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1 Single Variable Functions

These notes prove some results about functions on R". We'll start with
functions of a single variable.

Lemma 1.1 Letg: R — R be a differentiable function with g(0) = 0. Then

9(A)] < Ax sup |g'()].
z€[0,A4]

Proof: This is an immediate consequence of the Fundamental Theorem of
Calculus. Here is a proof from scratch. We will establish the more general
statement that the inequality

(%) lg(a) = g(b)| = (1 +€)la —b| sup, |9 (2)|
z€la,
cannot hold for any € > 0 on any sub-interval [a,b] C [0, A]. If (*) holds for
some interval I, then by the triangle inequality it also holds for one of the
two intervals obtained by cutting / in half. But then (*) holds on a nested
sequence {I,} of intervals, shrinking to a point z5. This means that

l9(an) — g(bn)]
|an — bn|

> (1+€)|g' (zo)l-

Here I,, = [an, b,]. This contradicts the differentiability of g at zo once n is
sufficiently large. &



2 Differentiability

A map f: R"— R™ is called differentiable at p if there is some linear map
L: R" — R" such that

lim flp+h)—f(p)— L(h)

f— . ]_
|h|—0 |h| 0 ()

Here h € R" is a vector. In this case we write df (p) = L. When f is differ-
entiable at p, the transformation L is the usual matrix of partial derivatives
of f, evaluated at p.

Theorem 2.1 Suppose that f : R" — R™ is a function whose partial deriva-
tives exist and are continuous. Then f is differentiable at all points.

Proof: Considering the coordinate functions separately, it suffices to con-
sider the case m = 1. Translating the domain and range, it suffices to prove
this at 0, under the assumption that f(0) = 0. (here 0 € R" is shorthand for
(0,...,0).) Subtracting off a linear functional, we can assume that 9;f(0) =0
for all j.

Let v be any unit vector. (Here we are thinking that h = tv in Equation
1.) Let h =tv = (hq, ..., hy,). Define

ho = (0,...,0),  hy = (h1,0,...,0),  he = (h1,h2,0,...,0), -

We have some constant ¢ so that [f,,| < ¢ for all j. Moreover, ¢ — 0 as
t — 0. Lemma 1.1 gives us

|f(h;) = f(hj—1)| <t X €.

Summing over j, we get

|f(h)| < nte,.
Hence
0l L)
.

This ratio goes to 0 as ¢ — 0. This shows that f is differentiable at 0 and
Df(0) is the 0 transformation. &



An Example: Choose any smooth 27-periodic non-constant function
¥(0) so that ¢(kn/2) = 0 for k = 0,1,2,3. Now consider the function (in
polar coordinates) f(r,0) = ry(0). Also define f = 0 at the origin. This
function is smooth except at the origin, and vanishes along the x-axis and
y-axis. Hence f, and f, exist everywhere, and vanish at the origin. On the
other hand, the restriction of f to some line through the origin is a nonzero
linear function, meaning that some directional derivative of f at the origin
is nonzero.

3 Another View of Differentiation

Define the dilation D,(p) = rp. Consider the sequence of maps

fr:DrofoDl/r' (2>

By construction, f,(v) converges to the directional (vector) derivative D, (f).
Thus, f is differentiable at 0 if and only if {f,} converges, uniformly on
compact subsets, to a linear map M. This linear map is precisely the matrix
of partials D f(0).

This observation leads to the following result.

Lemma 3.1 Suppose that f : R* — R" is a map with f(0) = 0. Suppose
that f is invertible on the unit ball U, and V = f(U) is an open set, and
[ is differentiable at 0. Then f=' is differentiable at 0 and D(f~)(0) =

(Df(0)~

Proof: Replacing f by Af for some linear map A, it suffices to consider the
case when Df(0) is the identity. In this case, the sequence {f,} converges
uniformly on compact subsets to the identity map. Consider the functions

ft=D,of ltoD,.

Since V is an open set, the map f~! is defined on the disk of radius € about 0.
Hence f;! is defined on the disk of radius ne. In particular, these maps are
eventually defined on any given compact subset K. Moreover, these maps
converge to the identity. But then f~! is differentiable at 0 and D(f™!) is
the identity. &



4 A Technical Result

In this section we assemble another ingredient for the Inverse Function The-
orem. We call f nice if f(0) =0 and

ldf (p) — 11| < 107, (3)

for all vectors v with [jv]] < 10'%. Here I is the identity matrix and the

norm can be taken to mean the maximum absolute value of a matrix entry
of df (p) — I. One property a nice function has is that

- ) - (F0) - Fl@)l < 24 (@)

for all p, ¢ having norm less than 10%°. To prove this, we consider the segment
7 connecting p to g. Then f(7) is a curve whose tangent vector is everywhere
almost equal to p — q.

Lemma 4.1 Let f be a nice function. Let B, denote the ball of radius r
centered at the origin. Then By C f(Big).

Proof: If this is false, then there is some P € By — f(Bjg). Note that f
maps every point on the boundary of By at least, say, 8 units away from p.
For this reason, we can find some () € P;y such that

P—f(Q) = inf P~ f(q)>0.

q€Bi1o

But now consider the new point

Q=Q+(P-f(Q)).

We compute - o o
P—f(Q)=(Q-Q)—(f(Q) - f(Q))

From Equation 4 we get

1P = f@I <Q=@Qll/2=P - f(Q]I/2

This is a contradiction, because f(Q) is closer to P than is f(Q) and again
Q) € Bio. &



5 Inverse Function Theorem

Say that f : R" — R" is C* if all partial derivatives of all orders exist
for f. Say that f is nonsingular at p if df (p) is invertible. Given open sets
U,V C R" suppose f(U) =V. Say that f is a diffeomorphism from U to V
if f is a bijection and both f and f~! are C°° and nonsingular at all points
of their domains.

Theorem 5.1 (Inverse Function Theorem) Suppose that f is C*, and
nonsingular at p. Then there are open sets U and V withp € U and f(p) € V
such that the map f:U — V is a diffeomorphism.

Let ||q|| denote the norm of a point ¢q. We can replace f by a composition
of the form AfB, where A and B are invertible affine maps, to arrange that:

e p=0and f(p) =0.
e For all ¢ with ||q|| < 10'%, we have |Df, — I]| < 107!,

Here [ is the identity matrix.
Now let U be the unit disk and let V' = f(U). We will verify all the
desired properties through a series of lemmas.

Lemma 5.2 f is injective on U.

Proof: for any ¢1,q» € U, let v be the line segment connecting connecting
¢1 to g2. Consider the curve f(v). By construction, the tangents fo f(v) are
nearly parallel equal to v. Hence v cannot be a loop, and f(q1) # f(q2). #

We also note that the argument above gives

1/(g2) = (@)l > llar = gall /2. (5)

Lemma 5.3 V is open.

Proof: Choose some vy € V and let uy € U be such that f(ug) = vp.
Composing f by translations and dilations, we can switch to the case when

o uy =1y =0.



e f is nice.
L4 BlO cU.
[ ] Bl C V.

Then we can apply Lemma 4.1. &

Now we know that V open. Consider f~! : V — U. Equation 5 tells us
immediately that f~! is continuous. Lemma 3.1, together with symmetry,

now tells us that f~! is differentiable and D(f~1') = (Df)~! at each point.
Now we have the magic equation

Df~ (q) =df o f'(q). (6)

If we know that f~!is k times differentiable, then by the chain rule Df~!is k
times differentiable. But then f~!is k+ 1 times differentiable. By induction
flis C*.



