula

>l ®)

and hinges on the fact that both sides of this equation converge when s > 1,
and diverge as s — 1.
One can use some easy calculus to show that

2 1
—>log< >, 9
pi L=p=* ®)

which holds for any p; > 2 and s > 1. The Euler Product Formula then tells
us that
2 1 < L )—10 (Zi)—uxv
pr>20g 1_p—s = log ns
as s — 17 and Equation 7 follows.
The left hand side of Equation 8 above is called the Riemann zeta function

()=~

ns
The proof of Equation 7 only uses the fact that (1) = oo, but the proof
of the prime number theorem uses the exact behavior of ((s) as s — 1.
One classical result is that ((s) is defined and meromorphic (i.e. complex
analytic) when s is allowed to be a complex parameter. Probably the most
famous conjecture of all time is the Riemann Hypothesis: All the zeros of
((s) lie on the line 1/2 +it. If Jeff Hoffstein teaches M156, he will explain
his recent proof of the Riemann Hypothesis.

A classical Dirichlet L-function is a generalization of ((s) of the form

L(s,x) =) XT(Z;),



where x : Z — C'is a homomorphism from Z into the circle of unit complex
numbers. The function y is known as a character. The proof of Dirichlet’s
Theorem on the infinitute of primes congruent to a mod n is based on the
knowledge of the analytic behavior of L(s, x).



