
Integrating Functions on Riemannian

Manifolds

Rich Schwartz

April 15, 2015

1 Introduction

Section 9.4 in the book deals with the theory of integrating a function over
a smooth k-dimensional manifold embedded in R

n. We already know how
to integrate k-forms on a k-manifold but the topic here is how to deal with
functions. The purpose of these notes is to clarify what is going on by
explaining things in terms of abstract manifolds.

The general way it works is that one can integrate functions on a Rieman-

nian manifold , because the Riemannian metric defines a canonical volume
form locally. The canonical form is defined everywhere, up to a sign. The
sign can’t work out globally if the manifold is non-orientable, but there is a
trick using partitions of unity to make use of these local volume forms even
in the non-orientable case.

When one has a submanifold in R
n, there is a canonical Riemannian

metric which just comes from the restriction of the dot product. So, you can
use the abstract theory to integrate functions submanifolds of Rn. The final
theory turns out to be equivalent to what is done in the book.

2 Inner Products and Volume Forms

Let V be a finite dimensional real vector space. An inner product on V is a
map Q : V × V → R such that

1. Q is a symmetric 2-tensor.
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2. Q(w,w) > 0 for all w 6= 0.

Lemma 2.1 There exists an orthonormal basis for Q.

Proof: Given a basis {v1, ..., vn} for V we can perform the usual Gram-
Schmidt process for creating an orthonormal basis with respect to Q. The
procedure works like this.

• Replace v1 by

w1 = v1/
√

Q(v1, v1)

so arrange that Q(w1, w1) = 1.

• Assuming that w1, ..., wk have been constructed, let

w′

k+1 = vk+1 −
k
∑

i=1

Q(vk+1, wi)wi.

This guarantees that Q(w′

k+1, wi) = 0 for all i = 1, ..., k.

• Replace w′

k+1 by

wk+1 = w′

k+1/
√

Q(w′

k+1, w
′

k+1).

This produces w1, ..., wn such that Q(wi, wj) = 1 if i = j and 0 otherwise. ♠

Remark: Notice that each wj varies smoothly as a function of v1, ..., vn.
That is, we can think of wj as a function from V n to V , and it is a smooth
function.

Lemma 2.2 Assume that Rn is equipped with the dot product. There is a

linear transformation T : Rn → V which is an isometry between R
n and V .

Proof: Let e1, ..., en be the standard basis for R
n and let w1, ..., wn be an

orthonormal basis for V . The map T (ej) does the trick. ♠

Definition: The adapted volume forms on V are the two forms

±(T−1)∗(dx1 ∧ ... ∧ dxn).

If V also has an orientation, we can “prefer” one of these over the other.

2



3 Riemannian Manifolds

A Riemannian metric on a smooth manifold M is a smoothly varying choice
of inner product Qp on each tangent space Tp(M). The smoothness has the
following explanation. If α : Rn → M is any smooth coordinate chart, then
the pullback inner product α∗(Q) is given by a symmetric matrix at each
point of Rn. We want the entries of this matrix to be smooth functions.
This is the usual way we talk about smooth tensor fields on manifolds.

Suppose that M has a Riemannian metric Q. For each p ∈ M there are
two adapted volume forms associated to Qp, and they differ only by sign.
Call these two volume forms ±ωp. Let V be a coordinate patch in M . Note
that V has one of two local orientations, regardless of whether or not M is
orientable. We say that the assignment p → ωp is continuous if ωp defines the
same orientation at each p ∈ V . In other words, ωp is either always positive
or always negative when evaluated on a positively oriented basis, as p varies
throughout V . Notice that there are exactly 2 continuous adapted volume
forms on each coordinate chart.

If M is orientable, we can make a consistent choice of a continuous
adapted volume form on M . Otherwise, we have to be content with a system
of continuous adapted volume forms, one per coordinate chart.

4 Integration of Functions

Let’s continue with the same notation. Suppose that V ⊂ M is a coordinate
chart. Suppose that f : M → R is a non-negative Borel measurable function
whose support is contained in V .

We choose an orientation on V , as well as the corresponding adapted
volume form ω. We then define

∫

M
f =

∫

M
fω.

Notice that this is a non-negative number, and strictly positive if f > 0
on some open set. Were we to pick the opposite orientation, we would be
integrating −fω with respect to an oppositely oriented coordinate chart, and
we would get the same answer. So, the integral is completely well defined.

Now suppose that f : M → R is any non-negative Borel function whose
support is compact. (This is automatic if M is a compact manifold.) We
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choose a partition of unity {φi} subordinate to some open cover by coordinate
charts, and we define

∫

M
f =

∑

∫

M
φif.

The compactness guarantees that this is just a finite sum. The same argu-
ment as for the integration of forms shows that this definition is independent
of the choice of partition of unity.

Remark: If you don’t like working with Borel measurable functions, you
can restrict your attention to continuous functions. This is all we really need
for applications in the book. For continuous functions, the integrals involved
can be done by the usual Riemann integral.

Suppose now that f : M → R is a compactly supported function We can
write f = f+ − f−, where f+ = max(f, 0), and f− = f − f+. Then we define

∫

M
f =

∫

M
f+ −

∫

M
f−.

5 Euclidean Submanifolds

Suppose now that M is an n-dimensional submanifold of RN . There is a
canonical Riemannian metric on M , namely

Qp(V,W ) = V ·W, ∀V,W ∈ Tp(M).

We then integrate functions onM with respect to the system of volume forms
adapted to M on coordinate charts.

It is worth pointing out why these volume forms are smooth. Let V ⊂ M
be a coordinate patch on M and let α : Rn → V be a coordinate map. We
can get a basis at each point p ∈ V using α∗(e1), ..., α∗(en). This basis varies
smoothly. We can then perform Gram-Schmidt to get a smoothly varying
orthonormal basis. The matrix entries of the adapted quadratic form are
rational-function entries of the coefficients of the orthonormal bases, to they
vary smoothly as well.

6 Reconciling This Approach with the Book

Suppose that f : M → R is a positive function whose support is contained
in the coordinate patch V . Let α be a coordinate chart whose image if V .
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Then the expression
√

det(AtA), A = Dα

computes the infinitesimal volume multiplier under the action of α. That is,
in each tangent space, the differential map A multiplies volume by det(AtA),
as explained in the book.

But that means that

α∗(ω) =
√

det(AtA)dx1 ∧ ... ∧ dxn.

Hence
α∗(fω) = f

√

det(AtA)dx1 ∧ ... ∧ dxn.

So,
∫

M
f =

∫

M
fω =

∫

R
n
α∗(fω) =

∫

R
n
f
√

det(AtA) dx1...dxn.

This last expression is what is in the book.
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