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1 Basic Definitions

We’ll start out by defining the Hodge star operator as a map from ∧k(Rn)
to ∧n−k(Rn). Here ∧k(Rn) denotes the vector space of alternating k-tensors
on R

n. Later on, we will extend this definition to alternating tensors on a
finite dimensional vector space that is equipped with an inner product.

Let I = (i1, ..., ik) be some increasing multi-index of length k. That is
i1 < i2 < i3 < .... Let J = (j1, ..., jn−k) be the complementary increasing
multi-intex. For instance, if n = 7 and I = (1, 3, 5) then J = (2, 4, 6, 7). Let
K0 denote the full multi-index (1, ..., n).

We first define ∗ on the usual basis elements:

∗(dXI) = ǫ(IJ) dxJ . (1)

Here ǫ(IJ) is the sign of the permutation which takes IJ to K0. Sometimes,
we will just write ∗dxI in place of ∗(dxI). In general, we define

∗
(∑

aI dxI

)
=

∑
aI (∗dxI). (2)

Lemma 1.1 For any ω ∈ ∧k(Rn) we have ∗ ∗ ω = (−1)k(n−k)ω. That is

∗ ∗ ω = ω unless k is odd and n is even, in which case ∗ ∗ ω = −ω.

Proof: It suffices to check this on a basis element dXI . Let J be the
complementary multi-index as above. Note that ∗ ∗ dxI = ±dXI . We just
have to get the sign right. When I = (1, ..., k), the sign does work out. So,
for any other choice of I, we just have to show that the sign only depends
on n and k. That tells us that the sign works out in all cases.
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We want to show that

ǫ(IJ → K0)ǫ(JI → K0)

only depends on n and k. Let K denote the multi-index which is the reverse
of K. (If K is increasing then K is decreasing.) For the second permutation,
we can reverse everything and we would get the same answer. That is:

ǫ(JI → K0) = ǫ(IJ → K0).

But then

ǫ(IJ → K0) = ǫ(I → I)ǫ(J → J)ǫ(K0 → K0)ǫ(IJ → K0).

Putting everything together, we get

ǫ(IJ → K0)ǫ(JI → K0) =

(ǫ(IJ → K0))
2ǫ(I → I)ǫ(J → J)ǫ(K0 → K0) =

ǫ(I → I)ǫ(J → J)ǫ(K0 → K0).

Since I and J are increasing, the two quantities ǫ(I → I) and ǫ(J → J) only
depend on the length of I and J respectively and not on their specific terms.
The quantity ǫ(K0 → K0) is the same in all cases. ♠

2 Rotational Symmetry

Let SO(n) denote the group of orientation preserving orthogonal matrices.
Given any M ∈ SO(n) we have an induced map M∗ : ∧ℓ(Rn) → ∧ℓ(Rn).
The purpose of this section is to prove that

∗M∗(ω) = M∗(∗ω), (3)

for all ω ∈ ∧k(Rn). This equation expresses the fact that the Hodge star op-
erator is rotationally symmetric. In other words, the star operator commutes
with the action of SO(n).

Say that an element M ∈ SO(n) is good if Equation 3 holds for M . For
instance, the identity element is obviously good.
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Lemma 2.1 Suppose that A and B are good. Then AB is also good.

Proof: The only thing to note is that (AB)∗ = B∗A∗. So, now we compute

(AB)∗(∗ω) = B∗A∗(∗ω) = B∗(∗A∗(ω)) = ∗B∗A∗(ω) = ∗(AB)∗(ω).

That’s it. ♠

Before stating the next result, we observe that it concerns an orthogonal
matrix whose determinant is −1. So, the next result does not contradict the
main thing we are trying to prove.

Lemma 2.2 Let k < n be some index. Let M be the orthogonal matrix

defined by the rules that M(ej) = ej if j 6= k, k + 1 and M(ek) = ek+1 and

M(ek+1) = ek. Then M∗∗ = − ∗M∗.

Proof: It suffices to prove this on a basis. Let I be an increasing multi-index.
We will consider the equation on ω = dxI . There are 4 cases to consider.

• Suppose that I contains both k and k + 1. Then M∗(ω) = −ω and
∗M∗(ω) = − ∗ ω. On the other hand ∗ω = ±dxJ , where J does not
involve either k or k + 1. Hence M∗(∗ω) = ∗ω.

• Suppose that I contains neither k nor k+1. This case is similar to the
previous case.

• Suppose that I contains k but not k + 1. Then M∗(ω) = dxI′ , where
I ′ is obtained from I by swapping out k and putting in k + 1. We
have ∗ω = ǫ(IJ)dxJ and M∗(∗ω) = ǫ(IJ)dxJ ′ , where J ′ is obtained
from k by swapping out k + 1 for k. On the other hand, we have
∗M∗(ω) = ǫ(I ′J ′)dXJ ′ . To finish the proof in this case, we just have to
show that ǫ(IJ) = −ǫ(I ′J ′). But the two permutations just differ by
composition with the transposition which swaps k and k + 1. So, the
equality holds.

• Suppose that I contains k+ 1 but not k. This case has a similar proof
to the previous case.

This takes care of all the cases. ♠
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Corollary 2.3 Suppose that M is good and P is any permutation matrix.

Then PMP−1 is also good.

Proof: Call an orthogonal matrix anti-good if it has the transformation law
given in Lemma 2.2. The same argument as in Lemma 2.1 shows that the
product of two anti-good matrices is good, and that the product of a good
and an anti-good matrix is anti-good.

Any permutation matrix is the product of finitely many matrices covered
by Lemma 2.2. For this reason, it suffices to prove the result when P is such
a matrix. In this case P = P−1, and P is anti-good. But then MP−1 is
anti-good, and P (MP−1) is good. ♠

Lemma 2.4 Let M be the element of SO(n) which has the following action:

• M(ej) = ej for j = 3, 4, 5, ....

• M(e1) = e1 cos(θ) + e2 sin(θ),

• M(e2) = −e1 sin(θ) + e2 cos(θ).

In other words, M rotates by θ in the e1, e2 plane and fixes the perpendicular

directions. Then M is good.

Proof: It suffices to check this on a basis. We have ∗dxI = ǫ(IJ)dxJ . For
notational convenience, we’ll consider the case when ǫ(IJ) = 1. The other
case has the same kind of proof. So, in short, we are considering the case
when ∗dxI = dxJ .

Note that the restriction of M to the e1, e2 plane is an orientation-
preserving rotation. For this reason M∗(dxI) = dxI when I contains both 1
and 2, and also when I contains neither 1 nor 2. Likewise M∗(dxJ) = dxJ .
So, in either of these two cases, ∗M∗(dxI) = M∗ ∗ (dxI) = dxJ .

Consider the case when I contains 1 but not 2. Then dxI = dx1 ∧ dxI′ .
Here I ′ is obtained from I by omitting 1. Similiarly, we have the equations

∗(dx1 ∧ dxI′) = dx2 ∧ dxJ ′ , ∗(dx2 ∧ dxI′) = −dx1 ∧ dxJ ′ .

Here J ′ is obtained from J by omitting 2. The sign change in the second
calculation comes from the fact that ǫ(IJ) = −ǫ(Î Ĵ), where Î and Ĵ are
obtained from I and J by swapping 1 and 2.
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We set C = cos(θ) and S = sin(θ). An easy computation shows that

M∗(dx1) = Cdx1 − Sdx2, M∗(dx2) = Sdx1 + Cdx2.

These calculations tell us that

∗M∗(dxI) = ∗
(
(Cdx1 − Sdx2) ∧ dxI′

)
=

∗
(
Cdx1 ∧ dxI′

)
− ∗

(
Sdx2 ∧ dxI′

)
= Cdx2 ∧ dxJ ′ + Sdx1 ∧ dxJ ′ .

Similarly
M∗(∗dxI) = M∗(dx2 ∧ dxJ ′) =

(Sdx1 + Cdx2) ∧ dxJ ′ = Sdx1 ∧ dxJ ′ + Cdx2 ∧ dxJ ′ .

The two expressions agree.
There is one more case, when I contains 2 but not 1. This case is simi-

lar to the last case, and actually follows from the last case and Lemma 1.1. ♠

Lemma 2.5 Let i < j be two indices. Let M be the element of SO(n) which
has the following action:

• M(ek) = ek if k 6= i, j.

• M(ei) = ei cos(θ) + ej sin(θ),

• M(ej) = −ei sin(θ) + ej cos(θ).

In other words, M rotates by θ in the ei, ej plane and fixes the perpendicular

directions. Then M is good.

Proof: Let P be any permutation matrix which maps 1 to i and 2 to j. Let
M12 be the matrix from Lemma 2.4. Then M = PM12P

−1. By the preceding
lemmas, M is good. ♠

Say that a matrix from Lemma 2.5 is a basic rotation.

Lemma 2.6 Any element of SO(n) is the finite product of basic rotations.
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Proof: The proof goes by induction on n ≥ 2. The case n = 2 is obvious.
Let w1, ..., wn be any positively oriented orthonormal basis. Applying basic
rotations, we can map wn to en. By induction, we can map w1, ..., wn−1 to
e1, ..., en using basic rotations which fix en. ♠

Lemma 2.5 says that the basic rotations are all good. Lemma 2.1 says
that finite products of basic rotations are good. So, by the last result, all
elements of SO(n) are good. This completes the proof of the rotational
symmetry of the Hodge star operator.

3 A Consequence of the Symmetry

Suppose that w1, ..., wn is some other positively oriented orthonormal basis
of Rn. We define

dwI = dwi1 ∧ ... ∧ dwIk .

Here dw1, ..., dwn is the basis of 1-tensors dual to our new orthonormal basis.
Here is a consequence of the rotational symmetry of the star operator:

Lemma 3.1 ∗dwI = ǫ(IJ)dwJ , where J is the increasing multi-index com-

plementary to I.

Proof: For notational convenience, we’ll prove this when ǫ(IJ) = 1. The
other case is similar.

There is an element M ∈ SO(n) such that M(wi) = ei for all i. Note
that M∗(dxi) = dwi. Hence M∗(dxI) = dwI and M∗(dxJ) = dwJ . Now we
compute

∗(dwI) = ∗M∗(dxI) = M∗ ∗ (dxI) = M∗(dxJ) = dwJ .

That’s it. ♠

Lemma 3.1 says that we could have made the basic definition for the star
operator with respect to any positively oriented orthonormal basis and we
could have gotten the same answer.
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4 General Definition

Suppose now that V is an n-dimensional real vector space and Q is an inner
product on V . Suppose also that V is oriented.

There is an isometry g : Rn → V which carries the standard basis on R
n

to a positively oriented orthonormal basis on V , with respect to Q. Any two
such isometries differ by composition with an element of SO(n).

Given any ω ∈ ∧k(V ), we define

∗ω = (g−1)∗(∗g∗(ω)).

That is, we do the following:

• Pull ω back to R
n using g∗. Call this new form η.

• Take ∗η.

• Pull ∗η back to V using (g−1)∗. This last form is ∗ω.

The fact that ∗ commutes with elements of SO(n) guarantees that this
definition is independent of the choice of g. In fact, we can equally well
define ∗ in the following way: Choose a positively oriented orthonormal basis
v1, ..., vn for V and define

∗(dvI) = ǫ(IJ)dvJ .

The rotational symmetry guarantees that we would get the same answer with
respect to any positively oriented orthonormal basis.

The general definition allows us to extend the definition of the star oper-
ator from inner product spaces to oriented Riemannian manifolds.

Suppose thatM is a smooth oriented manifold with a Riemannian metric.
Then we have a smooth choice of inner product Qp on each tangent space
Tp(M). This allows us to define the Hodge star operator in each tangent
space. So if ω ∈ Ωk(M) is some smooth k form, then ∗ω is an n− k form on
M .

Lemma 4.1 ∗ω is smooth. That is, ∗ω ∈ Ωn−k(M).

Proof: In the neighborhood of any point,M has a smoothly varying and pos-
itively oriented orthonormal basis. We just take a smoothly varying positively
oriented basis, coming from a coordinate chart, and apply the Gram-Schmidt
process in each tangent plane. When ω is defined locally with respect to this
basis, we can see that ∗ω is smooth. ♠
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5 A Variant of Stokes’ Theorem

Suppose that M is an n dimensional oriented manifold-with-boundary con-
tained in R

n. In this situation, M has a canonical Riemannian metric, com-
ing from the dot product on R

n. The same goes for ∂M . A good example to
consider is when M is a closed ball and ∂M is the sphere bounding the ball.

Let V be a vector field on M , say V = (V1, ..., Vn). We have the usual
associated 1-form ω =

∑
Vidxi. Note that ∗ω is an (n − 1) form on M and

d ∗ ω is an n-form on M . Stokes’ theorem, applied to ∗ω, tells us that

∫

M
d(∗ω) =

∫

∂M
∗ω. (4)

We’re going to re-interpret each half of this equation.

The Left Side: A direct calculation shows that

d(∗ω) =
∑

∂Vi/∂xi dx1 ∧ ... ∧ dxn = div(V ) dx1 ∧ ... ∧ dxn.

So, the left hand side of Equation 4 equals

∫

M
div(V ) dx1...dxn,

the usual integral of the divergence of a vector field.

The Right Side: Now let’s consider the right hand side of Equation 4.
Consider the form ∗ω at a point p of ∂M . We can find an oriented orthonor-
mal basis for Rn at p, say w1, ..., wn, so that

• w1, ..., wn−1 is an oriented orthonormal basis for Tp(∂M).

• ν = (−1)n−1wn is the normal vector that is compatible with Stokes’
theorem.

We can write
ω =

∑
biwi.

Note that the restriction of ∗dwi to ∂M at p is 0 unless i = n. Therefore the
restriction of ∗ω to ∂M at p equals bn ∗ dwn. That is

∗ω|∂M = bn(∗dwn).
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But
bn = ω(wn) = (−1)n−1ω(ν) = (−1)n−1V · ν.

Finally,
∗dwn = (−1)n−1dw1 ∧ ... ∧ dwn−1.

Putting these three equations together, we get

∗ω|∂M = V · ν dw1 ∧ ... ∧ dwn−1.

Our theory of integrating functions on manifolds tells us that the right hand
side of Equation 4 is ∫

∂M
V · ν.

The Interpretation: Putting everything together, we have
∫

M
div(V ) =

∫

∂M
V · ν. (5)

On the left hand side, we are integrating with the usual volume measure
on Euclidean space, and on the right hand side we are integrating a func-
tion on an oriented manifold according to the theory explained in the class
and in a previous handout. This is a classical n-dimensional generalization
of the usual low dimensional version of Stokes’ theorem which involves the
divergence.

6 Another Variant

Again consider the case whenM is an n-dimensional manifold-with-boundary
contained in R

n. Let f be a smooth function on M . Note that df is the 1-
form corresponding to the gradient ∇f . We know from the previous section
that ∫

M
div(∇f) =

∫

∂M
∇f · ν.

A direct calculation shows that

div(∇f) = ∆f :=
∑

∂2f∂x2
i .

Here ∆f is the Laplacian of f .
This gives us another variant of Stokes’ Theorem:

∫

M
∆f =

∫

∂M
∇f · ν. (6)

In physical terms, this result says that the total flux of f through ∂M equals
the integral of the Laplacian of f on the interior of M .
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