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If  you think about walking
along a number line, with
the numbers set out in
front of  you one after
the other, then INFINITY...

seems to be a long
way off, a point on
a horizon you will
never reach, a 
height to which 
you can 
never climb.
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Infinity seems to be a thing
outside of  our universe ...

a far edge you won't see no
matter how hard you stare
into space.



I wrote this book
to explain how a

typical 
mathematician

thinks about
infinity.

The approach takes some 
getting used to, but 

you'll see that a 
mathematical view of
infinity leads to some 

breathtaking surprises.
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Traditionally, mathematicians write the 
members of  a set in symbols, in between 
two brackets and separated by commas.  
The brackets and commas are not part of  
the set. They are like a frame that
goes around the outside of  the picture.

The first order of  business is to talk about

SETS.
MEMBERS

A set is the name mathematicians have for 
collections of  things.  The things in the set
are called the of  the set.

Informally, I like to picture the members of  a
set as all sorts of  things, like playing cards...

I sometimes picture sets as things placed 
inside boxes, because then the box looks 
more clearly like a frame.
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or cats...

or aliens.
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Formally, the 
members of  a 
mathematical 

set are not really 
cards or cats 

or aliens.  

They are sets
themselves.
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This gives mathematics a certain beauty
and purity, but it does raise the question
as to how the whole enterprise gets off
the ground.  Let's not get into these
technical details just yet.  For now, we'll
think of  sets as being all kinds of  things.



Some sets are called FINITE.
Here are some examples.

The set of  windows in Manhattan

The set of  pancake spatulas  with faces drawn on them

The set of  all
 tic-tac-toe games
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Of  course, 
I haven't
drawn all the
members of  
these sets.

The set of  seagulls
on the Rhode 
Island coast



Intuitively, a set is finite if  you can start counting 
its members and get to the end. But this isn't 

phrased quite right because sometimes 
you might not ACTUALLY be able to get all 
the way to the end. Consider the set of  all

chess games which last less than 200 moves ... 

or the set of  all molecules on Earth. It is hard 
give a formal definition of  a finite set, but
we certainly seem to recognize 
finite sets when we 
see them.   

Incidentally, one of  these sets has WAY
more members than the other. Which one?



Sometimes you might want to compare
sets without having to count them. Are

there more people or chairs at a concert?
Just have everyone pick a chair and sit
down.  See if  you have extra chairs or

extra people, or if  there is a perfect match.

J K



Are there more children or gumballs?

It would be crazy to count!
Just give each kid a gumball

and see if  there are kids
left over at the end, or

gumballs.



When two sets match up perfectly, the
matching between them is known as a

Here is a bijection between
a set of  cats and a set of  cards.
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BIJECTION.
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In a bijection, different
members of  one set are
matched with different
members of  the other,
and nothing is left over.
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If  both cats got
matched to the 
chicken, they
might fight 
over it.



Here is one of  the many bijections between 
the set {A,B,C,D,E,F,G,H,I,J,K,L} and

the set of  hours on a clock...
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and here are a few others.
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This bijection might remind
you of  binary numbers.

Finding a bijection between two finite sets
is a way of  saying that they have  the same size.



A B C D E G
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This chart illustrates how the set
{0,1,2,3,4,5,6} is matched to the set
{A,B,C,D,E,F,G}.  You can read from
the chart that 0 is matched to F and
1 is matched to B, and so on.

Here are a few more of  the 5040 possible
bijections between these two sets.



As one
 last example, 

there is a
bijection 

between the
set of  animal

bodies and
 and the set of

 their heads.
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Let us talk more about sets.  
If  the members of  sets are sets 
themselves, how does the whole 
enterprise get off  the ground?



You could say that the whole theory 
of  sets is founded on the existence of  

NOTHING.

It is one thing to say that nothing 
exists and quite another to say that

NOTHING
exists.  I sometimes imagine NOTHING 

as a blank red painting hanging in
 an art gallery that nobody visits.

{   }
The mathematical concept for
NOTHING is the empty set: 

It is the set with no members.



Once we have the empty  set, we can form the 
set whose only member is the empty set.  

{    }{    }

Next, we can form the set whose members
are the empty set and the set whose

member is the emptyset.  

{   }{  }{  }{ {,



Next  ...

{   }{  }{  } {,{ {{   }{  }{  }, ,{



...and so on.  Now I want
to say a word about how
we can define numbers
in terms of  these sets.

{   }.
Think of  1 as another name
for {    }.{    }

Think of  2 as  another name for

{    }{    }{    }{ {,

That is, 0= That is, 1= 0{ }.{ .{

That is, 2={      }.0 1,

Think of  0 as another
name for

The pattern continues:
3={{ },{{ }},{{ },{{ }}}={0,1,2}, etc.
From this point of  view, numbers are 
just organized emptiness!

.



At the risk of  sounding a bit strange, 
let me confess something about my view 
of  the world. Sometimes I think that 
everything is just organized emptiness.  

Consider a baby.

If  you look very closely at a baby, his 
recognizable features dissolve into bits
of  organic material. 



Organic material turns out to be 
highly organized chains of  atoms,
which we often picture as patterns
of  balls and rods.

The "balls" are mostly empty space, tiny
protons and neutrons surrounded by a
cloud of  electrons.  The "rods" are shared
electron clouds.  The clouds are described
by the same language that mathematicians
invented to understand music. At this
scale, physical reality blends into pure
mathematics.



At still smaller scales we have no experience
of  physical reality at all.  We just have
mathematical models we invented  to
predict the outcomes of  experiments.
Sometimes there aren't even experiments
to go along with the models, and we like
them purely on mathematical grounds.

Ultimately, our models of  reality boil
down to complicated patterns 

involving the empty set.

Like numbers, these models can be
expressed in terms of  sets.
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They're both part of  a grand
fugue composed of  logic and

silence.



   

But I digress.

Whether or
not you think of

everyday
objects as

sets it is
useful for

the 
purpose of
iillustration
to speak of  

sets as if
their 

members
were all
kinds of  

things.



Now then, a set is called

INFINITE
if it is not finite.

To a mathematician,
"infinity" isn't one
thing.  There are
finite sets and
infinite sets.
"Being infinite"
is a property
that a set may have.



The question is:
Are there infinite sets?

I'll give you two answers,
one now and one later.



Yes, of  course there are!
There are lots and lots of

infinite sets.  

The most famous 
    infinite set is 
       known as

0.



0         is the set of  all counting numbers,
namely {0,1,2,3,...}.  It is pronounced

"Aleph Nought".  Aleph is the first
letter in the Hebrew alphabet.



Think about 0 like this. 
You and your friends 
are in line to see the
gallery of  finite 
numbers.

When you get to the end
of  the line, the ticket
seller says that a new
gallery has opened up
across the road and
the new gallery has a
painting which is a picture
of  all the paintings in this
gallery.



Here is the painting of 0.



There are plenty of  infinite sets besides  
Consider the set of  even counting numbers: 
{0,2,4,...}.  Even though chickens don't have
teeth, I like to picture {0,2,4,...} as the set
of  teeth on an infinite chicken who has lost
every other tooth.  It might appear that
{0,2,4,...} is somehow smaller than 

0  

0  
because, after all ...

.

0 2 4

teeth are missing!

On the other hand ...



imagine that our chicken gets braces,
and after a few hellish years...



the braces pull his teeth together.

The "amount" of
teeth hasn't changed

because the teeth have just
slid around, but now it seems that

the set of  chicken's teeth is the same as        0  .



With profound insight,
Georg Cantor (1845  1918)
found a way out of  these
seeming paradoxes.

Taking inspiration from the 
way things work out for

finite sets, Cantor introduced 
the fundamental idea that ...



two sets are the
the same size precisely
when there is a
bijection between them.

What Cantor did was 
extend the concept 
of  size ...

from the realm of  the finite
to the realm of  the infinite.



2 040 1 2 3

0.

Going back to our long-suffering infinite 
chicken, we see that the motion of  the 
braces produces a bijection between the 
set of  even counting numbers and the
set of  all counting numbers.  So,
according to Cantor's definition, these 
two sets have the same size.

The argument works the same way for
any infinite set of  counting numbers.
Just put on the braces and let the teeth
slide together.  These infinite sets all
have the same size as

Cantor's definition has a nice feature:  
If  two sets are the same size as a third, 
then they are the same size as each other.   
This leads me to the Chicken Principle:

0.  

If  a set has the same size as an infinite 
set of  counting numbers, then the set 
has the same size as 

The Chicken Principle has other names,
but I like to call it the Chicken Principle.
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What about other
infinite sets?

Consider the set
of  integers. This is
the set {...,-2,-1,0,2,1,...}
You can think of  this as
the set of  teeth on an
infinite crocodile.  You
can't see all of  his teeth.
His face goes off  the page.

.
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0.

At first it might seem that the set of  integers
has a larger size than

0. 

But look what
happens when this guy closes his mouth.
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The teeth line up, and you can see 
that there is a bijection between the 
set of  integers and



Consider an infinite rational shark.

0 1/2-1/2
-1

This monster has one tooth for each
rational number.  The tip of  each tooth
hits his bottom lip at the corresponding 
point on the number line.  I can only draw
a few of  the teeth! 

It seems that the shark has way
more than  0 teeth.  The teeth are
everywhere!  But here is a proof
that the set of  rational numbers
has the same size as 0 .

It seems that the shark has way
more than  0 teeth.  The teeth are
everywhere!  But here is a proof
that the set of  rational numbers
has the same size as 0 .
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Step 1:
Use an infinite spiral path
to create a bijection between
an infinite grid of  squares to
As the picture suggests, 0 is
matched with the middle square,
then 1 is matched with the square
just to the right, and so on.

Step 1:
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Step 2:  
Label the grid
like this, so that
every rational
number appears
somewhere in it.  
The method
shown also
produces some
junk, like 1/0, 
but that is OK.

Step 3: Move along the spiral path and 
               make a list of  the labels you see.

Remove the 
junk and
repeaters.  
This gives
the bijection.

0/0 (junk)

0/1 (=0)

1/1 (=1)

1/0 (junk)

1/-1 (=-1)

0/-1 (=0, repeater)

1/-1 (=1, repeater)

-1/0 (junk)

1/1 (=-1, repeater)

-1/2

0/2 (=0, repeater)

1/2

0
    
1

-1

-1/2

1/2

0
    
1

2

3

4

Step 2:

Step 3:

Step 4:



I can't resist giving one more example.  
Consider the set of  all finite text messages. 
For each message:

I  AM
9 131

1

1. Place a 1 between each word.

2. Place a 2 between each letter.

3. Place a string of  3s above each letter, 
     according to the "position" of  the letter.

4.  String the numbers together:

2

333333333 3 3333333333333

3333333331323333333333333

0.

This way of  encoding text messages
matches the set of  all text messages 
with an infinite set of  counting 
numbers. So, the Chicken Principle
says that the set of  finite text messages
has the same size as 

As an afterthought, I want to point
out that you can communicate every
rational number as a finite text message.

-2/7
minus two over seven

So, this method gives a second way 
to match up the set of  rational numbers
with an infinite set of  counting numbers.



Have a
nice day!

The curator of  the infinite gallery
is extremely picky.

She doesn't want any duplication.
She's not going to display a new
painting if  the set it depicts is the
same size as one she already has.
She heartlessly rejects all these
knockoffs.  So, you may then ask ...

0



0

what 

ELSE
is in the
infinite
gallery?

Perhaps the infinite gallery only has 
one painting in it! That is, maybe
all infinite sets have the  same size.
You, my friend, are now ready for ...



the 
famous...

; ;



;

Cantor
diagonal
argument.

Cantor 
diagonal 

argument.

;



BINARY STRING
is a way of  coloring the counting

numbers black or white.  You can picture
an infinite row of  colored boxes:

43210 5

I can't draw the whole thing for you, but
this example is meant to suggest that the 
even numbers are colored black and the 
odd ones white.  Of  course, there might not 
be any pattern at all in a binary string.  

A

02
is the name of  the set of  all binary strings.

;

0

row 0

row 1

row 2

row 3

row 4

row 5

row 6

row 7

If  the answer were yes, then we could
record the bijection in a chart like the
one here.  Row 0 shows the binary string
matched to 0, and so on.  I can't draw
the whole thing, of  course, but ...

every binary string appears 
on some row of  the chart.

20Are and the same size?

;



row 0

row 1

row 2

row 3

row 4

row 5

c
o

l. 4

c
o

l. 3

c
o

l. 2

c
o

l. 1

c
o

l. 0

c
o

l. 5

Imagine walking down the diagonal of  the 
chart and recording the colors you see:

;

Reverse all the colors on the diagonal
string, and call the new string "Bob".

Bob can't be in row 0 because
he  doesn't match in column 0. 

BOB IS NOT A ROW 
ON THE CHART!

And so on.  Therefore ...

Bob can't be in row 1 because
he  doesn't match in column 1. 

Bob can't be in row 2 because
he  doesn't match in column 2. 

;



0
02and

are not the same size
because that possibility
leads to contradictory
statements.

;

In other words...

;



there is more
than one size
of  infinity! 

;

It is sort of  like you spend your 
whole life staring at the horizon, 
wondering what and where  it is, 

and then you find out that there is 
another horizon beyond the one you 

had been staring it.  In my opinion, 
this is the sort of  thing that should
be shouted from the mountaintop.

;



Corresponding
to this new
horizon,
there is another
painting in the
infinite gallery!  
It is a finger 
painting.

The artist 
lives in
a blue castle
under a red
moon.

;

He sometimes entertains visitors out on his
deck. He looks like you from certain directions
but not from others.  He has hidden features
and he gets more intricate the closer you look.  

;



If  you are patient, he will show 
you his fingertips    but not all at 
once. There is a ritual. He reveals 
his fingertips slowly.

He wears a black or white
ring on each finger..

;

His two big fingers
each branch into
smaller fingers, and
so on    forever. 

;



If  you follow the path of  fingers
all the way out to a
fingertip and keep track
of  the colors of  the
rings along the
way, you get a
binary string. 

This procedure gives a
bijection between the
set of  fingertips and 02 .

;

To make the painting, the artist
dips his hand in the paint and
then just touches the canvas
with his fingertips. The
impression left by his
fingertips is the 
painting.

The painting is known as
the Cantor set.

;



The Cantor set is the part that remains
pink throughout the whole process.

Start with a line segment. 

Here is the traditional view of  the Cantor set.

These pink bars are supposed
 to be line segments, but I 

thickened them up so that you 
can see them more easily.

Remove the middle third,

remove the middle third of  each half,

and so on.

;

Here is a neat thing.  If  you connect
up the line segments in the right way,

you see a caricature of  the artist's hand.

I picture it reaching down from the
castle to touch the water.

;



There is
more to
Cantor's
scheme.

;

He also
introduced a

way to say 
when

one set is 
bigger than 

another.

;



A
A

C
C

C
C

SUBSET of a set is a new set whose 
members all belong to the
original set.  

A

Here is a set of  3 cards.  
The next page shows

6 of  the 8  proper subsets 
of  this set.  The only proper 

subset not shown is 
the empty set.  

The subset is called PROPER
if  it doesn't have all 

the original members.

;

A
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C

C

C

;



There is never a
bijection between

a finite set and one
of  its proper subsets.
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If  you take away 
some members of  

a finite set, you 
make it smaller.

The story is different for infinite sets. The crocodile
illustrates a bijection between the set of  integers 
and one of  its proper subsets, namely .

;

0
1
2
3
4
5

This chart illustrates
a bijection between 

0 and a proper subset of
02

0 is matched to the binary string 
that only colors 0 black, and
1 is matched to the binary string
that only colors 1 black, and so on.

.

;



;

According to Cantor, 
set A is smaller than set B 

when A is the same size as 
a proper subset of  B but 

not the same size as B  
This is written as |A|<|B|.

;



0

The Chicken
Principle
tells us that
any infinite
set which is
the same
size as
a subset of
is also
the same
size as

0

.

;

0
0 2<

0

We also 
know that

< 2 0

This is my
vision of  a

2 0

chicken.

.

;



Cantor's scheme
leaves open a fine
point that needs
to be cleared up.

;

Could it happen that there are sets A and B
with |A|<|B| and |B|<|A|?  If  so, then Cantor's
notion of  "size" is not much good.  It wouldn't
match our expectations of  how that concept
ought to behave.

;



Luckily, 
the
Cantor-
Bernstein
Theorem 
rules out 
this funny
behavior.

;

The Cantor-Bernstein
Theorem can be

phrased like this:

If  A is the same
size as a subset
of  B and B is the
same size as a
subset of  A, then
A and B have
the same size.

;



every cat can pick a dog to

chase and different cats pick

different dogs.

Think of  A as a set of
cats and B as
a set of  dogs.
To say that A is
the same size as
a subset of  B is
        to say that 

;

Likewise, every dog
can pick a cat to
chase and different
dogs pick different
cats.   

;



;

Your pets are chasing 
each other around
the yard. You keep 

track of  who is chasing
whom, and you notice 

4 kinds of  patterns.

;



1. Chasing 
loops which
involve an 
even  number 
of  animals.
Match each
cat to the 
dog it chases
within the
loop.  

2. Chasing  chains 
which have no 
start or end,
like the integers.
Match each cat
to the dog it
chases within
the chain.  

;

3. 
Chasing 

chains 
which start 

with a cat and 
have no end, like 

the counting 
numbers. Match each

cat to the dog it chases.

4. 
Chasing 

chains 
which start 

with a dog and 
have no end. 

Match  each cat to
the dog chasing it.

That's it. We're done! Cats
and dogs are all matched.

;



Here is one way to match 
each real number with 
a binary string:

3.1415 ...

The 00 indicates the decimal point 
and each 0 separates a string of  1's 
corresponding to a digit.  
Different cats chase different dogs.   

 ...1111 11111111100 0 010

That takes care of  the fine point.  As a bonus,
the Cantor-Bernstein Theorem is useful
when it comes to figuring out things about
the sizes of  infinite sets    like the set of  real
numbers.  (A real number is essentially
just an infinite decimal expansion.)

;

At the same time, you can match each
binary string to a real number, like this:

1101101

0.1101101

02

Different dogs chase different cats. 

...

...

The first matching procedure tells us
that the set of  real numbers is the same

size as a subset of          

The second matching procedure says the
reverse. So, the Cantor-Bernstein Theorem

says that the two sets have the same size.

.

;



02

The set of  real numbers is really the same
thing as the set of  points on the line.  So,
the set of  points on the line has the same
size as 

What about the set of  points in the plane?
Well, first of  all, you can match each binary
string to a different point on the line, and
then you can draw the line in the plane:

So 
02

is the same size as a subset of  the plane.

At the same time, each point in the
plane can be described by a pair
of  binary strings.

.

;

11100101111010111110...

1
1

0
0

1
1

1
1

1
1

1
0

1
0

..
.

3  .  1     4     1      5 ...

2
  .

   
   

   
 7

   
   

   
 1

   
  

Now shuffle the binary strings together:

This procedure matches each point in the
plane with its own binary sequence.

02
So, the Cantor-Bernstein Theorem says that the 
set of  points in the plane has the same size as 

1     1     1     0     0     1     0     1     1     1     1     0     1 ...
1     1     0     0     1     1     1     1     1     1     1     0     1 ...

1 11111111 1 11011 111 0 0 100 0 00 ......

...Just take the 
coordinates 
of  the point 
and convert 
them to 
binary 
strings.

The same argument works in 3D as well.
02 is the size of  (idealized) space!

.

;



I want to share one freaky 
thought about numbers.

Roughly, a 
number is 
called

if  you can  
(in theory)
program a
computer to
endlessly spit
out the digits
of  the number.

COMPUTABLE

3.1415 ...

4/1 -
4/3 +
4/5 -
4/7 +

...4/9 -

;

2.7182818284 ...

Every familiar kind of  number 
is computable: rational numbers,

roots of  polynomials with
integer coefficients, limits of

 series you might happen to know.
You name it!  All computable. But ...

2+
1/2!+
1/3!+
1/4! +

;



the set of  all possible computer programs
you could run on a finite computer, like the
set of  finite text messages, is the same size
as

2.7182818284 ...

2+
1/2!+
1/3!+

1/4!+

0

This is smaller than the set of  all possible
real numbers, which has size 02

3.1415926535 ...

(-1)
n

n=0

8

4 (1/2)        +    4 (1/3)

2n+1

2n+1 2n+1[ [

.

.

;

So, there are vastly more 
noncomputable real numbers than 

there are computable ones.
The same goes for points 
in the plane or in space.  

If  you pick a point at random,
 its location will not be computable, 

which is to say essentially
that it will be nameless 

and unknowable.

Sometimes when I
stare at a telephone

wire or a tabletop I
remember that it
is saturated with

impenetrable mystery.

;



                       

Have a
nice day!

I want to say more about
the curator of  the infinite
gallery. She also grows
more intricate the closer
you look.

;

Take, for example, one of  her eyes.

At first glance, it looks like this.

;



But when you look more closely,

you notice that the original pattern 
appears in each of  the white squares.

;

When you look more closely still, you 
again see the original pattern in
 each white square, and so on. 

If  you look closely you can 
see the Cantor set in her eye.  

;



The 
curator
is just as
picky with
the 
wannabes.
She rejects
paintings
showing sets 
that are the 
same 
size as the
Cantor set.

02

;

So you might
again ask
what else

is in the
gallery. What
about bigger
infinite sets?

;



0
You might worry that 2

Don't worry.  These two sets are the same 
set in disguise. You can match a subset of  

0 with the binary string that colors the

elements of  that subset black.  For instance. 

{1,3,5,...}

A

Let's revisit Cantor's 
diagonal argument

The set of  all subsets 
of  a set A is called the
POWER SET of  A. It is
written like this 2A

Could and2A
have the same size?

has 2 meanings:

1. the set of  binary strings,
2. the power set of 0.

;

Think of  A as a collection of  animals.

Here are two of  the members of  A.

;



Think of  a 
subset of   A
as a group 
photo involving 
some of  the 
animals. A 
bijection 
between A 
and its power 
set would mean
that there was
a way to match
up the animals
and their group
photos.

;

Say that an 
animal

is happy 
precisely

when it 
sees itself  

in the group 
photo it gets.

The cat is 
happy 

but this 
guy is not. 

0

;



One of  the photos shows the set of  all the 
unhappy animals.  Here is part of  the photo. 

;

One of  the animals must be matched
with this unhappy photo.  Let's say it
is this one.

;



Suppose this guy is happy.

I'm happy
and I got
the 
unhappy
photo...

but I'm not
in the
unhappy
photo
because
I'm happy.

So, I'm
unhappy
about not
being in 
the photo.

This situation is not possible.

;

Suppose he is unhappy.

So, I am 
happy
about
being in  
the photo.

but since
I am
unhappy,
I am in
the photo.

I am 
unhappy
and I got
the unhappy 
photo...

This situation is also impossible.

;



So, no animal gets
the unhappy photo.
The assumption
that A and 
the same size leads
to a contradiction.
That means that 
they can't be the
same size.

2A are

;

0

According to the definition A < A2

On the other hand, A is the same size as the
set of  PORTRAITS in the power set    group
photos just showing one animal.   This is
easy:   Just match each animal to its portrait.

0

And this result  tells us that ...
.

;



there are
infinitely 

manysizes of
infinity!

;

0 02 022

And
there

is
no
largest

size!

;



You 
could 
picture

0

22   as the set of  all
black and white
playing cards.

;

We the 
people of the
United States,in Order to forma more perfectUnion, establishJustic, etc.

in order

We the

But this is just a manner of  
speaking. To picture this set...

;



... you would 
have to picture every 
variant of  every image
you know, every tiny 
change, all possible 
patterns. 

PEO
PLE

WE
the

people of  the
UNITED STATES, In order

ethe	people

states

People

o
f
 t

h
e

U
N

IT
E

D

;

e
statesWE

the

In order

people of

Y

No way! 
You can't 

    PICTURE

0

22 or any of  the larger 
sets in the hierarchy.

U

;



2
2

0

;

If  you tried to look
into one of  the 

other rooms, maybe
you'd get some weird

alien hand in your
face and you'd

experience
a blinding flash

of  light. That is all.
We can't afford

the membership
dues needed to

see the other rooms.

;



;

And, if  you must
know, the infinite
hierarchy you get
by taking power
set after power
set is just the

FIRST hierarchy
of  infinities. There 

is a hierarchy of
hierarchies, and

so on.

In this context,
the words

"and so on" do
not do justice

to the full extent
of  what is going
on.  The infinite

gallery has room
after room, 

horizon after
horizon!

;



Or maybe the gallery
doesn't exist.

;

I had promised you
a second answer,
and here it is.
Maybe there are
no infinite sets at all.

;



See, mathematics is
founded on axioms. 

;
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The axioms are meant to be
self-evident truths that

everyone agrees on.  All of  
math is supposed to be
built up, step by step, 

in a rock solid way from the 
axioms. The problem is ...

;



the axioms 
evolve, like
scientific
theories, and
not everyone 
agrees on them.

;

In the past, people have
put forward axioms which
seemed obvious, but then
later on it turned out that
they led to inconsistencies
in the system.  

;



Early versions of  set theory
allowed us to construct
the set of  all sets which
are not members 
of  themselves.

;

This is a
contradiction.
The set both is

and is not a
member of  

itself.
This 

contradiction,
called Russell's

Paradox, 
showed
that the 
whole

system was 
flawed.

;



The old 
axioms 
had to be 
refined 
a bit in
order 
to avoid
Russell's
Paradox
while
still
allowing
the same
general
kind of
reasoning.
After all,
Russell's
Paradox
is just a
shade 
away from
Cantor's
diagonal
argument. 

; ;



You could think
of  mathematics as
a beautiful mansion,
but some of  the back
rooms need repairs 
from time to time.
The infinite gallery
is a wing of  the
mansion, but maybe
they are not selling 
tickets on the day 
you visit.

;

Maybe
there 
are
hidden
problems
with 
some
of  the 
axioms
which
provide
for the
existence
of  
infinite
sets.

;



NO
SOLICITORS

When I think about
this possibility, I
imagine that the
number line is 
a long and
dusty road that
ends in a shack...

NO
SOLICITORS

and there is some wild-eyed
dude out in front who tells visitors 
that they can't go on because the
numbers have run out.

; ;



;

One of  my friends suggests that
maybe it is more like the number line
gets overrun with weeds and somehow
you lose your way as you walk along.

;



Or maybe the set of  counting
numbers exists but there is
some problem with the power set 
axiom and really it is not possible
to form the set of  all binary strings.
Maybe if  you try to follow all those
branching paths out to their ends ...

;

some of  them
trail off  into
nothing or 
get hopelessly
entangled.

;



I'm not sure if  I take these analogies seriously,
but I can imagine that we might have to give
up some of  our axioms in light of  new ideas
and insights as we extend our intellectual range.
    

; ;



As for myself, I have to admit that I
don't get into the back rooms too often

I am less interested in foundations 
than I am in shapes and patterns. 

It seems to me that the vivid 
mathematical patterns I like ...

;

have a life
of  their 
own ...

;



... and 
would
find their 
expression
regardless 
of  the
axioms.

;

I agree with what the great 
Henri Poincare said over 
a century ago about the 

foundations of  mathematics:

"Though the source
be obscure, still

the river flows on."

;



So, ARE THERE
infinitely many
sizes of  infinity?
Well, formally
speaking, all I
can tell you
is that ...

;
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First Order Logic

this result follows logically from 
commonly accepted axioms 

of  set theory,  such as the 
Zermelo-Fraenkel axioms.

;



;

But, informally speaking,
I think that ....

;



95

;

infinity is
everywhere
we look.

;


