
1 Translation Surfaces

These notes are a strict subset of Chapter 17 of my book, Mostly Surfaces,
lightly edited to make them self-contained. I’m not going to talk about the
Gauss Bonnet Theorem or billiards in class, but I kept this stuff in because
I thought that some people might like it.

1.1 Sectors and Euclidean Cones

A sector inR
2 is the closure of one of the 2 components ofR2−ρ1−ρ2, where

ρ1 and ρ2 are two distinct rays emanating from the origin. For example, the
nonnegative quadrant is a sector. The angle of the sector is defined as the
angle between ρ1 and ρ2 as measured from inside the sector. For instance,
the angle of the nonnegative quadrant is π/2.

Two sectors in R
2 can be glued together isometrically along one of their

edges. A Euclidean cone is a space obtained by gluing together, in a cyclic
pattern, a finite number of sectors. The angle of the Euclidean cone is the
sum of the angles of the sectors. The cone point is the equivalence class
of the origin(s) under the gluing. The cone point is the only point which
potentially does not have a neighborhood locally isometric to R

2.
Note that two isometric Euclidean cones might have different descriptions

– e.g., R2 can be broken into 4 quadrants or 8 sectors of angle π/4.

Exercise 1. Prove that two Euclidean cones are isometric if and only if
they have the same angle.

Exercise 2. Define the unit circle in a Euclidean cone to be the set of
points which are 1 unit away from the cone point. On the cone of angle 4π
find the shortest path between every pair of points on the unit circle. This
problem breaks down into finitely many cases, depending on where the points
are located.

Exercise 3. Let C be a Euclidean cone, with cone point x. Say that a
vector field on C−x is parallel if an isometry carrying any open set of C−x
into R

2 carries the vector field to a constant vector field. Prove that C − x
has a parallel vector field in a neighborhood of x if and only if the cone angle
of C is a multiple of 2π. (Hint : Unroll C into the plane and watch the vector
field as you go once around the cone point.)
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1.2 Euclidean Cone Surfaces

A surface is oriented if it does not contain any Möbius bands. For ease of
exposition, we only consider oriented surfaces.

Say that a compact oriented surface Σ is a Euclidean cone surface if it
has the following two properties:

• Every point p ∈ Σ has a neighborhood which is isometric to a neigh-
borhood of the cone point in a Euclidean cone of angle θ(p).

• We have θ(p) = 2π for all but finitely many points.

The points p, where θ(p) 6= 2π, are called the cone points . The quantity

δ(p) = 2π − θ(p)

is called the angle deficit . So, there are only finitely many points with nonzero
angle deficit, and these deficits could be positive or negative.

Here are two examples:

• Let P be a convex polyhedron in R
3. Then ∂P is a Euclidean cone

surface. The metric on ∂P is the intrinsic one: the distance between
two points is the length of the shortest curve which remains on ∂P and
joins the points.

• Let P1, . . . , Pn be a finite union of polygons. Suppose that these poly-
gons can be glued together, isometrically along their edges, so that the
result is a surface. Then the surface in question is a Euclidean cone
surface if it is given its intrinsic metric, i.e., the shortest path metric.

Amazingly, every example of type 2 is also an example of type 1 provided
that the underlying surface is a sphere and all the angle deficits are positive.
This result is known as the Alexandrov Theorem. (To make this strictly true
we have to allow for the possibility that P is contained in a plane in R

3.)
One interesting open problem is to determine the combinatorics of the convex
polyhedron you get, based on the intrinsic geometry of the cone surface.

1.3 The Gauss–Bonnet Theorem

Here is combinatorial version of the Gauss–Bonnet Theorem:
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Theorem 1.1 If S is a compact cone surface, then

∑

p

δ(p) = 2πχ(S).

Here the sum is taken over all angle deficits.

Proof: A Euclidean triangle on a Euclidean cone surface S is a region isomet-
ric to (you guessed it) a Euclidean triangle. For instance, on the boundary of
a tetrahedron, there are 4 obvious maximal Euclidean triangles. Two trian-
gles on a cone surface intersect normally if they are either disjoint or share
a vertex or share an edge. A triangulation of S is a decomposition of S into
finitely many triangles, such that each pair of triangles intersects normally.

Exercise 4. Prove that every Euclidean cone surface has a triangulation.

Choose a triangulation of S such that the triangles in the triangulation
are Euclidean. Let T1, . . . , TF be the list of triangles in the triangulation.
Each Ti has associated to it three angles ai, bi, ci, with ai+ bi+ ci = π. Since
we picked a Euclidean triangulation, the cone points are all at vertices of the
triangles, and so

∑

p

δ(p) = 2πV − (
F∑

i=1

ai +
F∑

i=1

bi +
F∑

i=1

ci).

In other words, we add up all the angles and see how the total sum differs
from the expected 2πV . Given that ai + bi + ci = π, we have

∑

p

δ(p) = 2πV − πF = 2π(V − F/2) =∗ 2π(V + F − E) = 2πχ(S).

The starred equality has the following explanation. For each triangle we
get 3 edges, but each edge is shared between exactly 2 triangles. That is,
E = 3F/2 = F + F/2. Hence −F/2 = F − E. ♠

For comparison, we mention that the differential geometric version of
the Gauss–Bonnet Theorem says that the total curvature of a surface S is
2πχ(S), where χ is the Euler characteristic of S. One can view each version
as the limit of the other.

3



1.4 Translation Surfaces

A translation surface is a Euclidean cone surface which admits a parallel vec-
tor field which is defined everywhere except at the cone points. By Exercise
3 above, the cone angles of a translation surface are all integer multiples of
2π.

At first it might seem that a Euclidean surface whose cone angles are
all integer multiples of 2π must admit a parallel vector field, but this is
not so. As Rick Kenyon pointed out to me, M. Troyanov constructed some
counter examples. See “Les surfaces euclidienne a singularites coniques”, by
M. Troyanov, published in Enseign. Math (2) 32 (1986), 76-94. You might
like to try to find some examples yourself without looking up Troyanov’s
article.

Recall that a gluing diagram for a surface is a list of finitely many poly-
gons, together with a recipe for gluing together the sides of the polygon in
pairs.

Lemma 1.2 Suppose that S is a flat cone surface obtained from a gluing

diagram in which the two sides in each glued pair are parallel. Then S is a

translation surface.

Proof: Once we show that S is orientable, we will know that S is a cone
surface. On each polygon, we consider the standard pair of vector fields V1

and V2. Here Vj consists of vectors parallel to the basis vector ej. Given the
nature of the gluing maps, the vector fields piece together across the edges
to give parallel vector fields V1 and V2 defined on the complement of finitely
many points.

We first show that S is orientable. If S is not orientable, then S contains
a Möbius band M . By shrinking M if necessary, we can arrange that M lies
entirely in the region where both V1 and V2 are defined. But then we can
define a continuous pair of linearly independent vector fields on a Möbius
band. This is easily seen to be impossible. Hence S is oriented.

It now follows from definition that S is a translation surface. ♠

In light of Lemma 1.2, the surface obtained by gluing (with translations)
the opposite sides of a regular 2n-gon is a translation surface.

Translation Principle. Whenever we consider gluing diagrams for trans-
lation surfaces, in which more than one polygon is involved, we always think
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of the polygons in the plane as being pairwise disjoint. How the polygons sit
in the plane is really not so important, in the following sense. Suppose that
P1, . . . , Pn are the polygons involved in a gluing diagram for some surface.
Suppose that Q1, . . . , Qn are new polygons, such that Qk is a translation of
Pk for all k, and the pattern of gluing for the Q’s is the same as the pattern of
gluing for the P s. Then the two resulting surfaces are canonically isometric.
The canonical isometry is obtained by piecing together the translations that
carry each Pk to Qk. We mention this rather obvious principle because it
guarantees that certain constructions, which seem based on arbitrary choices,
are actually well defined independent of these choices.

1.5 Billiards and Translation Surfaces

Let P be a Euclidean polygon. A billiard path in P is the motion taken
by an infinitesimal frictionless ball as it rolls around inside P , bouncing off
the walls according to the laws of inelastic collisions: the angle of incidence
equals the angle of reflection; see Figure 1 below. We make a convention that
a path stops if it lands precisely at a vertex. (The infinitesimal ball falls into
the infinitesimal pocket.)

The billiard path is periodic if it eventually repeats itself. Geometrically,
a periodic billiard path corresponds to a polygonal path Q with the following
properties:

• Q ⊂ P (that is, the solid planar region).

• The vertices of Q are contained in the interiors of the edges of P .

• Q obeys the angle of incidence rule discussed above.

Figure 1. Polygonal billiards
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Exercise 5. Find (with proof) all the examples of periodic billiard paths
in a square which do not have self-intersections. So, the path Q has to be
embedded.

The polygon P is called rational if all its angles are rational multiples of
π. For instance, the equilateral triangle is a rational polygon.

In this section I will explain how to associate a translation surface to a
rational polygon. This is a classical construction, attributed by some people
to A. Katok and A.N. Zemylakov. The geometry of the translation surface
encodes many of the features of billiards in the polygon.

For each edge e of P there is a reflection Re in the line through the origin
parallel to e. Like all reflections, Re has order 2. That is, Re ◦ Re is the
identity map. Let G be the group generated by the elements R1, . . . , Rn.
Here Rj stands for Rej and e1, . . . , en is the complete list of edges. If ei
and ej are parallel, then Ri = Rj. If P is a rational polygon then, after we
suitably rotate P , there is some N such that ej is parallel to some Nth root
of unity. But then G is a group of order at most 2N . In particular, G is a
finite group.

For each g ∈ G, we define a polygon

Pg = g(P ) + Vg. (1)

Here Vg is a vector included so that all the polygons {Pg| g ∈ G} are dis-
joint. Thanks to the Translation Principle, the surface we will produce is
independent of the choices of the translation vectors.

To form a gluing diagram, we declare that every two edges of the form

e1 = g(e) + Vg, e2 = gr(e) + Vgr, r = Re. (2)

are glued together by a translation. Here e is an arbitrary edge of P . Since
gr(e) = g(e), the edges e1 and e2 are parallel. Hence, it makes sense to glue
them by a translation. Note also that (gr)r = g. So, our instructions tell us
to glue e1 to e2 if and only if they tell us to glue e2 to e1. Let P̂ be the space
obtained from the gluing diagram. Since the edges are glued in pairs, P̂ is a
surface. By Lemma 1.2, P̂ is a translation surface.

Here we work out the example where P is an isosceles triangle with small
angles π/8. In this case, the group G has order 16 and our surface will be
made from 16 isometric copies of P .
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Figure 2. Gluing diagram for a translation surface

Figure 2 shows the resulting gluing diagram. We have chosen the trans-
lations so that all the long sides have already been glued together. Also, we
have colored the triangles alternately light and dark so as to better show the
pattern. The numbers around the outside of the figure indicate the gluing
pattern for the short edges.

The gluing pattern in Figure 2 has an alternate description. Take two
regular Euclidean octagons and glue each side of one to the opposite side
of the other. The smaller inset picture in Figure 2 shows one of the two
octagons. The other octagon is splayed open, and made by gluing together
the pieces that are outside the octagon shown.

Let P̂ be the translation surface constructed above. A path γ ∈ P̂ is
called straight if every point p ∈ γ has a neighborhood U with the following
property: Any isometry between U and a subset of R2 maps γ ∩ U to a
straight line segment. (For concreteness we can always take U to be a little
Euclidean ball centered at p.) There is an obvious map π : P̂ → P . We
just forget the group element involved. This forgetting respects the way we
have done the gluing and so π is a well-defined continuous map from P̂ to
P . The map π is somewhat like a covering map, except that it is not locally
a homeomorphism around points on the edges or vertices.

Lemma 1.3 Suppose γ̂ is a straight path on P̂ which does not go through

any vertices of P̂ . Then γ = π(γ̂) is a billiard path on P .

Proof: By construction γ is a polygonal path whose only vertices are con-
tained in the interiors of edges of P . We just have to check the angle incidence
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condition at each vertex. You can see why this works by building a physical
model: Take a piece of paper and make a crease in it by folding it in half
(and then unfolding it.) Now draw a straight line on the paper which crosses
the crease. This straight line corresponds to a piece of γ̂ which crosses an
edge. When you fold the paper in half you see the straight line turn back at
the crease and bounce like a billiard path. This folded path corresponds to
γ. ♠

The converse is also true:

Lemma 1.4 Suppose that γ is a billiard path on P . Then there is a straight

path γ̂ on P̂ such that π(γ̂) = γ.

Proof: We use the fact that the map π is almost a covering map. Think of
γ as a parametrized path γ : R → P , with γ(0) contained in the interior of
P . We define γ̂(0) to be the corresponding interior point of Pg, where g ∈ G
is any initial element of G we like. We can define γ̂(t) until the first value
t1 > 0 such that γ(t1) lies on an edge, say e1, of P . But then we can define γ̂
in a neighborhood of t1 in such a way that γ̂(t1 − s) ∈ Pg and γ̂(t+ s) ∈ Prg

for s > 0 small, where r is reflection over side e1. If you think about the
folding construction described in the previous lemma, you will see that the
straight path γ̂(t1− ǫ, t1+ ǫ) projects to γ(t1− ǫ, t1+ ǫ). Here ǫ is some small
value which depends on the location of γ(t1). We can define γ̂ for t > t1
until we reach the next time t2 such that γ(t2) lies in an edge of P . Then we
repeat the above construction for parameter values in a neighborhood of t2.
And so on. This process continues indefinitely, and defines γ̂ for all t ≥ 0.
Now we go in the other direction and define γ̂ for all t < 0. ♠

Note that γ̂ is a closed loop in P̂ if and only if γ is a periodic billiard
path. Thus, the closed straight loops in P̂ correspond, via π, to periodic
billiard paths in P .

Exercise 6. Suppose that P is the regular 7-gon. What is the Euler char-
acteristic of P̂? As a much harder problem, can you find a formula for the
Euler characteristic of P̂ as a function of the angles of P?

Exercise 7. The same construction can be made when P has some irra-
tional angles. What do you get if P is a right triangle with the two small
angles irrational multiples of π?
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