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1 What is a Quaternion ?

A quaternion is a symbol of the form

a+ bi+ cj + dk,

where a, b, c, d are real numbers and i, j, k are special symbols that obey the
following algebraic rules.

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j,

ix = xi, jx = xj, kx = xk, for all real x

Quaternions are added componentwise, like vectors. For instance

(3 + 4i+ j) + (7 + 2j + k) = 10 + 4i+ 3j + k.

Quaternions are multiplied according to the foil method. Just expand every-
thing out, and then use the rules above to simplify the expression so that it
looks like a quaternion. For instance

(4 + j)(i+ k) = 4i+ 4k + ji+ jk = 4i+ 4k − k + i = 5i+ 3k.

Quaternions are often denoted by single variables, like complex numbers. For
instance

q = a+ bi+ cj + dj.
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2 Other Operations on Quaternions

There are several operations on quaternions worth knowing. The conjugate

of q is defined as
q = a− bi− cj − dk.

The square-norm of q is defined as

|q|2 = qq = a2 + b2 + c2 + d2.

Taking square roots gives what is called the norm

|q| =
√
qq =

√
a2 + b2 + c2 + d2.

Geometrically |q| denotes the length of the vector (a, b, c, d) corresponding
to q.

If we define

q−1 =
q

|q|2 =
a− bi− cj − dk

a2 + b2 + c2 + d2
,

then
qq−1 = q−1q = 1.

You have to be careful about defining p/q. This could mean pq−1 or q−1p,
and you might not get the same answer. So, it is best not to define p/q and
simply to live with the fact that there are two competing notions of division,
namely pq−1 and q−1p.

The quaternions almost form a field. They have the basic operations of
addition and multiplication, and these operations satisfy the associative laws,

(p+ q) + r = p+ (q + r), (pq)r = p(qr).

and the distributive law
p(q + r) = pq + pr.

Also, the addition law is commutative

p+ q = q + p.

Both 0 and 1 are quaternions. Also, for any nonzero quaternion q, there is
a quaternion (−q) such that q + (−q) = 0 and a quaternion q−1 such that
qq−1 = q−1q = 1. The only thing missing is the commutative law for the
multiplication. It is not always true that pq = qp. A set with all these
properties (but without pq = qp) is called a division ring rather than a field.
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3 A Basic Equation

It is not always true that qr = rq for quaternions q and r. However, here is
a variant which is always true.

rq = (q)(r). (1)

Just to emphasize the order of operations, this formula says that the conju-
gate of rq is equal to the conjugate of q times the conjugate of r.

The proof of Equation1 is very much like the proof of the complex number
angle addition formula that I did in class. Say that a pair (q, r) of quaternions
is good if the formula holds for q and r. For example, the pair (1, i) is good
because

i× 1 = −i, 1× i = −i.

Similarly, the pair (i, j) is good because

ji = −k = k, i× j = (−i)(−j) = ij = k.

Similar checks show that all 16 pairs q, r) are good when q is one of 1, i, j, k
and r is one of 1, i, j, k.

If (q, r) is good and x is any real number, then (xq, r) and (q, xr) are also
good.

If (q1, r) and (q2, r) are good, then so is (q1+q2, r). To see this, just write
it out and use the distributive law:

r(q1 + q2) = rq1 + rq2 = (q1)(r) + (q2)(r) = (q1 + q2)(r).

If (q, r1) and (q, r2) are good, then so is (q, r1 + r2). This computation is
the same as what we just did.

All these rules combine to show that any pair of quaternions is good. In
other words, Equation 1 is always true.

We can use Equation 1 to prove that the norms multiply when we multiply
together quaternions.

|qr|2 = (qr)(qr) =1 (qr)(r)(q) = q|r|2q =2 (qq)||r| = |q|2|r|2.

Equality 1 uses Equation 1. Equality 2 comes from the fact that real numbers
always commute with quaternions. The other equalities are basically the
associative law.

Taking square roots of the equation gives |qr| = |q||r|.
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4 Groups

One of the themes in modern mathematics is abstraction. Some familiar idea,
like using addition or multiplication to combine numbers, is put in a more
abstract setting. New “objects” are defined which share some of the same
properties as numbers, and then these objects are studied. This approach
seems a bit wierd at first – why would you want to do this? – but it turns
out to reveal hidden connections between things which seemed very different.
The idea of a group is an abstraction like this.

A group is a set, together with an operation on its members, which sat-
isfies certain axioms. The operation is initially denoted (∗), and later on the
notation is usually simplified. Call the set G. Here are the axioms.

1. If a, b ∈ G are any two members, then a ∗ b is defined, and also a
member of G.

2. The associative law holds: (a∗b)∗c = a∗(b∗c) for every three a, b, c ∈ G.

3. There is an “identity element”, called e, so that e ∗ a = a ∗ e = a for
all a ∈ G.

4. For every element a ∈ G there is another element b ∈ G with the
property that a∗ b = b∗a = e. The element b is usually written as a−1.

Notice that the property a ∗ b = b ∗ a is not listed as an axiom. When this
additional property holds for all pairs of elements, G is called commatitive

or (more commonly) abelian. When the property fails for at least one pair
of elements, G is called noncommutative or (more commonly) nonabelian.

Why abelian? This terminology honors Neils Henrick Abel (1802-1829),
the person who proved that you couldn’t “solve” the quintic with the same
kind of formula that you could use for quadratics, cubics, and quartics. This
business is actually very closely related to the theory of groups.

Here are some examples of groups.

• Let G = Z be the integers and let (∗) be addition. Then the element
e is 0 and a−1 is just −a. So, the integers form a group when you use
addition.

• Let G be the set of nonzero real numbers. Let (∗) be multiplication.
In this case, the identity element is 1, and a−1 = 1/a.
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• Pick some positive integer n, and let G = {0, 1, ..., n− 1}. The symbol
a ∗ b is defined as follows: Add a and b and then take the remainder
you get when you divide by n. For instance, if n = 5 then 2 ∗ 4 = 3.
The identity element is 0 and for a 6= 0, we have a−1 = n − a. When
a = 0, we have a−1 = 0. This example is often denoted Z/n. It is an
example of a finite abelian group.

• Let S be any set and let A(S) denote the set of bijections from S to
itself. The group law is the composition of bijections. For instance, if
a : S → S is a bijection and so is b : S → S, then a ∗ b is defined by
the rule that

(a ∗ b)(s) = a(b(s)),

for all s ∈ S. The composition of two bijections is also a bijection, so
this is well defined. The identity element is the identity map, and the
inverse of a bijection is again a bijection. So A(S) is a group. When S
is a finite set with n elements, A(S) is a finite group with n! elements.
When n > 2, this group is nonabelian.

• Let G be the set of unit complex numbers, and let ∗ denote multiplica-
tion. The product of two unit complex numbers is also a unit complex
number. The identity element is 1, and z−1 = 1/z = z, which is again
a unit complex number. So, G forms a group. Geometrically, we have
turned the circle into a group!

How does all this relate to quaternions? Well, the last example also works
for the quaternions. Let G denote the set of unit quaternions – quaternions
with norm 1. Let ∗ be multiplication. If |q| = 1 and |r| = 1, then

|q ∗ r| = |q||r| = 1× 1 = 1.

So the operation is well defined on G. The identity element is once again 1,
and q−1 = q. To see that this works, note that

qq−1 = qq = 1, q−1q = qq = 1.

So, all the axioms hold. Geometrically, the set of unit quaternions is the
set of all solutions to the equation a2 + b2 + c2 + d2 = 1. This is a higher
dimensional version of the sphere and is often denoted S3. What I am saying
is that quaternionic multiplication turns S3 into a group.
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5 Rotations of Space

Let R
3 denote ordinary three dimensional space. It is best to think of the

points in R
3 as vectors. Distances are measured on R

3 using the dot product

distance(V,W ) =
√

(V −W ) · (V −W ).

This is really just the pythagorean theorem. A rotation of space is a bijection
f : R3 → R

3 which satisfies 3 properties:

• f(0, 0, 0) = (0, 0, 0). The origin is fixed.

• f preserves dot products (and hence distances). That is

f(V ) · f(W ) = V ·W

for all V,W ∈ R
3.

• f is orientation preserving. This last condition is often discussed in
terms of the right hand rule. If V,W,X forms a right-handed basis,
then so does f(V ), f(W ), f(X). The right hand rule means that if you
curl your the fingers from V to W , then your thumb points along X
(rather than along −X.)

If you have two rotations f and g, you can compose them. The composition
f ◦ g is also a rotation of space. The identity element is just the rotation
that “does nothing”. That is e(V ) = V for all V . Finally, rotations are
bijections, and their inverse maps are also rotations. Intuitively, if you can
do a rotation, you can simply do it in reverse. In short, the set of rotations
of space forms a group.

The group of rotations of space is often denoted SO(3), which stands for
special orthogonal group of rotations of R3. The latter O stands for “orthog-
onal”, which is a name people give to maps of space which preserve the dot
product. Technically “orthogonal” means “perpendicular”, and the termi-
nology derives from the fact that these kinds of maps preserve the property
of perpendicularity. Finally the S stands for “special”, and this is the orien-
tation preserving property. So, SO(3) stands for “group of special orthogonal
maps of 3-dimensional space”.

I wanted to take some time explaining the crazy notation (rather than
making up my own) because sometimes this kind of mysterions notation can
make a subject look incomprehensible. I wanted to demystify it.
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6 The Spin Cover

Let S3 denote the group of unit quaternions and let SO(3) denote the group
of rotations of space. Amazingly, there is a map from S3 to SO(3). This
map is often called the spin cover . This terminology comes from physics.
When SO(3) is interpreted as the possible positions of a particle, the extra
information you get by looking at S3 is the spin of the particle.

Given a unit quaternion q, we want to come up with a rotation of space,
and we’re going to call this rotation Rq. Here’s the idea. We can think of
R

3 as the set of pure quaternions

(a, b, c) ↔ 0 + ai+ bj + ck.

(Pure means that there is no real component.) If V and W are pure qua-
terions, then the dot product V · W is just exactly the real component of
−VW .

So, here’s the formula
Rq(V ) = qV q. (2)

On the right hand side of the equation, we’re multiplying 3 quaternions
together.

First, let’s check that Rq(V ) is another pure quaternion. Note that a
quaternion W is pure if W = −W . So, we just have to check this for
W = Rq(V ). The check involves several uses of Equation 1. Here goes

Rq(V ) = qV q = (V q)q = (qV )q = q(−V )q = −qV q = −Rq(V ).

So, it works. This means that Rq is some kind of map fromR
3 toR3. Now we

want to see that, actually, it is a rotation. Let’s check the rotation properties.

Origin Fixed: Let O denote the zero quaternion. We have Rq(O) = qOq =
O. This is the first property.

Dot Product Preserved: From what we have said about the dot product,
the second property boils down to showing that WV and Rq(V )Rq(W ) have
the same real components for any two pure quaternions V and Q. Note that

Rq(V )Rq(W ) = (qV q)(qWq) = qV (qq)Wq = qV Wq.

This equation works because qq = 1.
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Let’s write X = VW . We want to see that X and qXq have the same real
component. We already know that this works in case the real component is
0. So, lets write X = X1 +X2 where X1 is real and X2 is pure. Since X1 is
real, it commutes with all quaternions. We have

qXq = q(X1 +X2)q = qX1q + qX2q = X1(qq) + qX2q = X1 + qX2q.

The real component of X1 + qX2q is just X1 because qX2q is pure. So, the
real component of Rq(X) is X1 and the real component of X is X1. It works.

Orientation Preserved: The right hand rule can also be checked alge-
braically, but this is something of a pain. Here is another approach. Every
dot-product preserving map of R3 either preserves orientation or reverses it.
The latter cases happens when you are reflecting in a mirror. So, imagine
that you continuously vary the quaternion Rq and ask the question: Does
Rq preserve orientation or reverse it? The answer can’t suddenly switch. So,
whatever answer you get for one particular quaternion, you get for all of
them. Let’s ask the question when q = 1. In this case Rq is the identity
map, which preserves orientation. Since the answer is yes for 1, it is yes for
all q. That’s it.

Now we know that Rq really is a rotation. This gives us a map from S3

to SO(3). What is the nature of this map? First of all R
−q = Rq, because

(−q)V (−q) = (−q)V (−q) = qV q.

So, q and −q give rise to the same rotation.
Now let’s check how this map behaves with respect to the group laws.

For instance, what does Rqr do? We compute

Rqr(V ) = qrV (qr) = qrV (r)(q) = Rq(Rr(V )).

In short,
Rqr = Rq ◦Rr.

So, the map converts the one group law (quaternion multiplication) to the
other one (composition.) Maps between groups which have this property are
called homomorphisms .

Suppose that Rq = Rr. It turns out that r = ±q in this case. That means
that the map from S3 to SO(3) is a 2-to-1 map. Each rotation of space is
represented by precisely 2 quaternions.
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7 The Last Word

The only thing I haven’t proved is the claim that Rr = Rq implies r = ±q.
I’ll do it in this section.

Suppose that Rq = Rr. The quaternion q has the property that qq = 1.
We have

R1 = Rqq = Rq ◦Rq = Rq ◦Rr = Rqr.

So, Rqr and R1 are the same map.
It is convenient to set s = qr. Now we know that Rs and R1 are the same

map. That means that
Rs(V ) = sV s = V,

for all pure quaterions V . But now we have

V s = (sV s)s = sV (ss) = sV.

In short sV = V s for all pure quaternions V . This implies that s = ±1.
Hence

qr = ±1.

But this means that
r = q(qr) = qs = ±q.

That’s the end of the proof.

8 Exercises

Work on 4 out of 6 of these.

1. Suppose that q = (2− i+ 3j) and r = (5 + i− j − k). What is qr − rq.

2. Suppose that V and W are pure quaternions. Work out VW in terms of
the dot product V ·W and the cross product V ×W .

3. Consider the equation q2 = −1. How many quaternion solutions does
this have, and why?

4. Suppose that s is a quaternion and that sV = V s for all pure quaternions
V . Prove that s = ±1. (Hint: write out s = a+ bi+ cj + dk and try various

9



possibilities for V .)

5. Describe in geometrical terms what the rotation Rq does to space, when
q is the quaternion cos(θ) + i sin(θ).

6. An integer quaternion is a quaternion of the form a + bi + cj + dk,
where a, b, c, d are all integers. Of all the prime numbers less than 20, which
can be written as the form qq, when q is an integer quaternion. Do you see
a pattern?
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