
Planar Tilings and Wallpaper Groups:

These are some notes I made for an undergraduate class year. One of the
topics was planar tilings. I thought that some of you might like the notes.
The notes cover some of the things that I said on the first day, and also some-
things for the second lecture. I also slightly modified them for this class. Feel
free to ignore the exercises.

Isometries: A metric space is a set X equipped with a distance function
d : X ×X → R that satisfies the following rules.

• d(x, y) ≥ 0 with equality if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ X.

• d(x, y) + d(y, z) ≥ d(x, z) for x, y, z ∈ X.

A metric space is a generalization of Euclidean space. In Euclidean space,
the metric is given by

d(x, y) =
√

(x− y) · (x− y).

The symbol (·) is the dot product. The reason I’m bringing general metric
spaces is that it is a good context in which to define an orbifold. I’ll talk
more about that below.

In general, an isometry between metric spaces X and Y is a bijection
T : X → Y which respects distances:

dY (T (x), T (y)) = dX(x, y).

Here dX is the distance on X and dY is the distance on Y . In case X = Y it
is usually said that f is an isometry of X. The fixed point set of an isometry
T : X → X is the set of p ∈ X such that T (p) = p.

Exercise 1: Prove that the fixed point set of an isometry of R2 is either the
empty set, a point, a line, or all of R2.

There are 4 special kinds of isometries of R2:

1. translations: These have the form T (v) = v + v0 for some vector v0.
Their fixed point set is empty.
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2. reflections: These are maps whose fixed point set is a line. They act
by reflecting trough the fixed line.

3. rotations: These are maps whose fixed point set is a single point.

4. glide reflections These are maps which are the composition of a re-
flection in a line L and translation by a nonzero amount along L. These
are orientation-reversing maps having no fixed point set.

Exercise 2: Prove that the composition of a rotation and a translation is
again a rotation.

Tilings: A general tiling is a map f : R
2 → C, where C is some set.

This looks like a crazy general definition, but what is going on is that you
should think of C as a set of possible colors. If f(x) = c ∈ C if means that
the value c is the color of the point x.

A symmetry if the tiling f is an isometry T : R2 → R
2 such that

f ◦ T = f.

In other words, T moves the plane in such a way that it does not disturb the
colors. The points x and T (x) always get the same color. If T is a symmetry
of the tiling then so is T−1. Also, if S and T are symmetries of the tiling,
then so is S ◦ T . In short, the set of symmetries of a tiling forms a group
with respect to composition.

Let f be a tiling and let G be the group of symmetries of f . The orbit of
a point x ∈ R

2 is the set
⋃

g∈G

g(x).

In other words, you move x around by the entire group. Intuitively, the tiling
looks the same at each point in the orbit.

The tiling is called a wallpaper tiling if there is a polygon U in the plane
such that

• Every orbit intersects U .

• An orbit can only intersect the interior of U once.

The polygon U is called a unit or a fundamental domain. It is meant to be
a solid (i.e. filled-in) polygon and not just the boundary. (Some people in
the audience will object to this definition, but let it stand.)
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Note that a wallpaper tiling might have more than one unit. The group
of symmetries of a wallpaper tiling is called a wallpaper group.

Exercise 3: Give an example of a wallpaper tiling which has units U1 and U2

which are not isometric to each other. That is, they have genuinely different
shapes. Also, give an example of a wallpaper tiling in which all units are
isometric to each other.

In a wallpaper tiling, the tiling group gives a way to kind of fold up the
unit into a new space. The rule is that if two points on the boundary of the
unit U are in the same orbit, these points should be glued together. For in-
stance, one of the wallpaper tilings is the one in which there is just translation
symmetry and the unit U is a square. Corresponding points on opposite sides
of U are glued together because they belong to the same orbit. The resulting
space (usually called the quotient space) is a torus. Informally, an orbifold

is any space you get by folding up the unit corresponding to a walpaper tiling.

Orbifolds: It is tricky to define orbifolds straight away, so I’m first go-
ing to define a somewhat looser kind of object. An orbifold will turn out to
be this kind of object, provided that it has additional properties.

First of all we’re going to talk about several kinds of metric spaces.

1. The plane: R2.

2. The upper half plane in R
2. These are all the points (x, y) with y ≥ 0.

3. A positive sector in R
2: These are all the points of the form rV + sW

where V and W are linearly independent vectors having positive dot
product and r, s are non-negative real numbers.

4. A positive cone: This is the space obtained by gluing together two
positive sectors along their common boundaries. This space is sort of
like an ice-cream cone.

A ball in a metric space is the set of points within r of a given point.
That is, all the balls in a metric space X have the form {q| d(p, q) < r} for
some p ∈ X and some r > 0. The balls in R

2 are just open disks.

Exercise 4: Draw pictures of the kinds of spaces mentioned above: the
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half plane, positive sectors, and positive cones. Also, draw enough pictures
of balls in these spaces so that you see what they look like.

Now for one of the main definitions: A mirrored flat cone surface is a
metric space X which has the following property: There is some ǫ > 0 such
that every ball of radius ǫ in X is isometric to a ball in one of the spaces
mentioned above. An orbifold is a mirrored flat cone surface that comes
from taking a unit for a wallpaper tiling and making identifications on the
boundaries. Here are the 17 examples.

Example A1: The mirrored square. The metric space is just a square.
Small balls in the interior are isometric to balls in the plane. Small balls
centered at points on the edge are isometric to balls in the upper half plane.
Small balls centered at the corner points are isometric to balls centered at the
apex of a right angled sector. The reason why the edges are called mirrored

is that in the corresponding wallpaper tilings the unit is a square and the
tiling has reflection symmetry across each edge. So, in the tiling, the edges
function as mirrors.

Example A2: The mirrored equilateral triangle.

Example A3: The mirrored 45− 45− 90 triangle.

Example A4: The mirrored 30− 60− 90 triangle.

Example B1: The doubled square: Take two copies of the square and
glue them along their boundary. Every small is isometric either to a ball in
the plane or to a ball in a cone.

Example B2: The doubled equilateral triangle.

Example B3: The doubled 45− 45− 90 triangle.

Example B4: The doubled 30− 60− 90 triangle.

Example C1: The mirrored cylinder.

Example C2: The mirrored Mobius band.

4



Example D1: The torus. This is a square with the opposite sides iden-
tified straight across. In this space, every small ball is isometric to a ball in
the plane.

Example D2: The Klein bottle. This is a square with the vertical sides
identified straight across and the horizontal sides identified with a twist, as
shown in Figure 1. In this space, every small ball is isometric to a ball in the
plane.

Example D3: The projective plane. This is a square with the vertical
sides identified with a twist and the horizontal sides identified with a twist.

torus
Klein

bottle

proj.

plane

Figure 1: Torus, Klein bottle, Projective plane

Example E1: The 2-fold rotational quotient of the mirrored square. Take
half the mirrored square and glue up the bottom edge as indicated in Figure 2.

Example E2: The 4-fold rotational quotient of the mirrored square. See
the middle part of Figure 2.

Example E3: The 3-fold rotational quotient of the mirrored equilateral
triangle. See the right part of Figure 2.

Example E4: The reflection quotient of the doubled square. This is sort
of like a taco with the top edge mirrored. This one is hard to draw. Basi-
cally, start with the doubled square, then cut it in half vertically through the
middle. The place where you cut is considered mirrored.

Figure 2: The E-series of orbifolds
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Exercise 5: Take 3 examples above (from different series) and find a tiling
which gives rise to the example you picked.

Exercise 6: Any triangle counts as a mirrored flat cone surface. Show
that the only orbifolds like this are the ones in the A-series. In other words,
you can’t have a wallpaper tiling whose unit is a triangle, such that the tiling
has reflection symmetries across all the edges of the triangle.

Exercise 7: Go around campus and take 3 pictures of things which (if
infinitely extended) would be wallpaper tilings. Your goal is to pick 3 things
which have different underlying orbifolds.
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