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1 Euclid’s Postulates

Hyperbolic geometry arose out of an attempt to understand Euclid’s fifth
postulate. So, first I am going to discuss Euclid’s postulates. Here they are:

1. Given any two distinct points in the plane, there is a line through them.

2. Any line segment may be extended to a line.

3. Given any point and any radius, there is a circle with that radius cen-
tered at that point.

4. All right angles are equal to one another.

5. Suppose that you have two lines L1 and L2 and a third lineM . Suppose
that M intersects L1 and L2 at two interior angles whose sum is less
than the sum of two right angles on one side. Then L1 and L2 meet on
that side. (See Figure 1.)

M

L1

L2

Figure 1: Euclid’s fifth postulate.
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Euclid’s fifth postulate is often reformulated like this: For any line L and
any point p not on L, there is a unique line L′ through p such that L and
L′ do not intersect – i.e., are parallel. This is why Euclid’s fifth postulate is
often called the parallel postulate.

Euclid’s postulates have a quaint and vague sound to modern ears. They
have a number of problems. In particular, they do not uniquely pin down
the Euclidean plane.

A modern approach is to make a concrete model for the Euclidean plane,
and then observe that Euclid’s postulates hold in that model. So, from a
modern point of view, the Euclidean plane is R2, namely the set of ordered
pairs of real numbers. The elements of R2 are called points . A line in R2 is
defined to be the solution set to a linear equation of the form

{(x, y)| Ax+ By + C = 0},

where A,B,C ∈ R. The distance between two points (x1, y1) and (x2, y2) is
defined to be

√

(x2 − x1)2 + (y2 − y1)2,

and this distance makes R2 into a metric space. Suppose that two lines
intersect at a point p. Let C be a small circle centered at p. The two lines
divide C into 4 arcs, having length A and B. The angles between the two
lines are πA/(A+B) and πB/(A+B). These numbers don’t depend on the
radius of the circle chosen.

Euclid’s postulates hold in the above model of the Euclidean plane. How-
ever, they also hold when we make the same definitions, except that we use
Q ∩ R in place of R. here Q ∩ R is the set of real number solutions to
polynomials with integer coefficients.

For about 2000 years, mathematicians worked with Euclid’s postulates,
but many felt uneasy about the parallel postulate. It seemed more compli-
cated than the others. So, a major unsolved problem arose: Deduce the fifth
postulate from the other four. This problem was unsolved for about 2000
years!

2 The Hyperbolic Plane

In the early part of the 1800s, Three mathematicians, Janos Bolyai, Nicolai
Lobachevski, and Karl Gauss, independently discovered that the parallel
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postulate did not follow from the other of Euclid’s postulates. These three
mathematicians found models in which the first four postulates held but the
fifth did not. Their models, all isomorphic to each other, are now known as
the hyperbolic plane.

The way I have stated the history of this thing is a vast simplification of
a complicated story. There is a priority dispute. Gauss never published his
own account, because he felt that the world was not yet ready for hyperbolic
geometry. Knowing Gauss, who was possibly the smartest being ever to
walk the planet and also a complete hard-ass, his claim seem very plausible.
Also, Gauss knew/invented so much other mathematics (e.g. hypergeometric
functions) which fit very naturally into the hyperbolic world.

So, here is a model for a hyperbolic plane: As a set, it consists of complex
numbers x+ iy with y > 0. Geometrically, the hyperbolic plane is the open
upper half plane – everything above the real axis. This set is denoted H2.

Geodesics: A geodesic in H2 is either a semicircle meeting the real axis
at right angles, or a vertical ray emanating from a point on the real axis. See
Figure 2. (Since the word line is already taken, we’re using a different word
for the objects which play the role of lines in the hyperbolic plane.)

Figure 2: geodesics and angles in the hyperbolic plane

Angle: The angle between two geodesics is defined to be the angle between
the tangents to the geodesics at their intersection point. Figure 2 shows two
examples.
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Distance: Let p and q be two points in H2. Let o and r denote the points
where the geodesic meets the real axis, as in Figure 3.

o

p q

r

Figure 3

We define

distance(p, q) =

∣
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∣

∣

∣

∣

∣

. (1)

Here |o − p| computes the Euclidean distance from o to p. Likewise for the
other terms.

When p and q lie on the same vertical segment, we interpret r = ∞. In
this case, the second two factors cancel out, and Equation 1 is interpreted as

distance(p, q) =

∣

∣

∣

∣

∣

ln
|o− q|
|o− p|

∣

∣

∣

∣

∣

. (2)

To see that Equation 2 is really a limiting case of Equation 1, consider the
case when p and q are on a geodesic which is a very large Euclidean circle.
In this case, r is an enormous real number, and |r−p| ≈ |r−q|. So, the ratio
of these two terms is almost 1. In the limit, these terms cancel out exactly.

It is pretty clear that our notion of distance satisfies the first two metric
space axioms. That is,

1. d(p, q) ≥ 0 with d(p, q) = 0 if and only if p = q.

2. d(p, q) = d(q, p) for all p and q.

The distance also satisfies the triangle inequality, for reasons I will explain
below.

3 Symmetries

A symmetry of the metric space (X, d) is a bijection f : X → X which
preserves the distance d. That is,

d(p, q) = d(f(p), f(q)),
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for all p, q ∈ X. For example, the map f(x, y) = (x, y)+ (1, 0) is a symmetry
of the Euclidean plane. Euclid’s fourth postulate is really saying that the
Euclidean plane is totally symmetric. In other words, if A1, A2 are a pair of
perpendular lines, and B1, B2 are another pair of perpendicular lines, then
there is a symmetry f such that f(A1) = B1 and f(A2) = B2. In other
words, you can find symmetries which move any point to any other point,
and which rotate by any angle. This is sometimes summarized by saying
that the Euclidean plane is homogeneous and isotropic.

The hyperbolic plane also is homogeneous and isotropic. In order to
explain this, I have to say what are the symmetries of the hyperbolic plane.

Lemma 3.1 Let t be any real number. The map f(z) = z+ t is a symmetry

of the hyperbolic plane.

Proof: To see this, we will use Equation 1. If we replace p by p′ = p+ t and
q by q′ = q+ t then o is replaced by o′ = o+ t and r is replaced by r′ = r+ t.
But then |o′ − p′| = |o− p|, etc, so we get d(p′, q′) = d(p, q). ♠

Lemma 3.2 Let t be a positive real number. The map f(z) = tz is a sym-

metry of the hyperbolic plane.

Proof: Here o, p, q, r are replaced by to, tp, tq, tr, and we get the same an-
swer in Equation 1 after making the replacements. ♠

Our last two results show that H2 is homogeneous, because we can map
any point to any other point using a combination of the maps in the above
two lemmas.

It turns out that H2 is also isotropic, but this takes a little more work
to prove. The next series of lemmas will establish this fact. These lemmas
are all about the map f(z) = −1/z.

Lemma 3.3 The map f(z) = −1/z is a bijection of the hyperbolic plane.

Proof: If p = x+ iy with y > 0, then

f(p) = −1/p =
−x+ iy√
x2 + y2

.
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The imaginary part of f(p) is positive. So, f maps H2 to itself. Note that
f(f(p)) = p, so that f must be a bijection. ♠

Here is the key lemma, the result which makes hyperbolic geometry work.

Lemma 3.4 The map f(z) = −1/z maps hyperbolic geodesics to hyperbolic

geodesics.

Proof: We will consider the case when the geodesic is a circle which is not
centered at 0 and does not contain 0. The other cases are limiting cases, and
the result for them follows by taking limits. If S is such a circle and a is any
real constant, f(aS) = (−1/a)f(S). Hence, the result is true for S if and
only if it is true for aS. So, it suffices to consider the case when S is centered
at the point 1. The equation for S is |z − 1| = r, where r 6= 1.

Let w = f(z) = −1/z. The endpoints of S are 1 + r and 1 − r, so the
endpoints of f(S) are −1/(1 + r) and −1/(1− r). We guess that the center
of f(S) is the average of these two points:

c =
1

2

( −1

1 + r
+

−1

1− r

)

.

Half the distance between the endpoints of f(S) is

R =
1

2

( −1

1 + r
− −1

1− r

)

.

So, to finish the proof, we just have to verify that |w − c| = R for all z ∈ S.
What amounts to the same thing is showing that

(w − c)(w − c)−R2 = 0.

The left hand side expands out to

|z − 1|2 − r2

(r2 − 1)|z|2 ,

which is 0. This completes the proof. ♠

Lemma 3.5 f(z) = −1/z is a symmetry of the hyperbolic plane.
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Proof: We have already seen that f is a bijection of H2 and maps geodesics
to geodesics. Therefore, if we replace p by f(p) and q by f(q), then we replace
o by f(o) and r by f(r). We compute

|(−1/o)− (−1/p)| = |o− p|
|o||p| ,

and similarly for the other terms. But then

|f(o)− f(q)||f(p)− f(r)|
f(o)− f(p)||f(q)− f(r)| =

|o− q||p− r|
|o− p||q − r| ×

|o||q||p||r|
|o||q||p||r| =

|o− q||p− r|
|o− p||q − r| .

But this means that Equation 1 does not change when we make the substi-
tutions. ♠

Lemma 3.6 Let f(z) = −1/z. Let C be any circle in the plane not contain-

ing the origin. Then f(C) is another circle.

Proof: Note that f(aC) = (−1/a)f(C). So, we can rotate the picture so
that C is centered on the real axis. But then C is the double of a hyperbolic
geodesic. That is, C = C+ ∪ C−, where C+ is a hyperbolic geodesic and C−

is the reflection of C+ in the real axis. But then f(C+) is another hyperbolic
geodesic and by symmetry f(C−) is the reflection of f(C+). Therefore f(C)
is the union of two semi-circles – i.e. a circle. ♠

Lemma 3.7 Let f(z) = −1/z. Then f preserves angles between geodesics

in the hyperbolic plane.

Proof: We have to consider the matrix of partial derivatives of f . Let’s call
this matrix df . The map f preserves angles between curves provided that df
is the product of a rotation and a dilation. If this was not the case, then f
would map tiny circles to curves which were very close to tiny non-circular
ellipses. Since f maps circles to circles, df must be the product of a dilation
and a rotation. ♠

Lemma 3.8 g(z) = −z is a symmetry of the hyperbolic plane.
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Proof: We have g(x+ iy) = −x+ iy. Geometrically, g is just a reflection in
the imaginary axis. The rest of the proof in this case is just like what we’ve
done several times already. ♠

Lemma 3.9 h(z) = 1/z is a symmetry of the hyperbolic plane.

Proof: The map h is a composition of the map f(z) = −1/z and g(z) = −z,
and the composition of symmetries is again a symmetry. ♠

Lemma 3.10 Let γ be any geodesic in H2. There is a symmetry r such that

r(p) = p for all p ∈ γ and r ◦ r is the identity. That is, there is a mirror

reflection symmetry which fixes γ.

Proof: Consider first the case when γ is a vertical ray. There is a symmetry
of the form f(z) = z + t so that f(γ) is the vertical ray through the origin.
Then f ◦ g ◦ f−1 is the desired symmetry. Here g(z) = −z is the symmetry
considered above.

Now consider the case when γ is a semicircle. There is a symmetry of the
form f(z) = az + b so that f(γ) is the semicircle contained in the unit circle
|z| = 1. Then f ◦ h ◦ f−1 is the desired symmetry. Here h(z) = 1/z is the
symmetry considered above. ♠

Lemma 3.11 All the symmetries so far considered preserve angles between

geodesics.

Proof: The maps f(z) = z+ t and f(z) = az and f(z) = −z are either sym-
metries of the Euclidean plane or dilations of the Euclidean plane. Therefore,
they all preserve angles between curves. Also, we proved this explicitly for
the map f(z) = −1/z. The other maps considered are compositions of the
ones we’ve just talked about. ♠

Lemma 3.12 Let p be any point in the hyperbolic plane, and let θ be any

angle. Then there is a hyperbolic symmetry which fixes p and rotates by θ
about p.
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Proof: We can find geodesics C1 and C2 which intersect at p. Let R1 and
R2 be the reflections through C1 and C2. Both R1 and R2 fix the point p,
since p lies on both C1 and C2. The composition R = R1R2 rotates around
p by 2α, where α is the smaller of the two angles between C1 and C2. So. if
we take α = θ/2, we get the desired result. ♠

Now we know that H2 is isotropic: We can find a symmetry which fixes
any point and rotates by that angle around the point.

4 Satisfying the Postulates

Now let’s go through Euclid’s postulates for the hyperbolic plane.
First Postulate: Suppose that p and q are two points in the hyperbolic
plane. If p and q lie on the same vertical ray, then this ray is is the geodesic
connecting them. Otherwise, one can construct the geodesic through p and q
as follows: Draw the segment pq, then take the perpendicular bisector to this
segment. The perpendicular bisector intersects the real axis at the center of
the desired geodesic. See Figure 4.

p q

Figure 4: Constructing the geodesic containing p and q

Second Postulate: Let A be an arc of a geodesic. If A is a vertical segment,
we just take the vertical ray containing A. If A is an arc of a circle, we just
extend A to be the whole semicircle.

Third Postulate: The distance formula in Equation 1 shows that the real
axis is infinitely far from every point in H2. So, suppose we start at a point
p. Then, in each direction, we can move outward by r units along a geodesic
going through p in that direction. This produces for us the circle of radius r
about p. Amazingly, the circles in H2 are actually Euclidean circles as well.
I’ll explain this in the next section.
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Fourth Postulate: This follows from the fact that H2 is homogeneous
and isotropic. Suppose that A1, A2 are a pair of perpendicular geodesics and
so are B1, B2. We can find a symmetry which maps A1∩A2 to B1∩B2. Call
this point p. Let θ be the angle between A1 and B1. We can then find a
symmetry which rotates about p by θ. The composition of our two symme-
tries fixes p and maps A1 to B1. But, all these maps preserve angles, so our
symmetry must map A2 to B2 as well.

Figure 5 shows that the fifth postulate fails. There are many lines through
the point p which do not intersect the line L.

Lp

Figure 5: Parallel postulate fails.

5 The Shapes of Circles

In this section I will prove that the cirles in H2 are round circles. Let p ∈ H2

be some point. Let L1 and L2 be any geodesics through p.

Lemma 5.1 For any r > 0 there is a Euclidean circle C which meets L1

and L2 at right angles and has a point which is hyperbolic distance r from p.

Proof: Using symmetries, we can assume that p = i and L1 is the vertical
ray through p. We consider all the circles which intersect L1 at the point ie

r,
a point on L1 which is r away from i. We also insist that L1 is a diameter
of C, so that C intersects L1 at right angles. We now adjust the radius of
C until it intersects L2 in a right angle at one of the intersection points. By
symmetry, C intersects L2 at right angles at both intesection points. ♠

Lemma 5.2 C is also a hyperbolic circle.
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Proof: Let R1 and R2 be the reflections in L1 and L2. Both R1 and R2

map Euclidean circles to Euclidean circles and also preserve angles. Note
that R1(C) is another circle which meets L1 at the same two points, and is
perpendicular to L1 at those points. But this forces R1(C) = C. Similarly
R2(C) = C. This means that R1R2(C) = C. Suppose that the angle be-
tween L1 and L2 is an irrational multiple of π. This means that (R1R2)

n,
for various values of n, rotates through a dense set of possible angles. But
then there is a dense set of points on C which are all the same hyperbolic
distance from p. But then all points on C are the same hyperbolic distance
from p. This means that C is a hyperbolic circle around p. ♠

Now we know that any point on L1 is contained in a hyperbolic circle
that is also a Euclidean circle. This accounts for all the hyperbolic circles.
Therefore, every hyperbolic circle is a Euclidean circle.

6 The Triangle Inequality

Now I want to take care of one piece of unfinished business. I haven’t yet
shown that the hyperbolic distance satisfies the triangle inequality. That is,
suppose we have 3 points p, q, r. We want to show that

d(p, q) + d(q, r) ≥ d(p, r).

The proof relies on the fact that hyperbolic circles are also Euclidean circles.
We can move the picture by a symmetry so that

p = i, q = α + ai, r = bi.

Let Q = ai be the point on the y axis which is on the same horizontal line
as q. See Figure 6. Here a and b and α are constants which depend on the
distances involved. We have

d(p,Q) = ln(a), d(Q, r) = ln(b/a), d(p, r) = ln(b).

In particular

d(p,Q) + d(Q, r) = ln(a) + ln(b/a) = ln(b) = d(p, r).

So p,Q, r satisfy the triangle inequality. However, we want to prove this for
q rather than Q.
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p

Q

q

r

C

Figure 6: Triangle inequality proof.

Let C be the circle centered at p (in the hyperbolic sense) which contains
q. By symmetry, the y-axis is a diameter of C. From this picture, the point
Q is contained in the disk bounded by C. Therefore

d(p, q) ≥ d(p,Q).

Similarly,
d(r, q) ≥ d(r,Q).

But then
d(p, q) + d(q, r) ≥ d(p,Q) + d(Q, r) = d(p, q).

This proves the triangle inequality.

12


