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1 Single Variable Functions

These notes prove some results about functions on R
n. We’ll start with

functions of a single variable.

Lemma 1.1 Let g : R → R be a differentiable function with g(0) = 0. Then

|g(A)| ≤ A× sup
x∈[0,A]

|g′(x)|.

Proof: This is an immediate consequence of the Fundamental Theorem of
Calculus. Here is a proof from scratch. We will establish the more general
statement that the inequality

(∗) |g(a)− g(b)| ≥ (1 + ǫ)|a− b| sup
x∈[a,b]

|g′(x)|

cannot hold for any ǫ > 0 on any sub-interval [a, b] ⊂ [0, A]. If (*) holds for
some interval I, then by the triangle inequality it also holds for one of the
two intervals obtained by cutting I in half. But then (*) holds on a nested
sequence {In} of intervals, shrinking to a point x0. This means that

|g(an)− g(bn)|

|an − bn|
≥ (1 + ǫ)|g′(x0)|.

Here In = [an, bn]. This contradicts the differentiability of g at x0 once n is
sufficiently large. ♠
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2 Differentiability

A map f : Rn → R
m is called differentiable at p if there is some linear map

L : Rn → R
n such that

lim
|h|→0

f(p+ h)− f(p)− L(h)

|h|
= 0. (1)

Here h ∈ R
n is a vector. In this case we write df(p) = L. When f is differ-

entiable at p, the transformation L is the usual matrix of partial derivatives
of f , evaluated at p.

Theorem 2.1 Suppose that f : Rn → R
m is a function whose partial deriva-

tives exist and are continuous. Then f is differentiable at all points.

Proof: Considering the coordinate functions separately, it suffices to con-
sider the case m = 1. Translating the domain and range, it suffices to prove
this at 0, under the assumption that f(0) = 0. (here 0 ∈ R

n is shorthand for
(0, ..., 0).) Subtracting off a linear functional, we can assume that ∂jf(0) = 0
for all j.

Let v be any unit vector. (Here we are thinking that h = tv in Equation
1.) Let h = tv = (h1, ..., hn). Define

h0 = (0, ..., 0), h1 = (h1, 0, ..., 0), h2 = (h1, h2, 0, ..., 0), · · · .

We have some constant ǫt so that |fxj
| < ǫt for all j. Moreover, ǫt → 0 as

t→ 0. Lemma 1.1 gives us

|f(hj)− f(hj−1)| ≤ t× ǫt.

Summing over j, we get
|f(h)| ≤ ntǫt.

Hence
|f(h)|

|h|
=

|f(tv)|

t
≤ ǫt.

This ratio goes to 0 as t → 0. This shows that f is differentiable at 0 and
Df(0) is the 0 transformation. ♠
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An Example: Choose any smooth 2π-periodic non-constant function
ψ(θ) so that ψ(kπ/2) = 0 for k = 0, 1, 2, 3. Now consider the function (in
polar coordinates) f(r, θ) = rψ(θ). Also define f = 0 at the origin. This
function is smooth except at the origin, and vanishes along the x-axis and
y-axis. Hence fx and fy exist everywhere, and vanish at the origin. On the
other hand, the restriction of f to some line through the origin is a nonzero
linear function, meaning that some directional derivative of f at the origin
is nonzero.

3 Another View of Differentiation

Define the dilation Dr(p) = rp. Consider the sequence of maps

fr = Dr ◦ f ◦D1/r. (2)

By construction, fr(v) converges to the directional (vector) derivative Dv(f).
Thus, f is differentiable at 0 if and only if {fr} converges, uniformly on
compact subsets, to a linear map M . This linear map is precisely the matrix
of partials Df(0).

This observation leads to the following result.

Lemma 3.1 Suppose that f : Rn → R
n is a map with f(0) = 0. Suppose

that f is invertible on the unit ball U , and V = f(U) is an open set, and

f is differentiable at 0. Then f−1 is differentiable at 0 and D(f−1)(0) =
(Df(0))−1.

Proof: Replacing f by Af for some linear map A, it suffices to consider the
case when Df(0) is the identity. In this case, the sequence {fn} converges
uniformly on compact subsets to the identity map. Consider the functions

f−1
n = Dn ◦ f

−1 ◦Dn.

Since V is an open set, the map f−1 is defined on the disk of radius ǫ about 0.
Hence f−1

n is defined on the disk of radius nǫ. In particular, these maps are
eventually defined on any given compact subset K. Moreover, these maps
converge to the identity. But then f−1 is differentiable at 0 and D(f−1) is
the identity. ♠
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4 A Technical Result

In this section we assemble another ingredient for the Inverse Function The-
orem. We call f nice if f(0) = 0 and

‖df(p)− I‖ < 10−100. (3)

for all vectors v with ‖v‖ < 10100. Here I is the identity matrix and the
norm can be taken to mean the maximum absolute value of a matrix entry
of df(p)− I. One property a nice function has is that

‖(p− q)− (f(p)− f(q))‖ <
‖p− q‖

2
. (4)

for all p, q having norm less than 10100. To prove this, we consider the segment
γ connecting p to q. Then f(γ) is a curve whose tangent vector is everywhere
almost equal to p− q.

Lemma 4.1 Let f be a nice function. Let Br denote the ball of radius r
centered at the origin. Then B1 ⊂ f(B10).

Proof: If this is false, then there is some P ∈ B1 − f(B10). Note that f
maps every point on the boundary of B10 at least, say, 8 units away from p.
For this reason, we can find some Q ∈ P10 such that

P − f(Q) = inf
q∈B10

P − f(q) > 0.

But now consider the new point

Q = Q+ (P − f(Q)).

We compute
P − f(Q) = (Q−Q)− (f(Q)− f(Q)).

From Equation 4 we get

‖P − f(Q)‖ < ‖Q−Q‖/2 = ‖P − f(Q)‖/2.

This is a contradiction, because f(Q) is closer to P than is f(Q) and again
Q ∈ B10. ♠
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5 Inverse Function Theorem

Say that f : Rn → R
n is C∞ if all partial derivatives of all orders exist

for f . Say that f is nonsingular at p if df(p) is invertible. Given open sets
U, V ⊂ R

n suppose f(U) = V . Say that f is a diffeomorphism from U to V
if f is a bijection and both f and f−1 are C∞ and nonsingular at all points
of their domains.

Theorem 5.1 (Inverse Function Theorem) Suppose that f is C∞, and

nonsingular at p. Then there are open sets U and V with p ∈ U and f(p) ∈ V
such that the map f : U → V is a diffeomorphism.

Let ‖q‖ denote the norm of a point q. We can replace f by a composition
of the form AfB, where A and B are invertible affine maps, to arrange that:

• p = 0 and f(p) = 0.

• For all q with ‖q‖ < 10100, we have ‖Dfq − I‖ < 10−100.

Here I is the identity matrix.
Now let U be the unit disk and let V = f(U). We will verify all the

desired properties through a series of lemmas.

Lemma 5.2 f is injective on U .

Proof: for any q1, q2 ∈ U , let γ be the line segment connecting connecting
q1 to q2. Consider the curve f(γ). By construction, the tangents fo f(γ) are
nearly parallel equal to γ. Hence γ cannot be a loop, and f(q1) 6= f(q2). ♠

We also note that the argument above gives

‖f(q2)− f(q1)‖ > ‖q1 − q2‖/2. (5)

Lemma 5.3 V is open.

Proof: Choose some v0 ∈ V and let u0 ∈ U be such that f(u0) = v0.
Composing f by translations and dilations, we can switch to the case when

• u0 = v0 = 0.
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• f is nice.

• B10 ⊂ U .

• B1 ⊂ V .

Then we can apply Lemma 4.1. ♠

Now we know that V open. Consider f−1 : V → U . Equation 5 tells us
immediately that f−1 is continuous. Lemma 3.1, together with symmetry,
now tells us that f−1 is differentiable and D(f−1) = (Df)−1 at each point.
Now we have the magic equation

Df−1(q) = df ◦ f−1(q). (6)

If we know that f−1 is k times differentiable, then by the chain rule Df−1 is k
times differentiable. But then f−1 is k+1 times differentiable. By induction
f−1 is C∞.
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